CS 115 Lecture 16

List algorithms, parallel lists

Neil Moore

Department of Computer Science
University of Kentucky
Lexington, Kentucky 40506
neil@cs.uky.edu

12 Nov 2015



Functions that mutate lists

Let's write a function that mutates a list.
@ Scaling: multiply all the elements by the same number.
@ Parameters: a list and a scaling factor.

@ Postconditions: mutates the list and returns nothing.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015

2/13


scale.py

Functions that mutate lists

Let's write a function that mutates a list.
@ Scaling: multiply all the elements by the same number.
@ Parameters: a list and a scaling factor.
@ Postconditions: mutates the list and returns nothing.
o

Usually a mutating function needs to loop over indices, not elements.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015 2 /13


scale.py

Functions that mutate lists

Let's write a function that mutates a list.
@ Scaling: multiply all the elements by the same number.
Parameters: a list and a scaling factor.

Postconditions: mutates the list and returns nothing.

o
o
@ Usually a mutating function needs to loop over indices, not elements.
@ scale.py

o

What happens if we pass it a string instead of a list?

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015 2/13


scale.py

Functions that mutate lists

Let's write a function that mutates a list.
@ Scaling: multiply all the elements by the same number.
Parameters: a list and a scaling factor.

Postconditions: mutates the list and returns nothing.

o
o
@ Usually a mutating function needs to loop over indices, not elements.
@ scale.py

o

What happens if we pass it a string instead of a list?

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015 2/13


scale.py

List algorithms

Let's look at and implement several algorithms for lists.

Neil Moore (UK CS) CS 115 Lecture 16



List algorithms

Let's look at and implement several algorithms for lists.
@ Pretty much all list algorithms use a loop.
» Usually a for loop, occasionally a while.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015 3/13



List algorithms

Let's look at and implement several algorithms for lists.
@ Pretty much all list algorithms use a loop.
» Usually a for loop, occasionally a while.

Sum: add together all the elements.
Count: find the number of occurrences of a value.

Max/min: find the largest/smallest value.

Sort: rearrange the elements to be in order.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015

3/13



List algorithms

Let's look at and implement several algorithms for lists.
@ Pretty much all list algorithms use a loop.
» Usually a for loop, occasionally a while.

Sum: add together all the elements.
Count: find the number of occurrences of a value.
Max/min: find the largest/smallest value.

Sort: rearrange the elements to be in order.

All of these are available as built-in functions or methods.
» But we'll still write them ourselves. Why?

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015

3/13



List algorithms

Let's look at and implement several algorithms for lists.
@ Pretty much all list algorithms use a loop.
» Usually a for loop, occasionally a while.

Sum: add together all the elements.
Count: find the number of occurrences of a value.
Max/min: find the largest/smallest value.

Sort: rearrange the elements to be in order.

All of these are available as built-in functions or methods.

» But we'll still write them ourselves. Why?
» It's good to understand how they work.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015

3/13



List algorithms

Let's look at and implement several algorithms for lists.
@ Pretty much all list algorithms use a loop.
» Usually a for loop, occasionally a while.

Sum: add together all the elements.
Count: find the number of occurrences of a value.
Max/min: find the largest/smallest value.

Sort: rearrange the elements to be in order.

All of these are available as built-in functions or methods.

» But we'll still write them ourselves. Why?
» It's good to understand how they work.
» And sometimes we need a slightly different variant.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015

3/13



List algorithms

Let's look at and implement several algorithms for lists.
@ Pretty much all list algorithms use a loop.
» Usually a for loop, occasionally a while.

Sum: add together all the elements.
Count: find the number of occurrences of a value.
Max/min: find the largest/smallest value.

Sort: rearrange the elements to be in order.

All of these are available as built-in functions or methods.

» But we'll still write them ourselves. Why?
» It's good to understand how they work.
» And sometimes we need a slightly different variant.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015

3/13



Sum

Adding up the elements of a list works like adding up user input,
which we've done before.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015 4 /13


addup.py

Sum

Adding up the elements of a list works like adding up user input,
which we've done before.

@ Need an accumulator. What initial value?

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015 4 /13


addup.py

Sum

Adding up the elements of a list works like adding up user input,
which we've done before.

@ Need an accumulator. What initial value?
» 0 — the additive identity (adding 0 doesn't change anything)

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015 4 /13


addup.py

Sum

Adding up the elements of a list works like adding up user input,
which we've done before.
@ Need an accumulator. What initial value?
» 0 — the additive identity (adding 0 doesn't change anything)
@ The algorithm:

@ Initialize the accumulator to 0.
@ For each element of the list, add it to the accumulator.
© Return the accumulator.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015

4/13


addup.py

Sum

Adding up the elements of a list works like adding up user input,
which we've done before.
@ Need an accumulator. What initial value?
» 0 — the additive identity (adding 0 doesn't change anything)
@ The algorithm:

@ Initialize the accumulator to 0.
@ For each element of the list, add it to the accumulator.
© Return the accumulator.

@ In Python we can also use the built-in function sum:
total = sum(mylist)

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015

4/13


addup.py

Sum

Adding up the elements of a list works like adding up user input,
which we've done before.
@ Need an accumulator. What initial value?
» 0 — the additive identity (adding 0 doesn't change anything)
@ The algorithm:

@ Initialize the accumulator to 0.
@ For each element of the list, add it to the accumulator.
© Return the accumulator.

@ In Python we can also use the built-in function sum:
total = sum(mylist)

@ Variations: sum of squares, product, concatenation.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015

4/13


addup.py

Sum

Adding up the elements of a list works like adding up user input,
which we've done before.
@ Need an accumulator. What initial value?
» 0 — the additive identity (adding 0 doesn't change anything)
@ The algorithm:

@ Initialize the accumulator to 0.
@ For each element of the list, add it to the accumulator.
© Return the accumulator.

@ In Python we can also use the built-in function sum:
total = sum(mylist)

@ Variations: sum of squares, product, concatenation.

@ addup.py

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015

4/13


addup.py

Sum

Adding up the elements of a list works like adding up user input,
which we've done before.
@ Need an accumulator. What initial value?
» 0 — the additive identity (adding 0 doesn't change anything)
@ The algorithm:

@ Initialize the accumulator to 0.
@ For each element of the list, add it to the accumulator.
© Return the accumulator.

@ In Python we can also use the built-in function sum:
total = sum(mylist)

@ Variations: sum of squares, product, concatenation.

@ addup.py

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015

4/13


addup.py

Count

The in operator tells us whether an value is in a list. Sometimes we also
want to know how many times it is there.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015 5/13


count.py

Count

The in operator tells us whether an value is in a list. Sometimes we also
want to know how many times it is there.

@ Two parameters: a list, and the value to search for.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015 5/13


count.py

Count

The in operator tells us whether an value is in a list. Sometimes we also

want to know how many times it is there.

@ Two parameters: a list, and the value to search for.
o We'll need an accumulator again to keep track of the count.
» In particular, a counter.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015

5/13


count.py

Count

The in operator tells us whether an value is in a list. Sometimes we also

want to know how many times it is there.

@ Two parameters: a list, and the value to search for.

o We'll need an accumulator again to keep track of the count.
» In particular, a counter.

@ The algorithm:

@ |Initialize the counter to 0.
@ For each element of the list:

(2.1) If it equals the search value, add one to the counter.
© Return the counter.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015

5/13


count.py

Count

The in operator tells us whether an value is in a list. Sometimes we also

want to know how many times it is there.
@ Two parameters: a list, and the value to search for.
o We'll need an accumulator again to keep track of the count.
» In particular, a counter.
@ The algorithm:

@ |Initialize the counter to 0.
@ For each element of the list:

(2.1) If it equals the search value, add one to the counter.
© Return the counter.

@ Python lists have a count method:
numzeros = mylist.count(0)

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015

5/13


count.py

Count

The in operator tells us whether an value is in a list. Sometimes we also

want to know how many times it is there.
@ Two parameters: a list, and the value to search for.
o We'll need an accumulator again to keep track of the count.
» In particular, a counter.
@ The algorithm:

@ |Initialize the counter to 0.
@ For each element of the list:

(2.1) If it equals the search value, add one to the counter.
© Return the counter.

@ Python lists have a count method:
numzeros = mylist.count(0)

@ Variations: count the elements with a particular property.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015

5/13


count.py

Count

The in operator tells us whether an value is in a list. Sometimes we also

want to know how many times it is there.
@ Two parameters: a list, and the value to search for.

o We'll need an accumulator again to keep track of the count.
» In particular, a counter.

The algorithm:

@ |Initialize the counter to 0.
@ For each element of the list:

(2.1) If it equals the search value, add one to the counter.
© Return the counter.

Python lists have a count method:
numzeros = mylist.count(0)

Variations: count the elements with a particular property.

count.py

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015

5/13


count.py

Count

The in operator tells us whether an value is in a list. Sometimes we also

want to know how many times it is there.
@ Two parameters: a list, and the value to search for.

o We'll need an accumulator again to keep track of the count.
» In particular, a counter.

The algorithm:

@ |Initialize the counter to 0.
@ For each element of the list:

(2.1) If it equals the search value, add one to the counter.
© Return the counter.

Python lists have a count method:
numzeros = mylist.count(0)

Variations: count the elements with a particular property.

count.py

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015

5/13


count.py

Maximum and minimum
What if we want to find the largest element?

Neil Moore (UK CS) CS 115 Lecture 16


maximum.py

Maximum and minimum
What if we want to find the largest element?
@ Use a variable to track the largest so far.

» What to initialize it to?
» 07

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015 6 /13


maximum.py

Maximum and minimum
What if we want to find the largest element?
@ Use a variable to track the largest so far.

» What to initialize it to?
» 07 What if the list is all negative?

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015 6 /13


maximum.py

Maximum and minimum

What if we want to find the largest element?
@ Use a variable to track the largest so far.
» What to initialize it to?

» 07 What if the list is all negative?
» -9999997

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015

6/13


maximum.py

Maximum and minimum

What if we want to find the largest element?
@ Use a variable to track the largest so far.
» What to initialize it to?
» 07 What if the list is all negative?
» -9999997 Same problem: the elements might all be smaller.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015

6/13


maximum.py

Maximum and minimum
What if we want to find the largest element?

@ Use a variable to track the largest so far.
What to initialize it to?
0?7 What if the list is all negative?

-9999997 Same problem: the elements might all be smaller.
Use the first element of the list!

v

vYyy

* “The largest” doesn’t make sense on an empty list: error.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015

6/13


maximum.py

Maximum and minimum
What if we want to find the largest element?
@ Use a variable to track the largest so far.
» What to initialize it to?
0?7 What if the list is all negative?

-9999997 Same problem: the elements might all be smaller.
Use the first element of the list!

vYyy

* “The largest” doesn’t make sense on an empty list: error.
@ The algorithm:

@ Initialize the "best” variable to the first element.
@ For each element in the rest of the list:

(2.1) If it's bigger than the best, it is the new best.
© Return the best.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015

6/13


maximum.py

Maximum and minimum
What if we want to find the largest element?
@ Use a variable to track the largest so far.
» What to initialize it to?
0?7 What if the list is all negative?

-9999997 Same problem: the elements might all be smaller.
Use the first element of the list!

vYyy

* “The largest” doesn’t make sense on an empty list: error.
@ The algorithm:

@ Initialize the "best” variable to the first element.
@ For each element in the rest of the list:

(2.1) If it's bigger than the best, it is the new best.
© Return the best.

@ Python has functions max and min:
largest = max(mylist)

» Elements must be comparable (all str or all numbers, not a mix)

@ Variations: index of the maximum, maximum function value.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015

6/13


maximum.py

Maximum and minimum
What if we want to find the largest element?

@ Use a variable to track the largest so far.

What to initialize it to?
0?7 What if the list is all negative?

-9999997 Same problem: the elements might all be smaller.
Use the first element of the list!

v

vYyy

* “The largest” doesn’t make sense on an empty list: error.
@ The algorithm:

@ Initialize the "best” variable to the first element.
@ For each element in the rest of the list:

(2.1) If it's bigger than the best, it is the new best.
© Return the best.

@ Python has functions max and min:
largest = max(mylist)

» Elements must be comparable (all str or all numbers, not a mix)
@ Variations: index of the maximum, maximum function value.
@ maximum.py

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015

6/13


maximum.py

Maximum and minimum
What if we want to find the largest element?

@ Use a variable to track the largest so far.

What to initialize it to?
0?7 What if the list is all negative?

-9999997 Same problem: the elements might all be smaller.
Use the first element of the list!

v

vYyy

* “The largest” doesn’t make sense on an empty list: error.
@ The algorithm:

@ Initialize the "best” variable to the first element.
@ For each element in the rest of the list:

(2.1) If it's bigger than the best, it is the new best.
© Return the best.

@ Python has functions max and min:
largest = max(mylist)

» Elements must be comparable (all str or all numbers, not a mix)
@ Variations: index of the maximum, maximum function value.
@ maximum.py

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015

6/13


maximum.py

Sorting

@ We already know the sort function.

@ But how does it work?

Neil Moore (UK CS) CS 115 Lecture 16


http://www.sorting-algorithms.com/

Sorting

@ We already know the sort function.

@ But how does it work?
@ There are several algorithms for sorting:

» Selection sort, insertion sort, quick sort, merge sort.
» http://www.sorting-algorithms.com/

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015 7/13


http://www.sorting-algorithms.com/

Sorting

@ We already know the sort function.

@ But how does it work?
@ There are several algorithms for sorting:

» Selection sort, insertion sort, quick sort, merge sort.
» http://www.sorting-algorithms.com/
» Most of these algorithms are based around:

* Comparing elements.

* Then swapping them into the right place.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015 7/13


http://www.sorting-algorithms.com/

Sorting

@ We already know the sort function.

@ But how does it work?
@ There are several algorithms for sorting:

» Selection sort, insertion sort, quick sort, merge sort.
» http://www.sorting-algorithms.com/
» Most of these algorithms are based around:
* Comparing elements.
* Then swapping them into the right place.
» Different algorithms have different trade-offs:
* Some require fewer comparisons.
* Some require fewer swaps.
* Some require less memory.
* Some are good on “almost-sorted” data.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015 7/13


http://www.sorting-algorithms.com/

Sorting

@ We already know the sort function.

@ But how does it work?
@ There are several algorithms for sorting:

» Selection sort, insertion sort, quick sort, merge sort.
» http://www.sorting-algorithms.com/
» Most of these algorithms are based around:
* Comparing elements.
* Then swapping them into the right place.
» Different algorithms have different trade-offs:
* Some require fewer comparisons.
* Some require fewer swaps.
* Some require less memory.
* Some are good on “almost-sorted” data.

o We'll look at one algorithm: selection sort.

» Not the fastest, but one of the simplest.
» Also requires the fewest swaps.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015

7/13


http://www.sorting-algorithms.com/

Sorting

@ We already know the sort function.

@ But how does it work?
@ There are several algorithms for sorting:

» Selection sort, insertion sort, quick sort, merge sort.
» http://www.sorting-algorithms.com/
» Most of these algorithms are based around:
* Comparing elements.
* Then swapping them into the right place.
» Different algorithms have different trade-offs:
* Some require fewer comparisons.
* Some require fewer swaps.
* Some require less memory.
* Some are good on “almost-sorted” data.

o We'll look at one algorithm: selection sort.

» Not the fastest, but one of the simplest.
» Also requires the fewest swaps.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015

7/13


http://www.sorting-algorithms.com/

Selection sort

The idea behind selection sort: iterate through the list in multiple passes:
o First, put the smallest element into the right place.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015 8 /13



Selection sort

The idea behind selection sort: iterate through the list in multiple passes:

o First, put the smallest element into the right place.

» Can find the smallest with min and index.
» Then swap it with the first element.
1st[0], 1lst[minpos] = lst[minpos], 1lst[0]

Neil Moore (UK CS) CS 115 Lecture 16

Fall 2015

8/13



Selection sort

The idea behind selection sort: iterate through the list in multiple passes:
o First, put the smallest element into the right place.

» Can find the smallest with min and index.
» Then swap it with the first element.

1st[0], 1lst[minpos] = lst[minpos], 1lst[0]
» This is pass 1.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015 8 /13



Selection sort

The idea behind selection sort: iterate through the list in multiple passes:
@ First, put the smallest element into the right place.
» Can find the smallest with min and index.
» Then swap it with the first element.
1st[0], 1lst[minpos] = lst[minpos], 1lst[0]
» This is pass 1.
@ Then put the second-smallest element into the right place.
» Use min and index on the unsorted part of the list.
» Then swap it with the second element.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015 8 /13



Selection sort

The idea behind selection sort: iterate through the list in multiple passes:
@ First, put the smallest element into the right place.

» Can find the smallest with min and index.
» Then swap it with the first element.

1st[0], 1lst[minpos] = lst[minpos], 1lst[0]
» This is pass 1.

@ Then put the second-smallest element into the right place.

» Use min and index on the unsorted part of the list.
» Then swap it with the second element.
» That's pass 2.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015 8 /13



Selection sort

The idea behind selection sort: iterate through the list in multiple passes:

@ First, put the smallest element into the right place.
» Can find the smallest with min and index.
» Then swap it with the first element.
1st[0], 1lst[minpos] = lst[minpos], 1lst[0]
» This is pass 1.
@ Then put the second-smallest element into the right place.
» Use min and index on the unsorted part of the list.
» Then swap it with the second element.
» That's pass 2.

@ And the third-smallest, and the fourth, and. ..

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015

8/13



Selection sort

The idea behind selection sort: iterate through the list in multiple passes:

@ First, put the smallest element into the right place.
» Can find the smallest with min and index.
» Then swap it with the first element.
1st[0], 1lst[minpos] = lst[minpos], 1lst[0]
» This is pass 1.
@ Then put the second-smallest element into the right place.

» Use min and index on the unsorted part of the list.
» Then swap it with the second element.
» That's pass 2.

@ And the third-smallest, and the fourth, and. ..

@ Sounds like we need a loop!

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015

8/13



Selection sort

The idea behind selection sort: iterate through the list in multiple passes:

@ First, put the smallest element into the right place.
» Can find the smallest with min and index.
» Then swap it with the first element.
1st[0], 1lst[minpos] = lst[minpos], 1lst[0]
» This is pass 1.
@ Then put the second-smallest element into the right place.

» Use min and index on the unsorted part of the list.
» Then swap it with the second element.
» That's pass 2.

@ And the third-smallest, and the fourth, and. ..

@ Sounds like we need a loop!

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015

8/13



Selection sort algorithm

@ For each index in the list (each pass):

@ Find the smallest element after index i.
@ Swap that element with index /.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015 9 /13


selsort.py

Selection sort algorithm

@ For each index in the list (each pass):

@ Find the smallest element after index i.
@ Swap that element with index /.
Now all the elements up to index i are sorted.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015

9/13


selsort.py

Selection sort algorithm

@ For each index in the list (each pass):
@ Find the smallest element after index i.
@ Swap that element with index /.
Now all the elements up to index i are sorted.
@ That's alll

» Each pass makes more of the list sorted than before.
» Gets us closer to the goal, but not all the way there.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015

9/13


selsort.py

Selection sort algorithm

@ For each index in the list (each pass):
@ Find the smallest element after index i.

@ Swap that element with index /.

Now all the elements up to index i are sorted.
@ That's alll

» Each pass makes more of the list sorted than before.

» Gets us closer to the goal, but not all the way there.

» Then repeat until we reach the goal: common algorithmic technique.

» Have to make sure you're getting closer to the goal: in each pass, there
are fewer numbers to sort than in the previous.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015 9 /13


selsort.py

Selection sort algorithm

@ For each index in the list (each pass):
@ Find the smallest element after index i.
@ Swap that element with index /.
Now all the elements up to index i are sorted.
@ That's alll
» Each pass makes more of the list sorted than before.
» Gets us closer to the goal, but not all the way there.
» Then repeat until we reach the goal: common algorithmic technique.
» Have to make sure you're getting closer to the goal: in each pass, there
are fewer numbers to sort than in the previous.

@ It turns out we could stop before the last index. Why?

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015 9 /13


selsort.py

Selection sort algorithm

@ For each index in the list (each pass):
@ Find the smallest element after index i.
@ Swap that element with index /.
Now all the elements up to index i are sorted.
@ That's alll
» Each pass makes more of the list sorted than before.
» Gets us closer to the goal, but not all the way there.
» Then repeat until we reach the goal: common algorithmic technique.
» Have to make sure you're getting closer to the goal: in each pass, there
are fewer numbers to sort than in the previous.
@ It turns out we could stop before the last index. Why?
> If everything else is in the right place, it must be too!

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015 9 /13


selsort.py

Selection sort algorithm

@ For each index in the list (each pass):

@ Find the smallest element after index i.
@ Swap that element with index /.
Now all the elements up to index i are sorted.

That's all!

» Each pass makes more of the list sorted than before.

» Gets us closer to the goal, but not all the way there.

» Then repeat until we reach the goal: common algorithmic technique.

» Have to make sure you're getting closer to the goal: in each pass, there
are fewer numbers to sort than in the previous.

@ It turns out we could stop before the last index. Why?
> If everything else is in the right place, it must be too!

selsort.py

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015 9 /13


selsort.py

Selection sort algorithm

@ For each index in the list (each pass):

@ Find the smallest element after index i.
@ Swap that element with index /.
Now all the elements up to index i are sorted.

That's all!

» Each pass makes more of the list sorted than before.

» Gets us closer to the goal, but not all the way there.

» Then repeat until we reach the goal: common algorithmic technique.

» Have to make sure you're getting closer to the goal: in each pass, there
are fewer numbers to sort than in the previous.

@ It turns out we could stop before the last index. Why?
> If everything else is in the right place, it must be too!

selsort.py

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015 9 /13


selsort.py

Parallel lists

@ Sometimes we need to store collections of related information:

» Employees and salaries.
» Songs, performers, and albums.
» Monster locations and hit points.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015 10 / 13



Parallel lists

@ Sometimes we need to store collections of related information:

» Employees and salaries.
» Songs, performers, and albums.
» Monster locations and hit points.

@ We can do this using multiple lists with matching indices.
» So songs[0] goes with artists[0], etc.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015

10 /13



Parallel lists

@ Sometimes we need to store collections of related information:

» Employees and salaries.
» Songs, performers, and albums.
» Monster locations and hit points.

@ We can do this using multiple lists with matching indices.

» So songs[0] goes with artists[0], etc.
» That means all the lists must be the same length.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015

10 /13



Parallel lists

@ Sometimes we need to store collections of related information:
» Employees and salaries.
» Songs, performers, and albums.
» Monster locations and hit points.
@ We can do this using multiple lists with matching indices.
» So songs[0] goes with artists[0], etc.
» That means all the lists must be the same length.
» These are called parallel lists.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015

10 /13



Parallel lists

@ Sometimes we need to store collections of related information:

» Employees and salaries.
» Songs, performers, and albums.
» Monster locations and hit points.

@ We can do this using multiple lists with matching indices.

» So songs[0] goes with artists[0], etc.
» That means all the lists must be the same length.
» These are called parallel lists.

@ Python has other ways to do similar things:

» Lists of lists, dictionaries, user-defined objects. . .
» Parallel lists are the easiest to get started with.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015

10 /13



Parallel lists

@ Sometimes we need to store collections of related information:

» Employees and salaries.
» Songs, performers, and albums.
» Monster locations and hit points.

@ We can do this using multiple lists with matching indices.

» So songs[0] goes with artists[0], etc.
» That means all the lists must be the same length.
» These are called parallel lists.

@ Python has other ways to do similar things:

» Lists of lists, dictionaries, user-defined objects. . .
» Parallel lists are the easiest to get started with.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015

10 /13



Parallel list examples

@ Suppose we have two parallel lists, of student names and scores.

Neil Moore (UK CS) CS 115 Lecture 16


parallel.py

Parallel list examples

@ Suppose we have two parallel lists, of student names and scores.
@ If | give you a name, how would you find their score?

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015 11 /13


parallel.py

Parallel list examples

@ Suppose we have two parallel lists, of student names and scores.
@ If | give you a name, how would you find their score?

» Find the index of that name in the name list.
» The score is at the same index in the other list.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015 11 /13


parallel.py

Parallel list examples

@ Suppose we have two parallel lists, of student names and scores.
@ If | give you a name, how would you find their score?

» Find the index of that name in the name list.
» The score is at the same index in the other list.

@ What if | wanted a list of all the students with “A"s?

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015 11 /13


parallel.py

Parallel list examples

@ Suppose we have two parallel lists, of student names and scores.

@ If | give you a name, how would you find their score?

» Find the index of that name in the name list.
» The score is at the same index in the other list.

@ What if | wanted a list of all the students with “A"s?

@ Build an accumulator list for the answer.
@ lIterate over the score list (keeping track of the index)

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015

11 /13


parallel.py

Parallel list examples

@ Suppose we have two parallel lists, of student names and scores.

@ If | give you a name, how would you find their score?
» Find the index of that name in the name list.
» The score is at the same index in the other list.

@ What if | wanted a list of all the students with “A"s?

@ Build an accumulator list for the answer.
@ lIterate over the score list (keeping track of the index)

(2.1) If the score is > 90:
(2.1.1) Find the name at the same index.
(2.1.2) Append that name to the accumulator.

© Return the accumulator.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015

11 /13


parallel.py

Parallel list examples

Suppose we have two parallel lists, of student names and scores.

If | give you a name, how would you find their score?

» Find the index of that name in the name list.

» The score is at the same index in the other list.
What if | wanted a list of all the students with “A"s?

@ Build an accumulator list for the answer.

@ lIterate over the score list (keeping track of the index)

(2.1) If the score is > 90:
(2.1.1) Find the name at the same index.
(2.1.2) Append that name to the accumulator.

© Return the accumulator.

Let's implement functions for both of these.

parallel.py

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015 11 /13


parallel.py

Parallel list examples

Suppose we have two parallel lists, of student names and scores.

If | give you a name, how would you find their score?

» Find the index of that name in the name list.

» The score is at the same index in the other list.
What if | wanted a list of all the students with “A"s?

@ Build an accumulator list for the answer.

@ lIterate over the score list (keeping track of the index)

(2.1) If the score is > 90:
(2.1.1) Find the name at the same index.
(2.1.2) Append that name to the accumulator.

© Return the accumulator.

Let's implement functions for both of these.

parallel.py

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015 11 /13


parallel.py

Another example

@ Another example related to grading. .. multiple-choice

Neil Moore (UK CS) CS 115 Lecture 16


gradequiz.py

Another example

@ Another example related to grading. .. multiple-choice

@ Let's say we have a list of the correct answers.
@ ...and we also have someone’s answers to the same questions.
» These are parallel lists!

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015 12 /13


gradequiz.py

Another example

Another example related to grading. .. multiple-choice

Let's say we have a list of the correct answers.
...and we also have someone’s answers to the same questions.
» These are parallel lists!

@ How can we calculate their score (number of right answers)?

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015 12 /13


gradequiz.py

Another example

Another example related to grading. .. multiple-choice

Let's say we have a list of the correct answers.

...and we also have someone’s answers to the same questions.
» These are parallel lists!
@ How can we calculate their score (number of right answers)?

© Keep an counter of the number of correct answers.
@ For each index in the lists:

(2.1) If the student’s answer equals the correct answer:
(2.1.1) Increment the counter.

© Return the counter.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015 12 /13


gradequiz.py

Another example

Another example related to grading. .. multiple-choice

Let's say we have a list of the correct answers.

...and we also have someone’s answers to the same questions.
» These are parallel lists!
@ How can we calculate their score (number of right answers)?

© Keep an counter of the number of correct answers.
@ For each index in the lists:

(2.1) If the student’s answer equals the correct answer:
(2.1.1) Increment the counter.

© Return the counter.

@ gradequiz.py

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015 12 /13


gradequiz.py

Something to think about

How would you sort parallel lists?

Neil Moore (UK CS) CS 115 Lecture 16



Something to think about

How would you sort parallel lists?

@ Can you use the built-in sort method?

Neil Moore (UK CS) CS 115 Lecture 16



Something to think about

How would you sort parallel lists?
@ Can you use the built-in sort method?

@ No—because that sorts only one list.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015

13 /13



Something to think about

How would you sort parallel lists?
@ Can you use the built-in sort method?

@ No—because that sorts only one list.
o Can't we just call sort twice, once on each list?

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015

13 /13



Something to think about

How would you sort parallel lists?
@ Can you use the built-in sort method?

@ No—because that sorts only one list.
o Can't we just call sort twice, once on each list?

» No—that would scramble the associations.
» Sorry, Aaron, you now have the lowest grade in class.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015 13 /13



Something to think about

How would you sort parallel lists?
@ Can you use the built-in sort method?
@ No—because that sorts only one list.

o Can't we just call sort twice, once on each list?

» No—that would scramble the associations.
» Sorry, Aaron, you now have the lowest grade in class.

@ We need one function that takes two lists.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015

13 /13



Something to think about

How would you sort parallel lists?
@ Can you use the built-in sort method?

@ No—because that sorts only one list.
o Can't we just call sort twice, once on each list?

» No—that would scramble the associations.

» Sorry, Aaron, you now have the lowest grade in class.
@ We need one function that takes two lists.

» Use selection sort, comparing the elements of one list.
» But when you swap, swap the same positions in both lists.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015

13 /13



Something to think about

How would you sort parallel lists?
@ Can you use the built-in sort method?

@ No—because that sorts only one list.
o Can't we just call sort twice, once on each list?

» No—that would scramble the associations.

» Sorry, Aaron, you now have the lowest grade in class.
@ We need one function that takes two lists.

» Use selection sort, comparing the elements of one list.
» But when you swap, swap the same positions in both lists.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015

13 /13



