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Recursion

Problems—computational, mathematical, and otherwise—can be defined
and solved recursively.

That is, in terms of themselves.

A compound sentence is two sentences with “and” between them.

A Python expression may contain two expressions with an operator
between them: (3 + 2) * (4 - 9).

Point a video camera at its own display—hall of mirrors.

Many mathematical structures are defined recursively.
I Fibonacci numbers, factorials, fractals, . . .
I Mathematicians call this induction (same thing as recursion).
I It’s also a common method of mathematical proof.

Search for recursion on Google.
I Note the search suggestion.
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Recursion in programming

The idea behind recursion in programming:
I Break down a complex problem into a simpler version

of the same problem.

I Implemented by functions that call themselves.
F Recursive functions.

I The same computation recurs (occurs repeatedly).
F This is not the same as iteration (looping)!
F But it is possible to convert iteration to recursion, and vice versa.

Recursion is often the most natural way of thinking about a problem.
I Some computations are very difficult to perform without recursion.
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Thinking recursively

Suppose we want to write a function that prints a triangle of stars.
print triangle(4)

→*

* *

* * *

* * * *

We could use nested loops, but let’s try using recursion instead.

I Pretend someone else has already written a function to print a triangle
of size 3. How would you print a triangle of size 4?

F First call that function.
F Then print a row of four stars.

I What about size 5?
F Print a triangle of size 4.
F Then print a row of five stars.

I Recursion: Use the solution to a simpler version of the same problem!
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A (broken) recursive function

def print triangle(side len):

# First solve a simpler version of the problem.

print triangle(side len - 1)

# Now turn it into the solution to this problem.

# (by drawing the last line).

print("* " * side len)

print()

But there’s one small problem. . .
I It will never end!
I To print a triangle of size 1, first print a triangle of size 0.
I To do that, first print a triangle of size -1. . .

F What?
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The base case

Every recursion must end somewhere.
I At some point the problem is so simple we can solve it directly.

I Usually that is when the size of the problem is zero or one.
I We call this the base case or termination condition.
I How do we print a triangle with size zero?

F By doing nothing!

def print triangle(side len):

if side len <= 0 # Base case.

pass # Do nothing.

else: # Recursive case

print triangle(side len - 1)

print("* " * side len)

print()
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Rules for recursion

There are three key requirements for a recursive function to work correctly.

1 Base case: There must be a special case to handle the simplest
versions of the problem directly, without recursion.

I Does not call the function again.

2 Recursive case: There must be a case where the function does call
itself.

3 Simplification: The recursive call must be on a simpler version of the
problem. That is, it must reduce the size of the problem, bringing you
closer to the base case.

I That means the arguments must be changed from the parameters.
I If not, you have infinite recursion

And a few related guidelines:

You should check for the base case first.
I . . . before making any recursive calls.

The base case is usually, but not always, a problem of size 0 or 1.
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About the rules

You can have multiple base cases, as long as there is at least one.

Sometimes the base case does nothing.
I You could write this using pass (“do nothing”)
I Or you could put the recursive case in an if.

F (“If it’s not the base case, then do something.”)

If the function returns something, it should use the value of the
recursive call.

The changes you make to the recursive arguments can be anything:
I Often subtraction, division, or shortening a list.
I But in some situations, addition or other operations.
I The important thing is that it gets closer to a base case.

The order of recursive calls matters!
I What happens if we move the print triangle call after the print?
I The triangle is upside-down!
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Infinite recursion

What happens if you break one of the rules?

You may get an infinite recursion.

Meaning the function just keeps calling itself “forever”.

Even worse than an infinite loop!
I Every recursive call uses a little bit of memory:

F Parameters, return address. . .

I Where are these stored? The call stack!
I So eventually an infinite recursion will run out of memory.

F At least crashing your program.
F And possibly the whole operating system!

Python has built-in checks to avoid crashing the OS with recursion.
I When there is too much recursion, it raises an exception:

RuntimeError("Maximum recursion depth exceeded...")
I So the program crashes before the OS does.
I You can change the limit with sys.setrecursionlimit(1000)

F But then you risk crashing more than just your program!
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Recursive definitions

When solving a problem recursively, it helps to write out the definition of
the problem recursively.

This is usually the hard part.

Consider the Fibonacci sequence:
Fib(0) = 1, Fib(1) = 1, Fib(2) = 2,

3, 5, 8, 13, 21, 34, . . .

What’s the pattern?

Recursive case: Fib(n) = Fib(n − 1) + Fib(n − 2)
I When does this definition work? When n ≥ 2.

Base case: actually, there are two!
I Fib(0) = 1
I Fib(1) = 1

Each recursive call brings us closer to the base cases.
I As long as n isn’t negative, anyway.

Now that we have a recursive definition, writing the code is easy.
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The Fibonacci sequence in code

Fib(0) = 1

Fib(1) = 1

Fib(n) = Fib(n − 1) + Fib(n − 2) where n > 1

def fibonacci(n):

# Base cases.

if n == 0 or n == 1:

result = 1

else:

# Recursive case.

result = fibonacci(n - 1) + fibonacci(n - 2)

return result
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Recursion and the call stack

Every recursive call adds a new entry to the call stack.
I When that recursive call returns, the entry is removed.

So you’ll have the same function on the call stack many times.
I Each instance of the function has its own parameters, local variables,

and return value.
I Variables are local to one call to the function.

Let’s observe the call stack in a recursive program using the debugger.
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