
CS 115 Lecture 18
Using files

Neil Moore

Department of Computer Science
University of Kentucky

Lexington, Kentucky 40506
neil@cs.uky.edu

19 November 2015

Dealing with lots of data

Some programs need a lot of data. What to do?

Hard code it (write it in your source code)?
That’s hard for non-programmers to change.

Ask the user to type it in each time?
If it’s a lot of data, your users will hate you.

Do you have to type your source code every time you run it?
No—you save it in a file.

Why use files?
I Easier to edit than source code.

F Especially if you want to change it during a run.

I Files persist across runs of your program.
F And across reboots of your operating system.
F Can save output for later use.

I Can hold large amounts of data (more than fits in RAM).
I Can use the same data as input to different programs.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 2 / 21

Dealing with lots of data

Some programs need a lot of data. What to do?

Hard code it (write it in your source code)?

That’s hard for non-programmers to change.

Ask the user to type it in each time?
If it’s a lot of data, your users will hate you.

Do you have to type your source code every time you run it?
No—you save it in a file.

Why use files?
I Easier to edit than source code.

F Especially if you want to change it during a run.

I Files persist across runs of your program.
F And across reboots of your operating system.
F Can save output for later use.

I Can hold large amounts of data (more than fits in RAM).
I Can use the same data as input to different programs.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 2 / 21

Dealing with lots of data

Some programs need a lot of data. What to do?

Hard code it (write it in your source code)?
That’s hard for non-programmers to change.

Ask the user to type it in each time?
If it’s a lot of data, your users will hate you.

Do you have to type your source code every time you run it?
No—you save it in a file.

Why use files?
I Easier to edit than source code.

F Especially if you want to change it during a run.

I Files persist across runs of your program.
F And across reboots of your operating system.
F Can save output for later use.

I Can hold large amounts of data (more than fits in RAM).
I Can use the same data as input to different programs.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 2 / 21

Dealing with lots of data

Some programs need a lot of data. What to do?

Hard code it (write it in your source code)?
That’s hard for non-programmers to change.

Ask the user to type it in each time?

If it’s a lot of data, your users will hate you.

Do you have to type your source code every time you run it?
No—you save it in a file.

Why use files?
I Easier to edit than source code.

F Especially if you want to change it during a run.

I Files persist across runs of your program.
F And across reboots of your operating system.
F Can save output for later use.

I Can hold large amounts of data (more than fits in RAM).
I Can use the same data as input to different programs.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 2 / 21

Dealing with lots of data

Some programs need a lot of data. What to do?

Hard code it (write it in your source code)?
That’s hard for non-programmers to change.

Ask the user to type it in each time?
If it’s a lot of data, your users will hate you.

Do you have to type your source code every time you run it?
No—you save it in a file.

Why use files?
I Easier to edit than source code.

F Especially if you want to change it during a run.

I Files persist across runs of your program.
F And across reboots of your operating system.
F Can save output for later use.

I Can hold large amounts of data (more than fits in RAM).
I Can use the same data as input to different programs.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 2 / 21

Dealing with lots of data

Some programs need a lot of data. What to do?

Hard code it (write it in your source code)?
That’s hard for non-programmers to change.

Ask the user to type it in each time?
If it’s a lot of data, your users will hate you.

Do you have to type your source code every time you run it?

No—you save it in a file.

Why use files?
I Easier to edit than source code.

F Especially if you want to change it during a run.

I Files persist across runs of your program.
F And across reboots of your operating system.
F Can save output for later use.

I Can hold large amounts of data (more than fits in RAM).
I Can use the same data as input to different programs.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 2 / 21

Dealing with lots of data

Some programs need a lot of data. What to do?

Hard code it (write it in your source code)?
That’s hard for non-programmers to change.

Ask the user to type it in each time?
If it’s a lot of data, your users will hate you.

Do you have to type your source code every time you run it?
No—you save it in a file.

Why use files?
I Easier to edit than source code.

F Especially if you want to change it during a run.

I Files persist across runs of your program.
F And across reboots of your operating system.
F Can save output for later use.

I Can hold large amounts of data (more than fits in RAM).
I Can use the same data as input to different programs.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 2 / 21

Dealing with lots of data

Some programs need a lot of data. What to do?

Hard code it (write it in your source code)?
That’s hard for non-programmers to change.

Ask the user to type it in each time?
If it’s a lot of data, your users will hate you.

Do you have to type your source code every time you run it?
No—you save it in a file.

Why use files?
I Easier to edit than source code.

F Especially if you want to change it during a run.

I Files persist across runs of your program.
F And across reboots of your operating system.
F Can save output for later use.

I Can hold large amounts of data (more than fits in RAM).
I Can use the same data as input to different programs.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 2 / 21

Dealing with lots of data

Some programs need a lot of data. What to do?

Hard code it (write it in your source code)?
That’s hard for non-programmers to change.

Ask the user to type it in each time?
If it’s a lot of data, your users will hate you.

Do you have to type your source code every time you run it?
No—you save it in a file.

Why use files?
I Easier to edit than source code.

F Especially if you want to change it during a run.

I Files persist across runs of your program.
F And across reboots of your operating system.

F Can save output for later use.

I Can hold large amounts of data (more than fits in RAM).
I Can use the same data as input to different programs.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 2 / 21

Dealing with lots of data

Some programs need a lot of data. What to do?

Hard code it (write it in your source code)?
That’s hard for non-programmers to change.

Ask the user to type it in each time?
If it’s a lot of data, your users will hate you.

Do you have to type your source code every time you run it?
No—you save it in a file.

Why use files?
I Easier to edit than source code.

F Especially if you want to change it during a run.

I Files persist across runs of your program.
F And across reboots of your operating system.
F Can save output for later use.

I Can hold large amounts of data (more than fits in RAM).
I Can use the same data as input to different programs.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 2 / 21

Dealing with lots of data

Some programs need a lot of data. What to do?

Hard code it (write it in your source code)?
That’s hard for non-programmers to change.

Ask the user to type it in each time?
If it’s a lot of data, your users will hate you.

Do you have to type your source code every time you run it?
No—you save it in a file.

Why use files?
I Easier to edit than source code.

F Especially if you want to change it during a run.

I Files persist across runs of your program.
F And across reboots of your operating system.
F Can save output for later use.

I Can hold large amounts of data (more than fits in RAM).

I Can use the same data as input to different programs.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 2 / 21

Dealing with lots of data

Some programs need a lot of data. What to do?

Hard code it (write it in your source code)?
That’s hard for non-programmers to change.

Ask the user to type it in each time?
If it’s a lot of data, your users will hate you.

Do you have to type your source code every time you run it?
No—you save it in a file.

Why use files?
I Easier to edit than source code.

F Especially if you want to change it during a run.

I Files persist across runs of your program.
F And across reboots of your operating system.
F Can save output for later use.

I Can hold large amounts of data (more than fits in RAM).
I Can use the same data as input to different programs.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 2 / 21

Dealing with lots of data

Some programs need a lot of data. What to do?

Hard code it (write it in your source code)?
That’s hard for non-programmers to change.

Ask the user to type it in each time?
If it’s a lot of data, your users will hate you.

Do you have to type your source code every time you run it?
No—you save it in a file.

Why use files?
I Easier to edit than source code.

F Especially if you want to change it during a run.

I Files persist across runs of your program.
F And across reboots of your operating system.
F Can save output for later use.

I Can hold large amounts of data (more than fits in RAM).
I Can use the same data as input to different programs.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 2 / 21

Input/output with the user

Keyboard
Screen

executing
program

input data output data

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 3 / 21

I/O with files

Input file variable

Input.txt Report.txt
executing
program

input data output data

Output file variable

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 4 / 21

Using files

As in other programs (word processors, IDEs, etc.), you must open a file
before you can use it in your program.

Create a file object in your program that represents the file on disk.
I You can read from and/or write to the object.
I Input-output from/to the file instead of the user.

Syntax:
fileobj = open(filename, "r") # r for reading
fileobj = open(filename) # default is reading

I fileobj is a variable that will hold the file object
I filename is a string that names the file.

F By default, looks for that file in the current directory.
F You can specify an absolute path instead:

open("C:\\Users\\me\\input.txt")
F Don’t do this in your 115 programs: your TA probably uses different

directories.

Can also open a file for writing:
fileobj = open(filename, "w") # w for write

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 5 / 21

Using files

As in other programs (word processors, IDEs, etc.), you must open a file
before you can use it in your program.

Create a file object in your program that represents the file on disk.

I You can read from and/or write to the object.
I Input-output from/to the file instead of the user.

Syntax:
fileobj = open(filename, "r") # r for reading
fileobj = open(filename) # default is reading

I fileobj is a variable that will hold the file object
I filename is a string that names the file.

F By default, looks for that file in the current directory.
F You can specify an absolute path instead:

open("C:\\Users\\me\\input.txt")
F Don’t do this in your 115 programs: your TA probably uses different

directories.

Can also open a file for writing:
fileobj = open(filename, "w") # w for write

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 5 / 21

Using files

As in other programs (word processors, IDEs, etc.), you must open a file
before you can use it in your program.

Create a file object in your program that represents the file on disk.
I You can read from and/or write to the object.
I Input-output from/to the file instead of the user.

Syntax:
fileobj = open(filename, "r") # r for reading
fileobj = open(filename) # default is reading

I fileobj is a variable that will hold the file object
I filename is a string that names the file.

F By default, looks for that file in the current directory.
F You can specify an absolute path instead:

open("C:\\Users\\me\\input.txt")
F Don’t do this in your 115 programs: your TA probably uses different

directories.

Can also open a file for writing:
fileobj = open(filename, "w") # w for write

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 5 / 21

Using files

As in other programs (word processors, IDEs, etc.), you must open a file
before you can use it in your program.

Create a file object in your program that represents the file on disk.
I You can read from and/or write to the object.
I Input-output from/to the file instead of the user.

Syntax:
fileobj = open(filename, "r") # r for reading
fileobj = open(filename) # default is reading

I fileobj is a variable that will hold the file object
I filename is a string that names the file.

F By default, looks for that file in the current directory.
F You can specify an absolute path instead:

open("C:\\Users\\me\\input.txt")
F Don’t do this in your 115 programs: your TA probably uses different

directories.

Can also open a file for writing:
fileobj = open(filename, "w") # w for write

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 5 / 21

Using files

As in other programs (word processors, IDEs, etc.), you must open a file
before you can use it in your program.

Create a file object in your program that represents the file on disk.
I You can read from and/or write to the object.
I Input-output from/to the file instead of the user.

Syntax:
fileobj = open(filename, "r") # r for reading
fileobj = open(filename) # default is reading

I fileobj is a variable that will hold the file object
I filename is a string that names the file.

F By default, looks for that file in the current directory.
F You can specify an absolute path instead:

open("C:\\Users\\me\\input.txt")
F Don’t do this in your 115 programs: your TA probably uses different

directories.

Can also open a file for writing:
fileobj = open(filename, "w") # w for write

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 5 / 21

Using files

As in other programs (word processors, IDEs, etc.), you must open a file
before you can use it in your program.

Create a file object in your program that represents the file on disk.
I You can read from and/or write to the object.
I Input-output from/to the file instead of the user.

Syntax:
fileobj = open(filename, "r") # r for reading
fileobj = open(filename) # default is reading

I fileobj is a variable that will hold the file object
I filename is a string that names the file.

F By default, looks for that file in the current directory.
F You can specify an absolute path instead:

open("C:\\Users\\me\\input.txt")

F Don’t do this in your 115 programs: your TA probably uses different
directories.

Can also open a file for writing:
fileobj = open(filename, "w") # w for write

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 5 / 21

Using files

As in other programs (word processors, IDEs, etc.), you must open a file
before you can use it in your program.

Create a file object in your program that represents the file on disk.
I You can read from and/or write to the object.
I Input-output from/to the file instead of the user.

Syntax:
fileobj = open(filename, "r") # r for reading
fileobj = open(filename) # default is reading

I fileobj is a variable that will hold the file object
I filename is a string that names the file.

F By default, looks for that file in the current directory.
F You can specify an absolute path instead:

open("C:\\Users\\me\\input.txt")
F Don’t do this in your 115 programs: your TA probably uses different

directories.

Can also open a file for writing:
fileobj = open(filename, "w") # w for write

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 5 / 21

Using files

As in other programs (word processors, IDEs, etc.), you must open a file
before you can use it in your program.

Create a file object in your program that represents the file on disk.
I You can read from and/or write to the object.
I Input-output from/to the file instead of the user.

Syntax:
fileobj = open(filename, "r") # r for reading
fileobj = open(filename) # default is reading

I fileobj is a variable that will hold the file object
I filename is a string that names the file.

F By default, looks for that file in the current directory.
F You can specify an absolute path instead:

open("C:\\Users\\me\\input.txt")
F Don’t do this in your 115 programs: your TA probably uses different

directories.

Can also open a file for writing:
fileobj = open(filename, "w") # w for write

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 5 / 21

IOError

If we are trying to read from a file, what can go wrong?

Maybe the file isn’t there.
I Or it’s there, but you don’t have permissions to access it.
I Or you do, but then your hard drive crashes.
I Or it’s on Dropbox/OneDrive and your network connection drops.

In these situations, opening a file raises a IOError exception.
I Renamed to OSError in Python 3.4.

You can catch the exception just like any other.
I But there’s no point in trying again with the same filename.
I Maybe ask the user for a new filename.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 6 / 21

IOError

If we are trying to read from a file, what can go wrong?

Maybe the file isn’t there.

I Or it’s there, but you don’t have permissions to access it.
I Or you do, but then your hard drive crashes.
I Or it’s on Dropbox/OneDrive and your network connection drops.

In these situations, opening a file raises a IOError exception.
I Renamed to OSError in Python 3.4.

You can catch the exception just like any other.
I But there’s no point in trying again with the same filename.
I Maybe ask the user for a new filename.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 6 / 21

IOError

If we are trying to read from a file, what can go wrong?

Maybe the file isn’t there.
I Or it’s there, but you don’t have permissions to access it.
I Or you do, but then your hard drive crashes.
I Or it’s on Dropbox/OneDrive and your network connection drops.

In these situations, opening a file raises a IOError exception.
I Renamed to OSError in Python 3.4.

You can catch the exception just like any other.
I But there’s no point in trying again with the same filename.
I Maybe ask the user for a new filename.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 6 / 21

IOError

If we are trying to read from a file, what can go wrong?

Maybe the file isn’t there.
I Or it’s there, but you don’t have permissions to access it.
I Or you do, but then your hard drive crashes.
I Or it’s on Dropbox/OneDrive and your network connection drops.

In these situations, opening a file raises a IOError exception.
I Renamed to OSError in Python 3.4.

You can catch the exception just like any other.
I But there’s no point in trying again with the same filename.
I Maybe ask the user for a new filename.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 6 / 21

IOError

If we are trying to read from a file, what can go wrong?

Maybe the file isn’t there.
I Or it’s there, but you don’t have permissions to access it.
I Or you do, but then your hard drive crashes.
I Or it’s on Dropbox/OneDrive and your network connection drops.

In these situations, opening a file raises a IOError exception.
I Renamed to OSError in Python 3.4.

You can catch the exception just like any other.
I But there’s no point in trying again with the same filename.
I Maybe ask the user for a new filename.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 6 / 21

IOError

If we are trying to read from a file, what can go wrong?

Maybe the file isn’t there.
I Or it’s there, but you don’t have permissions to access it.
I Or you do, but then your hard drive crashes.
I Or it’s on Dropbox/OneDrive and your network connection drops.

In these situations, opening a file raises a IOError exception.
I Renamed to OSError in Python 3.4.

You can catch the exception just like any other.
I But there’s no point in trying again with the same filename.
I Maybe ask the user for a new filename.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 6 / 21

Re-prompting for a filename

ok = False

while not ok:

try:

fn = input("Enter a file name: ")

infile = open(fn, "r")

ok = True

except IOError:

print("Could not open", fn)

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 7 / 21

Re-prompting for a filename

ok = False

while not ok:

try:

fn = input("Enter a file name: ")

infile = open(fn, "r")

ok = True

except IOError:

print("Could not open", fn)

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 7 / 21

Looping over the lines in a file

The simplest way to use an input file once you have opened it:

Loop over the lines of the file.

A file object can be used as a sequence of lines:
for line in file:

I Each line is a string.
I file should be a file object, not a filename.

Beware: the line ends in a newline character!
I You might need to use strip or rstrip.

When you’re finished with the file, close it:
file.close()

I Frees up resources associated with the file.
I If you don’t, the file will take up memory until the program exits.
I More on this later.

readfile-for.py

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 8 / 21

readfile-for.py

Looping over the lines in a file

The simplest way to use an input file once you have opened it:

Loop over the lines of the file.

A file object can be used as a sequence of lines:
for line in file:

I Each line is a string.
I file should be a file object, not a filename.

Beware: the line ends in a newline character!
I You might need to use strip or rstrip.

When you’re finished with the file, close it:
file.close()

I Frees up resources associated with the file.
I If you don’t, the file will take up memory until the program exits.
I More on this later.

readfile-for.py

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 8 / 21

readfile-for.py

Looping over the lines in a file

The simplest way to use an input file once you have opened it:

Loop over the lines of the file.

A file object can be used as a sequence of lines:
for line in file:

I Each line is a string.

I file should be a file object, not a filename.

Beware: the line ends in a newline character!
I You might need to use strip or rstrip.

When you’re finished with the file, close it:
file.close()

I Frees up resources associated with the file.
I If you don’t, the file will take up memory until the program exits.
I More on this later.

readfile-for.py

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 8 / 21

readfile-for.py

Looping over the lines in a file

The simplest way to use an input file once you have opened it:

Loop over the lines of the file.

A file object can be used as a sequence of lines:
for line in file:

I Each line is a string.
I file should be a file object, not a filename.

Beware: the line ends in a newline character!
I You might need to use strip or rstrip.

When you’re finished with the file, close it:
file.close()

I Frees up resources associated with the file.
I If you don’t, the file will take up memory until the program exits.
I More on this later.

readfile-for.py

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 8 / 21

readfile-for.py

Looping over the lines in a file

The simplest way to use an input file once you have opened it:

Loop over the lines of the file.

A file object can be used as a sequence of lines:
for line in file:

I Each line is a string.
I file should be a file object, not a filename.

Beware: the line ends in a newline character!
I You might need to use strip or rstrip.

When you’re finished with the file, close it:
file.close()

I Frees up resources associated with the file.
I If you don’t, the file will take up memory until the program exits.
I More on this later.

readfile-for.py

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 8 / 21

readfile-for.py

Looping over the lines in a file

The simplest way to use an input file once you have opened it:

Loop over the lines of the file.

A file object can be used as a sequence of lines:
for line in file:

I Each line is a string.
I file should be a file object, not a filename.

Beware: the line ends in a newline character!
I You might need to use strip or rstrip.

When you’re finished with the file, close it:
file.close()

I Frees up resources associated with the file.
I If you don’t, the file will take up memory until the program exits.
I More on this later.

readfile-for.py

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 8 / 21

readfile-for.py

Looping over the lines in a file

The simplest way to use an input file once you have opened it:

Loop over the lines of the file.

A file object can be used as a sequence of lines:
for line in file:

I Each line is a string.
I file should be a file object, not a filename.

Beware: the line ends in a newline character!
I You might need to use strip or rstrip.

When you’re finished with the file, close it:
file.close()

I Frees up resources associated with the file.
I If you don’t, the file will take up memory until the program exits.
I More on this later.

readfile-for.py

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 8 / 21

readfile-for.py

Looping over the lines in a file

The simplest way to use an input file once you have opened it:

Loop over the lines of the file.

A file object can be used as a sequence of lines:
for line in file:

I Each line is a string.
I file should be a file object, not a filename.

Beware: the line ends in a newline character!
I You might need to use strip or rstrip.

When you’re finished with the file, close it:
file.close()

I Frees up resources associated with the file.
I If you don’t, the file will take up memory until the program exits.
I More on this later.

readfile-for.py

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 8 / 21

readfile-for.py

Looping over the lines in a file

The simplest way to use an input file once you have opened it:

Loop over the lines of the file.

A file object can be used as a sequence of lines:
for line in file:

I Each line is a string.
I file should be a file object, not a filename.

Beware: the line ends in a newline character!
I You might need to use strip or rstrip.

When you’re finished with the file, close it:
file.close()

I Frees up resources associated with the file.
I If you don’t, the file will take up memory until the program exits.
I More on this later.

readfile-for.py

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 8 / 21

readfile-for.py

Text files: characters and bytes

Files are stored on disk as a sequence of bytes.

A byte is a collection of eight bits (ones or zeros)
I Can represent a number from 0 to 255.

In text files, bytes are used to encode characters.

An encoding says how to translate between bytes and characters.
I ASCII: one byte, one character—more than enough for English.
I Latin-1, KOI8-R, . . . : Use the leftover numbers for more characters.

F But 256 characters is not enough for CJK.

I Unicode: more than 256 different characters.
F So you need multiple bytes per character.
F UTF-8, UCS-4, UTF-16: different encodings of Unicode.
F UTF-8 is ASCII-compatible, so is the most commonly used.
F (It’s the default for text files in Python).

Text file: stores a sequence of characters.

Binary file: stores a sequence of bytes.
I The difference is just a matter of perspective!

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 9 / 21

Text files: characters and bytes

Files are stored on disk as a sequence of bytes.

A byte is a collection of eight bits (ones or zeros)
I Can represent a number from 0 to 255.

In text files, bytes are used to encode characters.

An encoding says how to translate between bytes and characters.
I ASCII: one byte, one character—more than enough for English.
I Latin-1, KOI8-R, . . . : Use the leftover numbers for more characters.

F But 256 characters is not enough for CJK.

I Unicode: more than 256 different characters.
F So you need multiple bytes per character.
F UTF-8, UCS-4, UTF-16: different encodings of Unicode.
F UTF-8 is ASCII-compatible, so is the most commonly used.
F (It’s the default for text files in Python).

Text file: stores a sequence of characters.

Binary file: stores a sequence of bytes.
I The difference is just a matter of perspective!

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 9 / 21

Text files: characters and bytes

Files are stored on disk as a sequence of bytes.

A byte is a collection of eight bits (ones or zeros)
I Can represent a number from 0 to 255.

In text files, bytes are used to encode characters.

An encoding says how to translate between bytes and characters.
I ASCII: one byte, one character—more than enough for English.

I Latin-1, KOI8-R, . . . : Use the leftover numbers for more characters.
F But 256 characters is not enough for CJK.

I Unicode: more than 256 different characters.
F So you need multiple bytes per character.
F UTF-8, UCS-4, UTF-16: different encodings of Unicode.
F UTF-8 is ASCII-compatible, so is the most commonly used.
F (It’s the default for text files in Python).

Text file: stores a sequence of characters.

Binary file: stores a sequence of bytes.
I The difference is just a matter of perspective!

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 9 / 21

Text files: characters and bytes

Files are stored on disk as a sequence of bytes.

A byte is a collection of eight bits (ones or zeros)
I Can represent a number from 0 to 255.

In text files, bytes are used to encode characters.

An encoding says how to translate between bytes and characters.
I ASCII: one byte, one character—more than enough for English.
I Latin-1, KOI8-R, . . . : Use the leftover numbers for more characters.

F But 256 characters is not enough for CJK.

I Unicode: more than 256 different characters.
F So you need multiple bytes per character.
F UTF-8, UCS-4, UTF-16: different encodings of Unicode.
F UTF-8 is ASCII-compatible, so is the most commonly used.
F (It’s the default for text files in Python).

Text file: stores a sequence of characters.

Binary file: stores a sequence of bytes.
I The difference is just a matter of perspective!

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 9 / 21

Text files: characters and bytes

Files are stored on disk as a sequence of bytes.

A byte is a collection of eight bits (ones or zeros)
I Can represent a number from 0 to 255.

In text files, bytes are used to encode characters.

An encoding says how to translate between bytes and characters.
I ASCII: one byte, one character—more than enough for English.
I Latin-1, KOI8-R, . . . : Use the leftover numbers for more characters.

F But 256 characters is not enough for CJK.

I Unicode: more than 256 different characters.
F So you need multiple bytes per character.

F UTF-8, UCS-4, UTF-16: different encodings of Unicode.
F UTF-8 is ASCII-compatible, so is the most commonly used.
F (It’s the default for text files in Python).

Text file: stores a sequence of characters.

Binary file: stores a sequence of bytes.
I The difference is just a matter of perspective!

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 9 / 21

Text files: characters and bytes

Files are stored on disk as a sequence of bytes.

A byte is a collection of eight bits (ones or zeros)
I Can represent a number from 0 to 255.

In text files, bytes are used to encode characters.

An encoding says how to translate between bytes and characters.
I ASCII: one byte, one character—more than enough for English.
I Latin-1, KOI8-R, . . . : Use the leftover numbers for more characters.

F But 256 characters is not enough for CJK.

I Unicode: more than 256 different characters.
F So you need multiple bytes per character.
F UTF-8, UCS-4, UTF-16: different encodings of Unicode.
F UTF-8 is ASCII-compatible, so is the most commonly used.

F (It’s the default for text files in Python).

Text file: stores a sequence of characters.

Binary file: stores a sequence of bytes.
I The difference is just a matter of perspective!

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 9 / 21

Text files: characters and bytes

Files are stored on disk as a sequence of bytes.

A byte is a collection of eight bits (ones or zeros)
I Can represent a number from 0 to 255.

In text files, bytes are used to encode characters.

An encoding says how to translate between bytes and characters.
I ASCII: one byte, one character—more than enough for English.
I Latin-1, KOI8-R, . . . : Use the leftover numbers for more characters.

F But 256 characters is not enough for CJK.

I Unicode: more than 256 different characters.
F So you need multiple bytes per character.
F UTF-8, UCS-4, UTF-16: different encodings of Unicode.
F UTF-8 is ASCII-compatible, so is the most commonly used.
F (It’s the default for text files in Python).

Text file: stores a sequence of characters.

Binary file: stores a sequence of bytes.
I The difference is just a matter of perspective!

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 9 / 21

Text files: characters and bytes

Files are stored on disk as a sequence of bytes.

A byte is a collection of eight bits (ones or zeros)
I Can represent a number from 0 to 255.

In text files, bytes are used to encode characters.

An encoding says how to translate between bytes and characters.
I ASCII: one byte, one character—more than enough for English.
I Latin-1, KOI8-R, . . . : Use the leftover numbers for more characters.

F But 256 characters is not enough for CJK.

I Unicode: more than 256 different characters.
F So you need multiple bytes per character.
F UTF-8, UCS-4, UTF-16: different encodings of Unicode.
F UTF-8 is ASCII-compatible, so is the most commonly used.
F (It’s the default for text files in Python).

Text file: stores a sequence of characters.

Binary file: stores a sequence of bytes.
I The difference is just a matter of perspective!

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 9 / 21

Text files: characters and bytes

Files are stored on disk as a sequence of bytes.

A byte is a collection of eight bits (ones or zeros)
I Can represent a number from 0 to 255.

In text files, bytes are used to encode characters.

An encoding says how to translate between bytes and characters.
I ASCII: one byte, one character—more than enough for English.
I Latin-1, KOI8-R, . . . : Use the leftover numbers for more characters.

F But 256 characters is not enough for CJK.

I Unicode: more than 256 different characters.
F So you need multiple bytes per character.
F UTF-8, UCS-4, UTF-16: different encodings of Unicode.
F UTF-8 is ASCII-compatible, so is the most commonly used.
F (It’s the default for text files in Python).

Text file: stores a sequence of characters.

Binary file: stores a sequence of bytes.
I The difference is just a matter of perspective!

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 9 / 21

Text files: lines

So if a text file is just a sequence of characters, what is a line?

A sequence of characters. . .

There’s one character that can’t appear in the middle of a line.
I The newline character!
I Newline (’\n’) is the line delimiter.

F (Technically it’s a little more complex on Windows,
but Python mostly hides that complexity.)

What would two newlines in a row mean?
I There’s an empty line between them.

So this file:
Hello, world.

How’s it going?

would look like:
Hello, world.\n\nHow’s it going?\n

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 10 / 21

Text files: lines

So if a text file is just a sequence of characters, what is a line?

A sequence of characters. . .

There’s one character that can’t appear in the middle of a line.

I The newline character!
I Newline (’\n’) is the line delimiter.

F (Technically it’s a little more complex on Windows,
but Python mostly hides that complexity.)

What would two newlines in a row mean?
I There’s an empty line between them.

So this file:
Hello, world.

How’s it going?

would look like:
Hello, world.\n\nHow’s it going?\n

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 10 / 21

Text files: lines

So if a text file is just a sequence of characters, what is a line?

A sequence of characters. . .

There’s one character that can’t appear in the middle of a line.
I The newline character!
I Newline (’\n’) is the line delimiter.

F (Technically it’s a little more complex on Windows,
but Python mostly hides that complexity.)

What would two newlines in a row mean?
I There’s an empty line between them.

So this file:
Hello, world.

How’s it going?

would look like:
Hello, world.\n\nHow’s it going?\n

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 10 / 21

Text files: lines

So if a text file is just a sequence of characters, what is a line?

A sequence of characters. . .

There’s one character that can’t appear in the middle of a line.
I The newline character!
I Newline (’\n’) is the line delimiter.

F (Technically it’s a little more complex on Windows,
but Python mostly hides that complexity.)

What would two newlines in a row mean?
I There’s an empty line between them.

So this file:
Hello, world.

How’s it going?

would look like:
Hello, world.\n\nHow’s it going?\n

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 10 / 21

Text files: lines

So if a text file is just a sequence of characters, what is a line?

A sequence of characters. . .

There’s one character that can’t appear in the middle of a line.
I The newline character!
I Newline (’\n’) is the line delimiter.

F (Technically it’s a little more complex on Windows,
but Python mostly hides that complexity.)

What would two newlines in a row mean?
I There’s an empty line between them.

So this file:
Hello, world.

How’s it going?

would look like:
Hello, world.\n\nHow’s it going?\n

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 10 / 21

Text files: lines

So if a text file is just a sequence of characters, what is a line?

A sequence of characters. . .

There’s one character that can’t appear in the middle of a line.
I The newline character!
I Newline (’\n’) is the line delimiter.

F (Technically it’s a little more complex on Windows,
but Python mostly hides that complexity.)

What would two newlines in a row mean?
I There’s an empty line between them.

So this file:
Hello, world.

How’s it going?

would look like:
Hello, world.\n\nHow’s it going?\n

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 10 / 21

Sequential and random access

Sequential access: reading (or writing) the file in order
starting from the beginning.

I Like a for loop.
I Read the first line first, then the second line, etc.

Random access: reading or writing out of order.
I “Go to byte 7563 and put a 1 there.”
I Like lists: we can say mylist[5] without having to

go through indices 0 through 4 first.

Random access doesn’t work that well with text files.
I Bytes don’t always match up with characters.
I And they definitely don’t match up well with lines. . .

At what byte number does line 10 start?
F You’d have to go through the lines sequentially and count!

Text files: usually sequential access.

Binary files: either sequential or random access.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 11 / 21

Sequential and random access

Sequential access: reading (or writing) the file in order
starting from the beginning.

I Like a for loop.
I Read the first line first, then the second line, etc.

Random access: reading or writing out of order.
I “Go to byte 7563 and put a 1 there.”
I Like lists: we can say mylist[5] without having to

go through indices 0 through 4 first.

Random access doesn’t work that well with text files.
I Bytes don’t always match up with characters.
I And they definitely don’t match up well with lines. . .

At what byte number does line 10 start?
F You’d have to go through the lines sequentially and count!

Text files: usually sequential access.

Binary files: either sequential or random access.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 11 / 21

Sequential and random access

Sequential access: reading (or writing) the file in order
starting from the beginning.

I Like a for loop.
I Read the first line first, then the second line, etc.

Random access: reading or writing out of order.
I “Go to byte 7563 and put a 1 there.”
I Like lists: we can say mylist[5] without having to

go through indices 0 through 4 first.

Random access doesn’t work that well with text files.
I Bytes don’t always match up with characters.
I And they definitely don’t match up well with lines. . .

At what byte number does line 10 start?
F You’d have to go through the lines sequentially and count!

Text files: usually sequential access.

Binary files: either sequential or random access.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 11 / 21

Sequential and random access

Sequential access: reading (or writing) the file in order
starting from the beginning.

I Like a for loop.
I Read the first line first, then the second line, etc.

Random access: reading or writing out of order.
I “Go to byte 7563 and put a 1 there.”
I Like lists: we can say mylist[5] without having to

go through indices 0 through 4 first.

Random access doesn’t work that well with text files.
I Bytes don’t always match up with characters.
I And they definitely don’t match up well with lines. . .

At what byte number does line 10 start?

F You’d have to go through the lines sequentially and count!

Text files: usually sequential access.

Binary files: either sequential or random access.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 11 / 21

Sequential and random access

Sequential access: reading (or writing) the file in order
starting from the beginning.

I Like a for loop.
I Read the first line first, then the second line, etc.

Random access: reading or writing out of order.
I “Go to byte 7563 and put a 1 there.”
I Like lists: we can say mylist[5] without having to

go through indices 0 through 4 first.

Random access doesn’t work that well with text files.
I Bytes don’t always match up with characters.
I And they definitely don’t match up well with lines. . .

At what byte number does line 10 start?
F You’d have to go through the lines sequentially and count!

Text files: usually sequential access.

Binary files: either sequential or random access.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 11 / 21

Sequential and random access

Sequential access: reading (or writing) the file in order
starting from the beginning.

I Like a for loop.
I Read the first line first, then the second line, etc.

Random access: reading or writing out of order.
I “Go to byte 7563 and put a 1 there.”
I Like lists: we can say mylist[5] without having to

go through indices 0 through 4 first.

Random access doesn’t work that well with text files.
I Bytes don’t always match up with characters.
I And they definitely don’t match up well with lines. . .

At what byte number does line 10 start?
F You’d have to go through the lines sequentially and count!

Text files: usually sequential access.

Binary files: either sequential or random access.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 11 / 21

Reading a line at a time

We already saw one way to read a line at a time:
for line in file:

This technique is very useful, but a little inflexible:
I It only lets us use one line per iteration.
I But what if our file looked like this?

Student 1

Score 1

...

The readline method lets you control reading more precisely.
line = infile.readline()

This reads a single line from the file.
I Returns a string, including the newline at the end.
I The next time you input, you’ll get the next line.

F Even if you use a different input technique next time.

readfile-readline.py

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 12 / 21

readfile-readline.py

Reading a line at a time

We already saw one way to read a line at a time:
for line in file:

This technique is very useful, but a little inflexible:
I It only lets us use one line per iteration.
I But what if our file looked like this?

Student 1

Score 1

...

The readline method lets you control reading more precisely.
line = infile.readline()

This reads a single line from the file.
I Returns a string, including the newline at the end.
I The next time you input, you’ll get the next line.

F Even if you use a different input technique next time.

readfile-readline.py

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 12 / 21

readfile-readline.py

Reading a line at a time

We already saw one way to read a line at a time:
for line in file:

This technique is very useful, but a little inflexible:
I It only lets us use one line per iteration.
I But what if our file looked like this?

Student 1

Score 1

...

The readline method lets you control reading more precisely.
line = infile.readline()

This reads a single line from the file.

I Returns a string, including the newline at the end.
I The next time you input, you’ll get the next line.

F Even if you use a different input technique next time.

readfile-readline.py

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 12 / 21

readfile-readline.py

Reading a line at a time

We already saw one way to read a line at a time:
for line in file:

This technique is very useful, but a little inflexible:
I It only lets us use one line per iteration.
I But what if our file looked like this?

Student 1

Score 1

...

The readline method lets you control reading more precisely.
line = infile.readline()

This reads a single line from the file.
I Returns a string, including the newline at the end.

I The next time you input, you’ll get the next line.
F Even if you use a different input technique next time.

readfile-readline.py

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 12 / 21

readfile-readline.py

Reading a line at a time

We already saw one way to read a line at a time:
for line in file:

This technique is very useful, but a little inflexible:
I It only lets us use one line per iteration.
I But what if our file looked like this?

Student 1

Score 1

...

The readline method lets you control reading more precisely.
line = infile.readline()

This reads a single line from the file.
I Returns a string, including the newline at the end.
I The next time you input, you’ll get the next line.

F Even if you use a different input technique next time.

readfile-readline.py

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 12 / 21

readfile-readline.py

Reading a line at a time

We already saw one way to read a line at a time:
for line in file:

This technique is very useful, but a little inflexible:
I It only lets us use one line per iteration.
I But what if our file looked like this?

Student 1

Score 1

...

The readline method lets you control reading more precisely.
line = infile.readline()

This reads a single line from the file.
I Returns a string, including the newline at the end.
I The next time you input, you’ll get the next line.

F Even if you use a different input technique next time.

readfile-readline.py

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 12 / 21

readfile-readline.py

Buffers and the file pointer

When you open a file, Python and the OS set up a buffer for the file.
I A piece of memory that holds some of the file’s data before you need it.
I Why?

Disks are much much slower than memory.
I And disks are faster if they read large chunks.

Where have you seen buffers before?
I Youtube! “Video buffering. . . ”
I Same reason: memory is faster than the network.
I Keyboard buffer: “type-ahead”

When you call readline etc., that gets its data from the buffer.
I If the program asks for data that isn’t in the buffer yet,

the OS re-fills the buffer with new data from the file.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 13 / 21

Buffers and the file pointer

When you open a file, Python and the OS set up a buffer for the file.
I A piece of memory that holds some of the file’s data before you need it.
I Why? Disks are much much slower than memory.
I And disks are faster if they read large chunks.

Where have you seen buffers before?
I Youtube! “Video buffering. . . ”
I Same reason: memory is faster than the network.
I Keyboard buffer: “type-ahead”

When you call readline etc., that gets its data from the buffer.
I If the program asks for data that isn’t in the buffer yet,

the OS re-fills the buffer with new data from the file.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 13 / 21

Buffers and the file pointer

When you open a file, Python and the OS set up a buffer for the file.
I A piece of memory that holds some of the file’s data before you need it.
I Why? Disks are much much slower than memory.
I And disks are faster if they read large chunks.

Where have you seen buffers before?

I Youtube! “Video buffering. . . ”
I Same reason: memory is faster than the network.
I Keyboard buffer: “type-ahead”

When you call readline etc., that gets its data from the buffer.
I If the program asks for data that isn’t in the buffer yet,

the OS re-fills the buffer with new data from the file.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 13 / 21

Buffers and the file pointer

When you open a file, Python and the OS set up a buffer for the file.
I A piece of memory that holds some of the file’s data before you need it.
I Why? Disks are much much slower than memory.
I And disks are faster if they read large chunks.

Where have you seen buffers before?
I Youtube! “Video buffering. . . ”
I Same reason: memory is faster than the network.

I Keyboard buffer: “type-ahead”

When you call readline etc., that gets its data from the buffer.
I If the program asks for data that isn’t in the buffer yet,

the OS re-fills the buffer with new data from the file.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 13 / 21

Buffers and the file pointer

When you open a file, Python and the OS set up a buffer for the file.
I A piece of memory that holds some of the file’s data before you need it.
I Why? Disks are much much slower than memory.
I And disks are faster if they read large chunks.

Where have you seen buffers before?
I Youtube! “Video buffering. . . ”
I Same reason: memory is faster than the network.
I Keyboard buffer: “type-ahead”

When you call readline etc., that gets its data from the buffer.
I If the program asks for data that isn’t in the buffer yet,

the OS re-fills the buffer with new data from the file.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 13 / 21

Buffers and the file pointer

When you open a file, Python and the OS set up a buffer for the file.
I A piece of memory that holds some of the file’s data before you need it.
I Why? Disks are much much slower than memory.
I And disks are faster if they read large chunks.

Where have you seen buffers before?
I Youtube! “Video buffering. . . ”
I Same reason: memory is faster than the network.
I Keyboard buffer: “type-ahead”

When you call readline etc., that gets its data from the buffer.

I If the program asks for data that isn’t in the buffer yet,
the OS re-fills the buffer with new data from the file.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 13 / 21

Buffers and the file pointer

When you open a file, Python and the OS set up a buffer for the file.
I A piece of memory that holds some of the file’s data before you need it.
I Why? Disks are much much slower than memory.
I And disks are faster if they read large chunks.

Where have you seen buffers before?
I Youtube! “Video buffering. . . ”
I Same reason: memory is faster than the network.
I Keyboard buffer: “type-ahead”

When you call readline etc., that gets its data from the buffer.
I If the program asks for data that isn’t in the buffer yet,

the OS re-fills the buffer with new data from the file.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 13 / 21

Buffers and the file pointer

When you open a file, Python and the OS set up a buffer for the file.
I A piece of memory that holds some of the file’s data before you need it.
I Why? Disks are much much slower than memory.
I And disks are faster if they read large chunks.

Where have you seen buffers before?
I Youtube! “Video buffering. . . ”
I Same reason: memory is faster than the network.
I Keyboard buffer: “type-ahead”

When you call readline etc., that gets its data from the buffer.
I If the program asks for data that isn’t in the buffer yet,

the OS re-fills the buffer with new data from the file.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 13 / 21

The buffer holds data our program has already read. . .
. . . and data it hasn’t read yet.

How does it tell the difference?

A file pointer indicates the beginning of the unread part.
I Starts out at the beginning of the file (except in append mode).

When you do a sequential read, like readline:
I It starts reading at the location of the file pointer.
I When it sees the newline, it advances the file pointer to the next byte.
I So every read will get a different line.
I Sequential access means the file pointer doesn’t skip anything,

and never moves backwards.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 14 / 21

The buffer holds data our program has already read. . .
. . . and data it hasn’t read yet.

How does it tell the difference?

A file pointer indicates the beginning of the unread part.

I Starts out at the beginning of the file (except in append mode).

When you do a sequential read, like readline:
I It starts reading at the location of the file pointer.
I When it sees the newline, it advances the file pointer to the next byte.
I So every read will get a different line.
I Sequential access means the file pointer doesn’t skip anything,

and never moves backwards.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 14 / 21

The buffer holds data our program has already read. . .
. . . and data it hasn’t read yet.

How does it tell the difference?

A file pointer indicates the beginning of the unread part.
I Starts out at the beginning of the file (except in append mode).

When you do a sequential read, like readline:
I It starts reading at the location of the file pointer.
I When it sees the newline, it advances the file pointer to the next byte.
I So every read will get a different line.
I Sequential access means the file pointer doesn’t skip anything,

and never moves backwards.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 14 / 21

The buffer holds data our program has already read. . .
. . . and data it hasn’t read yet.

How does it tell the difference?

A file pointer indicates the beginning of the unread part.
I Starts out at the beginning of the file (except in append mode).

When you do a sequential read, like readline:
I It starts reading at the location of the file pointer.
I When it sees the newline, it advances the file pointer to the next byte.
I So every read will get a different line.
I Sequential access means the file pointer doesn’t skip anything,

and never moves backwards.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 14 / 21

The buffer holds data our program has already read. . .
. . . and data it hasn’t read yet.

How does it tell the difference?

A file pointer indicates the beginning of the unread part.
I Starts out at the beginning of the file (except in append mode).

When you do a sequential read, like readline:
I It starts reading at the location of the file pointer.
I When it sees the newline, it advances the file pointer to the next byte.

I So every read will get a different line.
I Sequential access means the file pointer doesn’t skip anything,

and never moves backwards.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 14 / 21

The buffer holds data our program has already read. . .
. . . and data it hasn’t read yet.

How does it tell the difference?

A file pointer indicates the beginning of the unread part.
I Starts out at the beginning of the file (except in append mode).

When you do a sequential read, like readline:
I It starts reading at the location of the file pointer.
I When it sees the newline, it advances the file pointer to the next byte.
I So every read will get a different line.

I Sequential access means the file pointer doesn’t skip anything,
and never moves backwards.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 14 / 21

The buffer holds data our program has already read. . .
. . . and data it hasn’t read yet.

How does it tell the difference?

A file pointer indicates the beginning of the unread part.
I Starts out at the beginning of the file (except in append mode).

When you do a sequential read, like readline:
I It starts reading at the location of the file pointer.
I When it sees the newline, it advances the file pointer to the next byte.
I So every read will get a different line.
I Sequential access means the file pointer doesn’t skip anything,

and never moves backwards.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 14 / 21

The buffer holds data our program has already read. . .
. . . and data it hasn’t read yet.

How does it tell the difference?

A file pointer indicates the beginning of the unread part.
I Starts out at the beginning of the file (except in append mode).

When you do a sequential read, like readline:
I It starts reading at the location of the file pointer.
I When it sees the newline, it advances the file pointer to the next byte.
I So every read will get a different line.
I Sequential access means the file pointer doesn’t skip anything,

and never moves backwards.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 14 / 21

Reading a whole file at once

Python also gives us two methods that read in the whole file at once.

That’s much easier if we need to process the contents out of order.
I Or if we need to process each line several times.

But doesn’t work if the file is bigger than memory.

readlines gives us the whole file as a list of lines:

line list = infile.readlines()

infile.close()

for line in line list:
I The lines still contain the newlines.
I Why close it immediately? We already read everything!
I After readlines, there’s nothing left to read.

F (at least with sequential input)

I Technically, it gives you the rest of the file, after the file pointer.
F Maybe you read the first line with readline, then called readlines.

readfile-readlines.py

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 15 / 21

readfile-readlines.py

Reading a whole file at once

Python also gives us two methods that read in the whole file at once.

That’s much easier if we need to process the contents out of order.
I Or if we need to process each line several times.

But doesn’t work if the file is bigger than memory.

readlines gives us the whole file as a list of lines:

line list = infile.readlines()

infile.close()

for line in line list:
I The lines still contain the newlines.
I Why close it immediately? We already read everything!
I After readlines, there’s nothing left to read.

F (at least with sequential input)

I Technically, it gives you the rest of the file, after the file pointer.
F Maybe you read the first line with readline, then called readlines.

readfile-readlines.py

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 15 / 21

readfile-readlines.py

Reading a whole file at once

Python also gives us two methods that read in the whole file at once.

That’s much easier if we need to process the contents out of order.
I Or if we need to process each line several times.

But doesn’t work if the file is bigger than memory.

readlines gives us the whole file as a list of lines:

line list = infile.readlines()

infile.close()

for line in line list:

I The lines still contain the newlines.
I Why close it immediately? We already read everything!
I After readlines, there’s nothing left to read.

F (at least with sequential input)

I Technically, it gives you the rest of the file, after the file pointer.
F Maybe you read the first line with readline, then called readlines.

readfile-readlines.py

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 15 / 21

readfile-readlines.py

Reading a whole file at once

Python also gives us two methods that read in the whole file at once.

That’s much easier if we need to process the contents out of order.
I Or if we need to process each line several times.

But doesn’t work if the file is bigger than memory.

readlines gives us the whole file as a list of lines:

line list = infile.readlines()

infile.close()

for line in line list:
I The lines still contain the newlines.

I Why close it immediately? We already read everything!
I After readlines, there’s nothing left to read.

F (at least with sequential input)

I Technically, it gives you the rest of the file, after the file pointer.
F Maybe you read the first line with readline, then called readlines.

readfile-readlines.py

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 15 / 21

readfile-readlines.py

Reading a whole file at once

Python also gives us two methods that read in the whole file at once.

That’s much easier if we need to process the contents out of order.
I Or if we need to process each line several times.

But doesn’t work if the file is bigger than memory.

readlines gives us the whole file as a list of lines:

line list = infile.readlines()

infile.close()

for line in line list:
I The lines still contain the newlines.
I Why close it immediately?

We already read everything!
I After readlines, there’s nothing left to read.

F (at least with sequential input)

I Technically, it gives you the rest of the file, after the file pointer.
F Maybe you read the first line with readline, then called readlines.

readfile-readlines.py

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 15 / 21

readfile-readlines.py

Reading a whole file at once

Python also gives us two methods that read in the whole file at once.

That’s much easier if we need to process the contents out of order.
I Or if we need to process each line several times.

But doesn’t work if the file is bigger than memory.

readlines gives us the whole file as a list of lines:

line list = infile.readlines()

infile.close()

for line in line list:
I The lines still contain the newlines.
I Why close it immediately? We already read everything!
I After readlines, there’s nothing left to read.

F (at least with sequential input)

I Technically, it gives you the rest of the file, after the file pointer.
F Maybe you read the first line with readline, then called readlines.

readfile-readlines.py

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 15 / 21

readfile-readlines.py

Reading a whole file at once

Python also gives us two methods that read in the whole file at once.

That’s much easier if we need to process the contents out of order.
I Or if we need to process each line several times.

But doesn’t work if the file is bigger than memory.

readlines gives us the whole file as a list of lines:

line list = infile.readlines()

infile.close()

for line in line list:
I The lines still contain the newlines.
I Why close it immediately? We already read everything!
I After readlines, there’s nothing left to read.

F (at least with sequential input)

I Technically, it gives you the rest of the file, after the file pointer.
F Maybe you read the first line with readline, then called readlines.

readfile-readlines.py

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 15 / 21

readfile-readlines.py

Reading a whole file at once

Python also gives us two methods that read in the whole file at once.

That’s much easier if we need to process the contents out of order.
I Or if we need to process each line several times.

But doesn’t work if the file is bigger than memory.

readlines gives us the whole file as a list of lines:

line list = infile.readlines()

infile.close()

for line in line list:
I The lines still contain the newlines.
I Why close it immediately? We already read everything!
I After readlines, there’s nothing left to read.

F (at least with sequential input)

I Technically, it gives you the rest of the file, after the file pointer.
F Maybe you read the first line with readline, then called readlines.

readfile-readlines.py

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 15 / 21

readfile-readlines.py

Reading a whole file at once

Python also gives us two methods that read in the whole file at once.

That’s much easier if we need to process the contents out of order.
I Or if we need to process each line several times.

But doesn’t work if the file is bigger than memory.

readlines gives us the whole file as a list of lines:

line list = infile.readlines()

infile.close()

for line in line list:
I The lines still contain the newlines.
I Why close it immediately? We already read everything!
I After readlines, there’s nothing left to read.

F (at least with sequential input)

I Technically, it gives you the rest of the file, after the file pointer.
F Maybe you read the first line with readline, then called readlines.

readfile-readlines.py

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 15 / 21

readfile-readlines.py

Reading a whole file

read gives us the whole (rest of the) file as a single string.
I Newlines and all.

content = infile.read()

infile.close()

I As with readlines, you might as well close it immediately.

What to do with the string?
I You could use split:

line list = content.split("\n")
I Unlike the others methods, this will give you a list without newlines

(because split removes the delimiter)

If the last line ended in a newline, there is an extra empty element:

content = ’Hello\nWorld\n’
content.split(’\n’)
→[’Hello’, ’World’, ’’]

I (Not just Python: some OSes and programs treat that as a blank line)

readfile-read.py

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 16 / 21

readfile-read.py

Reading a whole file

read gives us the whole (rest of the) file as a single string.
I Newlines and all.

content = infile.read()

infile.close()
I As with readlines, you might as well close it immediately.

What to do with the string?
I You could use split:

line list = content.split("\n")
I Unlike the others methods, this will give you a list without newlines

(because split removes the delimiter)

If the last line ended in a newline, there is an extra empty element:

content = ’Hello\nWorld\n’
content.split(’\n’)
→[’Hello’, ’World’, ’’]

I (Not just Python: some OSes and programs treat that as a blank line)

readfile-read.py

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 16 / 21

readfile-read.py

Reading a whole file

read gives us the whole (rest of the) file as a single string.
I Newlines and all.

content = infile.read()

infile.close()
I As with readlines, you might as well close it immediately.

What to do with the string?
I You could use split:

line list = content.split("\n")

I Unlike the others methods, this will give you a list without newlines
(because split removes the delimiter)

If the last line ended in a newline, there is an extra empty element:

content = ’Hello\nWorld\n’
content.split(’\n’)
→[’Hello’, ’World’, ’’]

I (Not just Python: some OSes and programs treat that as a blank line)

readfile-read.py

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 16 / 21

readfile-read.py

Reading a whole file

read gives us the whole (rest of the) file as a single string.
I Newlines and all.

content = infile.read()

infile.close()
I As with readlines, you might as well close it immediately.

What to do with the string?
I You could use split:

line list = content.split("\n")
I Unlike the others methods, this will give you a list without newlines

(because split removes the delimiter)

If the last line ended in a newline, there is an extra empty element:

content = ’Hello\nWorld\n’
content.split(’\n’)
→[’Hello’, ’World’, ’’]

I (Not just Python: some OSes and programs treat that as a blank line)

readfile-read.py

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 16 / 21

readfile-read.py

Reading a whole file

read gives us the whole (rest of the) file as a single string.
I Newlines and all.

content = infile.read()

infile.close()
I As with readlines, you might as well close it immediately.

What to do with the string?
I You could use split:

line list = content.split("\n")
I Unlike the others methods, this will give you a list without newlines

(because split removes the delimiter)

If the last line ended in a newline, there is an extra empty element:

content = ’Hello\nWorld\n’
content.split(’\n’)
→[’Hello’, ’World’, ’’]

I (Not just Python: some OSes and programs treat that as a blank line)

readfile-read.py

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 16 / 21

readfile-read.py

Reading a whole file

read gives us the whole (rest of the) file as a single string.
I Newlines and all.

content = infile.read()

infile.close()
I As with readlines, you might as well close it immediately.

What to do with the string?
I You could use split:

line list = content.split("\n")
I Unlike the others methods, this will give you a list without newlines

(because split removes the delimiter)

If the last line ended in a newline, there is an extra empty element:

content = ’Hello\nWorld\n’
content.split(’\n’)
→[’Hello’, ’World’, ’’]

I (Not just Python: some OSes and programs treat that as a blank line)

readfile-read.py

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 16 / 21

readfile-read.py

Reading a whole file

read gives us the whole (rest of the) file as a single string.
I Newlines and all.

content = infile.read()

infile.close()
I As with readlines, you might as well close it immediately.

What to do with the string?
I You could use split:

line list = content.split("\n")
I Unlike the others methods, this will give you a list without newlines

(because split removes the delimiter)

If the last line ended in a newline, there is an extra empty element:

content = ’Hello\nWorld\n’
content.split(’\n’)
→[’Hello’, ’World’, ’’]

I (Not just Python: some OSes and programs treat that as a blank line)

readfile-read.py

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 16 / 21

readfile-read.py

Output files.

It’s possible to write to files too.

First, open a file for writing:
outfile = open("out.txt", "w") # w for write

I If the file doesn’t exist, creates it.
I If the file already exists, truncates it!!!

F Cuts everything out the file to start over.
F The old data is lost forever!
F Opening for writing is both creative and destructive.

You can also open a file for appending:
logfile = open("audit.log", "a") # a for append

I Adds to the end of an existing file—no truncation.
I Will still create the file if it doesn’t exist.

Which to use? Do you want to add to the file or overwrite it?

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 17 / 21

Output files.

It’s possible to write to files too.

First, open a file for writing:
outfile = open("out.txt", "w") # w for write

I If the file doesn’t exist, creates it.

I If the file already exists, truncates it!!!
F Cuts everything out the file to start over.
F The old data is lost forever!
F Opening for writing is both creative and destructive.

You can also open a file for appending:
logfile = open("audit.log", "a") # a for append

I Adds to the end of an existing file—no truncation.
I Will still create the file if it doesn’t exist.

Which to use? Do you want to add to the file or overwrite it?

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 17 / 21

Output files.

It’s possible to write to files too.

First, open a file for writing:
outfile = open("out.txt", "w") # w for write

I If the file doesn’t exist, creates it.
I If the file already exists, truncates it!!!

F Cuts everything out the file to start over.
F The old data is lost forever!

F Opening for writing is both creative and destructive.

You can also open a file for appending:
logfile = open("audit.log", "a") # a for append

I Adds to the end of an existing file—no truncation.
I Will still create the file if it doesn’t exist.

Which to use? Do you want to add to the file or overwrite it?

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 17 / 21

Output files.

It’s possible to write to files too.

First, open a file for writing:
outfile = open("out.txt", "w") # w for write

I If the file doesn’t exist, creates it.
I If the file already exists, truncates it!!!

F Cuts everything out the file to start over.
F The old data is lost forever!
F Opening for writing is both creative and destructive.

You can also open a file for appending:
logfile = open("audit.log", "a") # a for append

I Adds to the end of an existing file—no truncation.
I Will still create the file if it doesn’t exist.

Which to use? Do you want to add to the file or overwrite it?

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 17 / 21

Output files.

It’s possible to write to files too.

First, open a file for writing:
outfile = open("out.txt", "w") # w for write

I If the file doesn’t exist, creates it.
I If the file already exists, truncates it!!!

F Cuts everything out the file to start over.
F The old data is lost forever!
F Opening for writing is both creative and destructive.

You can also open a file for appending:
logfile = open("audit.log", "a") # a for append

I Adds to the end of an existing file—no truncation.
I Will still create the file if it doesn’t exist.

Which to use? Do you want to add to the file or overwrite it?

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 17 / 21

Output files.

It’s possible to write to files too.

First, open a file for writing:
outfile = open("out.txt", "w") # w for write

I If the file doesn’t exist, creates it.
I If the file already exists, truncates it!!!

F Cuts everything out the file to start over.
F The old data is lost forever!
F Opening for writing is both creative and destructive.

You can also open a file for appending:
logfile = open("audit.log", "a") # a for append

I Adds to the end of an existing file—no truncation.

I Will still create the file if it doesn’t exist.

Which to use? Do you want to add to the file or overwrite it?

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 17 / 21

Output files.

It’s possible to write to files too.

First, open a file for writing:
outfile = open("out.txt", "w") # w for write

I If the file doesn’t exist, creates it.
I If the file already exists, truncates it!!!

F Cuts everything out the file to start over.
F The old data is lost forever!
F Opening for writing is both creative and destructive.

You can also open a file for appending:
logfile = open("audit.log", "a") # a for append

I Adds to the end of an existing file—no truncation.
I Will still create the file if it doesn’t exist.

Which to use? Do you want to add to the file or overwrite it?

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 17 / 21

Output files.

It’s possible to write to files too.

First, open a file for writing:
outfile = open("out.txt", "w") # w for write

I If the file doesn’t exist, creates it.
I If the file already exists, truncates it!!!

F Cuts everything out the file to start over.
F The old data is lost forever!
F Opening for writing is both creative and destructive.

You can also open a file for appending:
logfile = open("audit.log", "a") # a for append

I Adds to the end of an existing file—no truncation.
I Will still create the file if it doesn’t exist.

Which to use? Do you want to add to the file or overwrite it?

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 17 / 21

Output files.

It’s possible to write to files too.

First, open a file for writing:
outfile = open("out.txt", "w") # w for write

I If the file doesn’t exist, creates it.
I If the file already exists, truncates it!!!

F Cuts everything out the file to start over.
F The old data is lost forever!
F Opening for writing is both creative and destructive.

You can also open a file for appending:
logfile = open("audit.log", "a") # a for append

I Adds to the end of an existing file—no truncation.
I Will still create the file if it doesn’t exist.

Which to use? Do you want to add to the file or overwrite it?

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 17 / 21

Open summary

Mode Letter File exists Doesn’t exist
Read r OK IOError
Write w Truncates the file Creates the file

Append a OK (add to end) Creates the file

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 18 / 21

Writing to an output file

There are two ways to write to an output file:

You can use the same print function we’ve been using.
I Just give an extra argument, file = fileobj:

print("Hello,", name, file = outfile)

I You can use all the functionality of print:
F Printing strings, numbers, lists, etc.
F sep = ..., end = ...

You can also write a string with the write method:
I Takes a string argument (nothing else!)

outfile.write("Hello, world!\n")
I Does not automatically add a newline!
I Why would you ever use this instead of print?

F That’s how print is implemented!

I outfile-write.py

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 19 / 21

outfile-write.py

Writing to an output file

There are two ways to write to an output file:

You can use the same print function we’ve been using.
I Just give an extra argument, file = fileobj:

print("Hello,", name, file = outfile)
I You can use all the functionality of print:

F Printing strings, numbers, lists, etc.

F sep = ..., end = ...

You can also write a string with the write method:
I Takes a string argument (nothing else!)

outfile.write("Hello, world!\n")
I Does not automatically add a newline!
I Why would you ever use this instead of print?

F That’s how print is implemented!

I outfile-write.py

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 19 / 21

outfile-write.py

Writing to an output file

There are two ways to write to an output file:

You can use the same print function we’ve been using.
I Just give an extra argument, file = fileobj:

print("Hello,", name, file = outfile)
I You can use all the functionality of print:

F Printing strings, numbers, lists, etc.
F sep = ..., end = ...

You can also write a string with the write method:
I Takes a string argument (nothing else!)

outfile.write("Hello, world!\n")
I Does not automatically add a newline!
I Why would you ever use this instead of print?

F That’s how print is implemented!

I outfile-write.py

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 19 / 21

outfile-write.py

Writing to an output file

There are two ways to write to an output file:

You can use the same print function we’ve been using.
I Just give an extra argument, file = fileobj:

print("Hello,", name, file = outfile)
I You can use all the functionality of print:

F Printing strings, numbers, lists, etc.
F sep = ..., end = ...

You can also write a string with the write method:
I Takes a string argument (nothing else!)

outfile.write("Hello, world!\n")
I Does not automatically add a newline!

I Why would you ever use this instead of print?
F That’s how print is implemented!

I outfile-write.py

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 19 / 21

outfile-write.py

Writing to an output file

There are two ways to write to an output file:

You can use the same print function we’ve been using.
I Just give an extra argument, file = fileobj:

print("Hello,", name, file = outfile)
I You can use all the functionality of print:

F Printing strings, numbers, lists, etc.
F sep = ..., end = ...

You can also write a string with the write method:
I Takes a string argument (nothing else!)

outfile.write("Hello, world!\n")
I Does not automatically add a newline!
I Why would you ever use this instead of print?

F That’s how print is implemented!

I outfile-write.py

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 19 / 21

outfile-write.py

Writing to an output file

There are two ways to write to an output file:

You can use the same print function we’ve been using.
I Just give an extra argument, file = fileobj:

print("Hello,", name, file = outfile)
I You can use all the functionality of print:

F Printing strings, numbers, lists, etc.
F sep = ..., end = ...

You can also write a string with the write method:
I Takes a string argument (nothing else!)

outfile.write("Hello, world!\n")
I Does not automatically add a newline!
I Why would you ever use this instead of print?

F That’s how print is implemented!

I outfile-write.py

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 19 / 21

outfile-write.py

Writing to an output file

There are two ways to write to an output file:

You can use the same print function we’ve been using.
I Just give an extra argument, file = fileobj:

print("Hello,", name, file = outfile)
I You can use all the functionality of print:

F Printing strings, numbers, lists, etc.
F sep = ..., end = ...

You can also write a string with the write method:
I Takes a string argument (nothing else!)

outfile.write("Hello, world!\n")
I Does not automatically add a newline!
I Why would you ever use this instead of print?

F That’s how print is implemented!

I outfile-write.py

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 19 / 21

outfile-write.py

Writing to an output file

There are two ways to write to an output file:

You can use the same print function we’ve been using.
I Just give an extra argument, file = fileobj:

print("Hello,", name, file = outfile)
I You can use all the functionality of print:

F Printing strings, numbers, lists, etc.
F sep = ..., end = ...

You can also write a string with the write method:
I Takes a string argument (nothing else!)

outfile.write("Hello, world!\n")
I Does not automatically add a newline!
I Why would you ever use this instead of print?

F That’s how print is implemented!

I outfile-write.py

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 19 / 21

outfile-write.py

Closing files.

You should close a file when you are finished with it.
outfile.close()

I Frees resources (the file buffer!)

Closing files is even more important for output files:
I The buffer isn’t written to disk until either it’s full, or the file is closed.

F Until you close the file, other programs can’t see the new data.
F And what if your program crashes?

I Allows the file to be used safely by other programs.
F Two programs reading is fine, but read + write can be a problem.
F On Windows especially: “This file is in use by another application.”

outfile.py

When to close a file?
I As soon as know you won’t have to read/write it again.
I Immediately after your loop.
I With read or readlines, immediately after reading.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 20 / 21

outfile.py

Closing files.

You should close a file when you are finished with it.
outfile.close()

I Frees resources (the file buffer!)

Closing files is even more important for output files:
I The buffer isn’t written to disk until either it’s full, or the file is closed.

F Until you close the file, other programs can’t see the new data.
F And what if your program crashes?

I Allows the file to be used safely by other programs.
F Two programs reading is fine, but read + write can be a problem.
F On Windows especially: “This file is in use by another application.”

outfile.py

When to close a file?
I As soon as know you won’t have to read/write it again.
I Immediately after your loop.
I With read or readlines, immediately after reading.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 20 / 21

outfile.py

Closing files.

You should close a file when you are finished with it.
outfile.close()

I Frees resources (the file buffer!)

Closing files is even more important for output files:
I The buffer isn’t written to disk until either it’s full, or the file is closed.

F Until you close the file, other programs can’t see the new data.
F And what if your program crashes?

I Allows the file to be used safely by other programs.
F Two programs reading is fine, but read + write can be a problem.
F On Windows especially: “This file is in use by another application.”

outfile.py

When to close a file?
I As soon as know you won’t have to read/write it again.
I Immediately after your loop.
I With read or readlines, immediately after reading.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 20 / 21

outfile.py

Closing files.

You should close a file when you are finished with it.
outfile.close()

I Frees resources (the file buffer!)

Closing files is even more important for output files:
I The buffer isn’t written to disk until either it’s full, or the file is closed.

F Until you close the file, other programs can’t see the new data.

F And what if your program crashes?

I Allows the file to be used safely by other programs.
F Two programs reading is fine, but read + write can be a problem.
F On Windows especially: “This file is in use by another application.”

outfile.py

When to close a file?
I As soon as know you won’t have to read/write it again.
I Immediately after your loop.
I With read or readlines, immediately after reading.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 20 / 21

outfile.py

Closing files.

You should close a file when you are finished with it.
outfile.close()

I Frees resources (the file buffer!)

Closing files is even more important for output files:
I The buffer isn’t written to disk until either it’s full, or the file is closed.

F Until you close the file, other programs can’t see the new data.
F And what if your program crashes?

I Allows the file to be used safely by other programs.
F Two programs reading is fine, but read + write can be a problem.
F On Windows especially: “This file is in use by another application.”

outfile.py

When to close a file?
I As soon as know you won’t have to read/write it again.
I Immediately after your loop.
I With read or readlines, immediately after reading.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 20 / 21

outfile.py

Closing files.

You should close a file when you are finished with it.
outfile.close()

I Frees resources (the file buffer!)

Closing files is even more important for output files:
I The buffer isn’t written to disk until either it’s full, or the file is closed.

F Until you close the file, other programs can’t see the new data.
F And what if your program crashes?

I Allows the file to be used safely by other programs.
F Two programs reading is fine, but read + write can be a problem.
F On Windows especially: “This file is in use by another application.”

outfile.py

When to close a file?
I As soon as know you won’t have to read/write it again.
I Immediately after your loop.
I With read or readlines, immediately after reading.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 20 / 21

outfile.py

Closing files.

You should close a file when you are finished with it.
outfile.close()

I Frees resources (the file buffer!)

Closing files is even more important for output files:
I The buffer isn’t written to disk until either it’s full, or the file is closed.

F Until you close the file, other programs can’t see the new data.
F And what if your program crashes?

I Allows the file to be used safely by other programs.
F Two programs reading is fine, but read + write can be a problem.
F On Windows especially: “This file is in use by another application.”

outfile.py

When to close a file?
I As soon as know you won’t have to read/write it again.
I Immediately after your loop.
I With read or readlines, immediately after reading.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 20 / 21

outfile.py

Closing files.

You should close a file when you are finished with it.
outfile.close()

I Frees resources (the file buffer!)

Closing files is even more important for output files:
I The buffer isn’t written to disk until either it’s full, or the file is closed.

F Until you close the file, other programs can’t see the new data.
F And what if your program crashes?

I Allows the file to be used safely by other programs.
F Two programs reading is fine, but read + write can be a problem.
F On Windows especially: “This file is in use by another application.”

outfile.py

When to close a file?
I As soon as know you won’t have to read/write it again.

I Immediately after your loop.
I With read or readlines, immediately after reading.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 20 / 21

outfile.py

Closing files.

You should close a file when you are finished with it.
outfile.close()

I Frees resources (the file buffer!)

Closing files is even more important for output files:
I The buffer isn’t written to disk until either it’s full, or the file is closed.

F Until you close the file, other programs can’t see the new data.
F And what if your program crashes?

I Allows the file to be used safely by other programs.
F Two programs reading is fine, but read + write can be a problem.
F On Windows especially: “This file is in use by another application.”

outfile.py

When to close a file?
I As soon as know you won’t have to read/write it again.
I Immediately after your loop.

I With read or readlines, immediately after reading.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 20 / 21

outfile.py

Closing files.

You should close a file when you are finished with it.
outfile.close()

I Frees resources (the file buffer!)

Closing files is even more important for output files:
I The buffer isn’t written to disk until either it’s full, or the file is closed.

F Until you close the file, other programs can’t see the new data.
F And what if your program crashes?

I Allows the file to be used safely by other programs.
F Two programs reading is fine, but read + write can be a problem.
F On Windows especially: “This file is in use by another application.”

outfile.py

When to close a file?
I As soon as know you won’t have to read/write it again.
I Immediately after your loop.
I With read or readlines, immediately after reading.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 20 / 21

outfile.py

Closing files.

You should close a file when you are finished with it.
outfile.close()

I Frees resources (the file buffer!)

Closing files is even more important for output files:
I The buffer isn’t written to disk until either it’s full, or the file is closed.

F Until you close the file, other programs can’t see the new data.
F And what if your program crashes?

I Allows the file to be used safely by other programs.
F Two programs reading is fine, but read + write can be a problem.
F On Windows especially: “This file is in use by another application.”

outfile.py

When to close a file?
I As soon as know you won’t have to read/write it again.
I Immediately after your loop.
I With read or readlines, immediately after reading.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 20 / 21

outfile.py

Files versus lists

Files are:
I Permanent.
I Bigger (must fit on disk).
I Slower.
I Sequential-access.

Lists are:
I Temporary.
I Smaller (must fit in memory).
I Faster.
I Random-access.

Neil Moore (UK CS) CS 115 Lecture 18 Fall 2015 21 / 21

