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Functions that mutate lists

Let's write a function that mutates a list.
@ Scaling: multiply all the elements by the same number.
@ Parameters: a list and a scaling factor.

@ Postconditions: mutates the list and returns nothing.
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Let's look at and implement several algorithms for lists.
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Sum

Adding up the elements of a list works like adding up user input,
which we've done before.
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Adding up the elements of a list works like adding up user input,
which we've done before.
@ Need an accumulator. What initial value?
» 0 — the additive identity (adding 0 doesn't change anything)
@ The algorithm:

@ Initialize the accumulator to 0.
@ For each element of the list, add it to the accumulator.
© Return the accumulator.
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Count

The in operator tells us whether an value is in a list. Sometimes we also
want to know how many times it is there.
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The in operator tells us whether an value is in a list. Sometimes we also

want to know how many times it is there.

@ Two parameters: a list, and the value to search for.
o We'll need an accumulator again to keep track of the count.
» In particular, a counter.
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The in operator tells us whether an value is in a list. Sometimes we also

want to know how many times it is there.

@ Two parameters: a list, and the value to search for.

o We'll need an accumulator again to keep track of the count.
» In particular, a counter.

@ The algorithm:

@ |Initialize the counter to 0.
@ For each element of the list:

(2.1) If it equals the search value, add one to the counter.
© Return the counter.
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Maximum and minimum
What if we want to find the largest element?
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@ Use a variable to track the largest so far.

» What to initialize it to?
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Maximum and minimum

What if we want to find the largest element?
@ Use a variable to track the largest so far.
» What to initialize it to?

» 07 What if the list is all negative?
» -9999997
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Maximum and minimum

What if we want to find the largest element?
@ Use a variable to track the largest so far.
» What to initialize it to?
» 07 What if the list is all negative?
» -9999997 Same problem: the elements might all be smaller.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015

6/13


maximum.py

Maximum and minimum
What if we want to find the largest element?

@ Use a variable to track the largest so far.
What to initialize it to?
0?7 What if the list is all negative?

-9999997 Same problem: the elements might all be smaller.
Use the first element of the list!

v

vYyy

* “The largest” doesn’t make sense on an empty list: error.
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What if we want to find the largest element?
@ Use a variable to track the largest so far.
» What to initialize it to?
0?7 What if the list is all negative?

-9999997 Same problem: the elements might all be smaller.
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vYyy

* “The largest” doesn’t make sense on an empty list: error.
@ The algorithm:

@ Initialize the "best” variable to the first element.
@ For each element in the rest of the list:

(2.1) If it's bigger than the best, it is the new best.
© Return the best.
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Sorting

@ We already know the sort function.

@ But how does it work?

Neil Moore (UK CS) CS 115 Lecture 16


http://www.sorting-algorithms.com/

Sorting

@ We already know the sort function.

@ But how does it work?
@ There are several algorithms for sorting:

» Selection sort, insertion sort, quick sort, merge sort.
» http://www.sorting-algorithms.com/

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015 7/13


http://www.sorting-algorithms.com/

Sorting

@ We already know the sort function.

@ But how does it work?
@ There are several algorithms for sorting:

» Selection sort, insertion sort, quick sort, merge sort.
» http://www.sorting-algorithms.com/
» Most of these algorithms are based around:

* Comparing elements.

* Then swapping them into the right place.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015 7/13


http://www.sorting-algorithms.com/

Sorting

@ We already know the sort function.

@ But how does it work?
@ There are several algorithms for sorting:

» Selection sort, insertion sort, quick sort, merge sort.
» http://www.sorting-algorithms.com/
» Most of these algorithms are based around:
* Comparing elements.
* Then swapping them into the right place.
» Different algorithms have different trade-offs:
* Some require fewer comparisons.
* Some require fewer swaps.
* Some require less memory.
* Some are good on “almost-sorted” data.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015 7/13


http://www.sorting-algorithms.com/

Sorting

@ We already know the sort function.

@ But how does it work?
@ There are several algorithms for sorting:

» Selection sort, insertion sort, quick sort, merge sort.
» http://www.sorting-algorithms.com/
» Most of these algorithms are based around:
* Comparing elements.
* Then swapping them into the right place.
» Different algorithms have different trade-offs:
* Some require fewer comparisons.
* Some require fewer swaps.
* Some require less memory.
* Some are good on “almost-sorted” data.

o We'll look at one algorithm: selection sort.

» Not the fastest, but one of the simplest.
» Also requires the fewest swaps.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015

7/13


http://www.sorting-algorithms.com/

Sorting

@ We already know the sort function.

@ But how does it work?
@ There are several algorithms for sorting:

» Selection sort, insertion sort, quick sort, merge sort.
» http://www.sorting-algorithms.com/
» Most of these algorithms are based around:
* Comparing elements.
* Then swapping them into the right place.
» Different algorithms have different trade-offs:
* Some require fewer comparisons.
* Some require fewer swaps.
* Some require less memory.
* Some are good on “almost-sorted” data.

o We'll look at one algorithm: selection sort.

» Not the fastest, but one of the simplest.
» Also requires the fewest swaps.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015

7/13


http://www.sorting-algorithms.com/

Selection sort

The idea behind selection sort: iterate through the list in multiple passes:
o First, put the smallest element into the right place.
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» Can find the smallest with min and index.
» Then swap it with the first element.
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Selection sort algorithm

@ For each index in the list (each pass):

@ Find the smallest element after index i.
@ Swap that element with index /.
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@ That's alll

» Each pass makes more of the list sorted than before.
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Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015

9/13


selsort.py

Selection sort algorithm

@ For each index in the list (each pass):
@ Find the smallest element after index i.

@ Swap that element with index /.

Now all the elements up to index i are sorted.
@ That's alll

» Each pass makes more of the list sorted than before.

» Gets us closer to the goal, but not all the way there.

» Then repeat until we reach the goal: common algorithmic technique.

» Have to make sure you're getting closer to the goal: in each pass, there
are fewer numbers to sort than in the previous.
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Parallel lists

@ Sometimes we need to store collections of related information:

» Employees and salaries.
» Songs, performers, and albums.
» Monster locations and hit points.
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Parallel lists

@ Sometimes we need to store collections of related information:
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Parallel list examples

@ Suppose we have two parallel lists, of student names and scores.
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@ Let's say we have a list of the correct answers.
@ ...and we also have someone’s answers to the same questions.
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© Keep an counter of the number of correct answers.
@ For each index in the lists:
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Something to think about

How would you sort parallel lists?
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