Exceptional Control Flow: Exceptions and Processes

CS 485G-006: Systems Programming
Lectures 24–26: 28 Mar–1 Apr 2016
Today

- Exceptional Control Flow
- Exceptions
- Processes
- Process Control
Control Flow

- Processors do only one thing:
 - From startup to shutdown, a CPU simply reads and executes (interprets) a sequence of instructions, one at a time
 - This sequence is the CPU’s control flow (or flow of control)

Physical control flow

<startup>
inst₁
inst₂
inst₃
...
instₙ
<shutdown>

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)
Altering the Control Flow

- Up to now: two mechanisms for changing control flow:
 - Jumps and branches
 - Call and return
 React to changes in program state

- Insufficient for a useful system:
 Difficult to react to changes in system state
 - Data arrives from a disk or a network adapter
 - Instruction divides by zero
 - User hits Ctrl-C at the keyboard
 - System timer expires

- System needs mechanisms for “exceptional control flow”
Exceptional Control Flow

- Exists at all levels of a computer system

- Low level mechanisms
 1. **Exceptions (interrupts, traps, faults, and aborts)**
 - Change in control flow in response to a system event (i.e., change in system state, bad instruction, ...)
 - Implemented using combination of hardware and OS software
 - Handled by the OS (the kernel)

- Higher level mechanisms
 2. **Process context switch**
 - Implemented by OS software and hardware timer
 3. **Signals**
 - Implemented by OS software
 4. **Nonlocal jumps**: `setjmp()` and `longjmp()`
 - Implemented by C runtime library

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)
Today

- Exceptional Control Flow
- Exceptions
- Processes
- Process Control
Exceptions

- An exception is a transfer of control to the OS kernel in response to some event (i.e., change in processor state)
 - Kernel is the memory-resident part of the OS
 - Examples of events: Divide by 0, arithmetic overflow, page fault, I/O request completes, typing Ctrl-C

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)
Exception Tables

- Each type of event has a unique exception number k
- k = index into exception table (a.k.a. interrupt vector)
- Handler k is called each time exception k occurs

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)
Asynchronous Exceptions (Interrupts)

- **Caused by events external to the processor**
 - Indicated by setting the processor’s *interrupt pin*
 - Handler returns to “next” instruction

- **Examples:**
 - Timer interrupt
 - Every few ms, an external timer chip triggers an interrupt
 - Used by the kernel to take back control from user programs
 - I/O interrupt from external device
 - Hitting Ctrl-C at the keyboard
 - Arrival of a packet from a network
 - Arrival of data from a disk
Synchronous Exceptions

- Caused by events that occur as a result of executing an instruction:
 - **Traps**
 - Intentional
 - Examples: *system calls*, breakpoint traps, special instructions
 - Returns control to “next” instruction
 - **Faults**
 - Unintentional but possibly recoverable
 - Examples: page faults (recoverable), protection faults (unrecoverable), floating point exceptions
 - Either re-executes faulting (“current”) instruction or aborts
 - **Aborts**
 - Unintentional and unrecoverable
 - Examples: illegal instruction, parity error, machine check
 - Aborts current program
System Calls

- Each x86-64 system call has a unique ID number
- Examples:

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>read</td>
<td>Read file</td>
</tr>
<tr>
<td>1</td>
<td>write</td>
<td>Write file</td>
</tr>
<tr>
<td>2</td>
<td>open</td>
<td>Open file</td>
</tr>
<tr>
<td>3</td>
<td>close</td>
<td>Close file</td>
</tr>
<tr>
<td>4</td>
<td>stat</td>
<td>Get info about file</td>
</tr>
<tr>
<td>57</td>
<td>fork</td>
<td>Create process</td>
</tr>
<tr>
<td>59</td>
<td>execve</td>
<td>Execute a program</td>
</tr>
<tr>
<td>60</td>
<td>_exit</td>
<td>Terminate process</td>
</tr>
<tr>
<td>62</td>
<td>kill</td>
<td>Send signal to process</td>
</tr>
</tbody>
</table>
System Call Example: Opening File

- User calls: `open(filename, options)`
- Calls `__open` function, which invokes system call instruction `syscall`

```
// User code
syscall <__open>: ...
    b8 02 00 00 00       mov $0x2,%eax  # open is syscall #2
    0f 05               syscall         # Return value in %rax
    48 3d 01 f0 ff ff   cmp $0xfffffffffffff001,%rax
...
```

```
// Kernel code
    c3                  retq
```

- `%rax` contains syscall number
- Other arguments in `%rdi, %rsi, %rdx, %r10, %r8, %r9`
- Return value in `%rax`
- Negative value in `%rax` is an error corresponding to negative `errno`
Fault Example: Page Fault

- User writes to memory location
- That portion (page) of user’s memory is currently on disk

```c
int a[1000];
main ()
{
    a[500] = 13;
}
```

User code

Kernel code

80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

Exception: page fault

Copy page from disk to memory

Return and reexecute movl
Fault Example: Invalid Memory Reference

```
int a[1000];
main ()
{
    a[5000] = 13;
}
```

80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

- Sends **SIGSEGV** signal to user process
- User process exits with “segmentation fault”
Today

- Exceptional Control Flow
- Exceptions
- Processes
- Process Control
Processes

Definition: A *process* is an instance of a running program.
- One of the most profound ideas in computer science
- Not the same as “program” or “processor”

Process provides each program with two key abstractions:

- **Logical control flow**
 - Each program seems to have exclusive use of the CPU
 - Provided by kernel mechanism called *context switching*

- **Private address space**
 - Each program seems to have exclusive use of main memory.
 - Provided by kernel mechanism called *virtual memory*
Multiprocessing: The Illusion

- Computer runs many processes simultaneously
 - Applications for one or more users
 - Web browsers, email clients, editors, ...
 - Background tasks
 - Monitoring network & I/O devices

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)
Multiprocessing Example

- Running program “top” on Mac
 - System has 123 processes, 5 of which are active
 - Identified by Process ID (PID)

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)
Multiprocessing: The (Traditional) Reality

- **Single processor executes multiple processes concurrently**
 - Process executions interleaved (multitasking)
 - Address spaces managed by virtual memory system (later in course)
 - Register values for nonexecuting processes saved in memory

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)
Multiprocessing: The (Traditional) Reality

- Save current registers in memory

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)
Multiprocessing: The (Traditional) Reality

- Schedule next process for execution
Multiprocessing: The (Traditional) Reality

Load saved registers and switch address space (context switch)
Multiprocessing: The (Modern) Reality

- Multicore processors
 - Multiple CPUs on single chip
 - Share main memory (and some of the caches)
 - Each can execute a separate process
 - Scheduling of processors onto cores done by kernel

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)
Concurrent Processes

- Each process is a logical control flow.
- Two processes run concurrently (are concurrent) if their flows overlap in time
- Otherwise, they are sequential
- Examples (running on single core):
 - Concurrent: A & B, A & C
 - Sequential: B & C

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)
User View of Concurrent Processes

- Control flows for concurrent processes are physically disjoint in time

- However, we can think of concurrent processes as running in parallel with each other
Context Switching

- Processes are managed by a shared chunk of memory-resident OS code called the *kernel*.
 - Important: the kernel is not a separate process, but rather runs as part of some existing process.

- Control flow passes from one process to another via a *context switch*.
Today

- Exceptional Control Flow
- Exceptions
- Processes
- Process Control
System Call Error Handling

- On error, Linux system-level functions typically return -1 and set global variable `errno` to indicate cause.

- Hard and fast rule:
 - You must check the return status of every system-level function
 - Only exception is the handful of functions that return `void`

- Example:

```c
if ((pid = fork()) < 0) {
    fprintf(stderr, "fork error: %s\n", strerror(errno));
    exit(0);
}
```
Error-reporting functions

Can simplify somewhat using an `error-reporting function`:

```c
void unix_error(char *msg) /* Unix-style error */
{
    fprintf(stderr, "%s: %s\n", msg, strerror(errno));
    exit(0);
}
```

```c
if ((pid = fork()) < 0)
    unix_error("fork error");
```
Obtaining Process IDs

- `pid_t getpid(void)`
 - Returns PID of current process

- `pid_t getppid(void)`
 - Returns PID of parent process
Creating and Terminating Processes

From a programmer’s perspective, we can think of a process as being in one of three states

- **Running**
 - Process is either executing, or waiting to be executed and will eventually be *scheduled* (i.e., chosen to execute) by the kernel

- **Stopped**
 - Process execution is *suspended* and will not be scheduled until further notice (next lecture when we study signals)

- **Terminated**
 - Process is stopped permanently
Terminating Processes

- Process becomes terminated for one of three reasons:
 - Receiving a signal whose default action is to terminate (next lecture)
 - Returning from the main routine
 - Calling the `exit` function

- `void exit(int status)`
 - Terminates with an exit status of `status`
 - Convention: normal return status is 0, nonzero on error
 - Another way to explicitly set the exit status is to return an integer value from the main routine

- `exit` is called once but never returns.
Creating Processes

- **Parent process** creates a new running *child process* by calling `fork`

`int fork(void)`
- Returns 0 to the child process, child’s PID to parent process
- Child is *almost* identical to parent:
 - Child get an identical (but separate) copy of the parent’s virtual address space.
 - Child gets identical copies of the parent’s open file descriptors
 - Child has a different PID than the parent

- `fork` is interesting (and often confusing) because it is called *once* but returns *twice*
fork Example

```c
int main()
{
    pid_t pid;
    int x = 1;

    pid = Fork();
    if (pid == 0) { /* Child */
        printf("child : x=%d\n", ++x);
        exit(0);
    }

    /* Parent */
    printf("parent: x=%d\n", --x);
    exit(0);
}
```

- **Call once, return twice**
- **Concurrent execution**
 - Can’t predict execution order of parent and child
- **Duplicate but separate address space**
 - `x` has a value of 1 when fork returns in parent and child
 - Subsequent changes to `x` are independent
- **Shared open files**
 - stdout is the same in both parent and child

```
linux> ./fork
parent: x=0
child : x=2
```

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)
Modeling `fork` with Process Graphs

- A process graph is a useful tool for capturing the partial ordering of statements in a concurrent program:
 - Each vertex is the execution of a statement
 - `a -> b` means `a` happens before `b`
 - Edges can be labeled with current value of variables
 - `printf` vertices can be labeled with output
 - Each graph begins with a vertex with no inedges

- Any topological sort of the graph corresponds to a feasible total ordering.
 - Total ordering of vertices where all edges point from left to right
Process Graph Example

```c
int main()
{
    pid_t pid;
    int x = 1;

    pid = Fork();
    if (pid == 0) { /* Child */
        printf("child: x=%d\n", ++x);
        exit(0);
    }

    /* Parent */
    printf("parent: x=%d\n", --x);
    exit(0);
}
```

fork.c
Interpreting Process Graphs

- **Original graph:**

 ![Original graph diagram]

 - `child: x=2`
 - `x==1`
 - `parent: x=0`
 - `printf`
 - `exit`

- **Relabeled graph:**

 ![Relabeled graph diagram]

 - `main`
 - `for k`
 - `printf`
 - `exit`

- **Feasible total ordering:**

 ![Feasible total ordering diagram]

- **Infeasible total ordering:**

 ![Infeasible total ordering diagram]

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)
fork Example: Two consecutive forks

```c
void fork2()
{
    printf("L0\n");
    fork();
    printf("L1\n");
    fork();
    printf("Bye\n");
}
```

Feasible output:

L0
L1
Bye
Bye
L1
Bye
Bye

Infeasible output:

L0
Bye
L1
Bye
L1
Bye
Bye

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)
void fork4()
{
 printf("L0\n");
 if (fork() != 0) {
 printf("L1\n");
 if (fork() != 0) {
 printf("L2\n");
 }
 }
 printf("Bye\n");
}
fork Example: Nested forks in children

```c
void fork5()
{
    printf("L0\n");
    if (fork() == 0) {
        printf("L1\n");
        if (fork() == 0) {
            printf("L2\n");
        }
    }
    printf("Bye\n");
}
```

Feasible output:
- L0
- Bye
- L1
- L2
- Bye
- Bye

Infeasible output:
- L0
- Bye
- L1
- Bye
- Bye
- L2
Reaping Child Processes

■ Idea
 ▪ When process terminates, it still consumes system resources
 ▪ Examples: Exit status, various OS tables
 ▪ Called a “zombie”
 ▪ Living corpse, half alive and half dead

■ Reaping
 ▪ Performed by parent on terminated child (using wait or waitpid)
 ▪ Parent is given exit status information
 ▪ Kernel then deletes zombie child process

■ What if parent doesn’t reap?
 ▪ If any parent terminates without reaping a child, then the orphaned child will be reaped by init process (pid == 1)
 ▪ So, only need explicit reaping in long-running processes
 ▪ e.g., shells and servers

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)
Zombie Example

void fork7() {
 if (fork() == 0) {
 /* Child */
 printf("Terminating Child, PID = %d\n", getpid());
 exit(0);
 } else {
 printf("Running Parent, PID = %d\n", getpid());
 while (1) // Infinite loop */
 }
}

ps shows child process as “defunct” (i.e., a zombie)

Killing parent allows child to be reaped by init
Non-terminating Child Example

```
void fork8()
{
    if (fork() == 0) {
        /* Child */
        printf("Running Child, PID = %d\n", getpid);
        while (1)
            ; /* Infinite loop */
    } else {
        printf("Terminating Parent, PID = %d\n", getpid);
        exit(0);
    }
}
```

Child process still active even though parent has terminated

Must kill child explicitly, or else will keep running indefinitely

Adapted from slides by R. Bryant and D. O'Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)
wait: Synchronizing with Children

- Parent reaps a child by calling the `wait` function

```c
int wait(int *child_status)
```

- Suspends current process until one of its children terminates
- Return value is the `pid` of the child process that terminated
- If `child_status != NULL`, then the integer it points to will be set to a value that indicates reason the child terminated and the exit status:
 - Checked using macros defined in `wait.h`
 - `WIFEXITED`, `WEXITSTATUS`, `WIFSIGNALED`, `WTERMSIG`, `WIFSTOPPED`, `WSTOPSIG`, `WIFCONTINUED`
 - See textbook for details

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)
wait: Synchronizing with Children

```c
void fork9() {
    int child_status;

    if (fork() == 0) {
        printf("HC: hello from child\n");
        exit(0);
    } else {
        printf("HP: hello from parent\n");
        wait(&child_status);
        printf("CT: child has terminated\n");
    }
    printf("Bye\n");
}
```

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)
Another wait Example

- If multiple children completed, will take in arbitrary order
- Can use macros WIFEXITED and WEXITSTATUS to get information about exit status

```c
void fork10() {
    pid_t pid[N];
    int i, child_status;

    for (i = 0; i < N; i++)
        if ((pid[i] = fork()) == 0) {
            exit(100+i); /* Child */
        }
    for (i = 0; i < N; i++) { /* Parent */
        pid_t wpid = wait(&child_status);
        if (WIFEXITED(child_status))
            printf("Child %d terminated with exit status %d\n", wpid, WEXITSTATUS(child_status));
        else
            printf("Child %d terminate abnormally\n", wpid);
    }
}
```

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)
waitpid: Waiting for a Specific Process

- **waitpid(pid_t pid, int &status, int options)**
 - Suspends current process until specific process terminates
 - Various options (see textbook)

```c
void fork11() {
    pid_t pid[N];
    int i;
    int child_status;

    for (i = 0; i < N; i++)
        if ((pid[i] = fork()) == 0)
            exit(100+i); /* Child */
    for (i = N-1; i >= 0; i--)
        {
          pid_t wpid = waitpid(pid[i], &child_status, 0);
          if (WEXITED(child_status))
              printf("Child %d terminated with exit status %d\n", wpid, WEXITSTATUS(child_status));
          else
              printf("Child %d terminate abnormally\n", wpid);
        }
}
forks.c
```
execve: Loading and Running Programs

- int execve(char *filename, char *argv[], char *envp[])
- **Loads and runs in the current process:**
 - Executable file *filename*
 - Can be object file or script file beginning with `#!/interpreter`
 (e.g., `#!/bin/bash`)
 - ...with argument list *argv*
 - By convention `argv[0] == filename`
 - ...and environment variable list *envp*
 - "name=value" strings (e.g., `USER=droh`)
 - `getenv`, `putenv`, `printenv`

- **Overwrites code, data, and stack**
 - Retains PID, open files and signal context

- **Called once and never returns**
 - ...except if there is an error

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)
Structure of the stack when a new program starts

- Null-terminated environment variable strings
 - envp[n] == NULL
 - envp[n-1]
 - ...
 - envp[0]
- Null-terminated command-line arg strings
 - argv[argc] = NULL
 - argv[argc-1]
 - ...
 - argv[0]
- Stack frame for libc_start_main
 - Future stack frame for main
- environ (global var)
- envp (in %rdx)
- argv (in %rsi)
- argc (in %rdi)
execve Example

- Executes "/bin/ls -lt /usr/include" in child process using current environment:

  ```c
  if ((pid = Fork()) == 0) {
    // Child runs program
    if (execve(myargv[0], myargv, environ) < 0) {
      printf("%s: Command not found.\n", myargv[0]);
      exit(1);
    }
  }
  ```

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)
Summary

- Exceptions
 - Events that require nonstandard control flow
 - Generated externally (interrupts) or internally (traps and faults)

- Processes
 - At any given time, system has multiple active processes
 - Only one can execute at a time on a single core, though
 - Each process appears to have total control of processor + private memory space

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)
Summary (cont.)

- **Spawning processes**
 - Call `fork`
 - One call, two returns

- **Process completion**
 - Call `exit`
 - One call, no return

- **Reaping and waiting for processes**
 - Call `wait` or `waitpid`

- **Loading and running programs**
 - Call `execve` (or variant)
 - One call, (normally) no return