CS 115 Lecture 15

Lists part 1

Neil Moore

Department of Computer Science
University of Kentucky
Lexington, Kentucky 40506
neil@cs.uky.edu

5 November 2015



Lists

In Python a string is a sequence of characters, but there are other kinds of
sequences, too. The most important is the list.
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@ A list is, like a string, a sequence of things.
@ But unlike a string, the things can be any type:
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» Even lists of lists.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 2/21



Lists

In Python a string is a sequence of characters, but there are other kinds of
sequences, too. The most important is the list.

@ A list is, like a string, a sequence of things.
@ But unlike a string, the things can be any type:

» List of numbers: [7, 1, 3]
» List of strings: [ "hello", "world" ]
» Even lists of lists.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 2/21



List syntax

@ To write a literal list in your program, use square brackets:
poets = [ "Coleridge", "Neruda", "Hughes" ]

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 3/21



List syntax

@ To write a literal list in your program, use square brackets:
poets = [ "Coleridge", "Neruda", "Hughes" ]
@ The things in a list are called its elements.

» This list has three elements, each a string.
> lts length is 3 (the number of elements).
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List syntax

@ To write a literal list in your program, use square brackets:
poets = [ "Coleridge", "Neruda", "Hughes" ]
@ The things in a list are called its elements.

» This list has three elements, each a string.

> lts length is 3 (the number of elements).

» Use len to get the length:
print(len(poets)) # 3
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List syntax

@ To write a literal list in your program, use square brackets:
poets = [ "Coleridge", "Neruda", "Hughes" ]
@ The things in a list are called its elements.

» This list has three elements, each a string.

> Its length is 3 (the number of elements).

» Use len to get the length:
print(len(poets)) # 3

@ Elements are numbered starting from zero.

» As with strings, we call this the index or position of the element.

» The last element has index length - 1.
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List syntax

@ To write a literal list in your program, use square brackets:

poets = [ "Coleridge", "Neruda", "Hughes" ]

@ The things in a list are called its elements.
» This list has three elements, each a string.
> Its length is 3 (the number of elements).
» Use len to get the length:
print(len(poets)) # 3
@ Elements are numbered starting from zero.
» As with strings, we call this the index or position of the element.

» The last element has index length - 1.

@ Lists can be concatenated with +:

print([3, 1, 4] + [1, 5, 91)
— [3,1, 4, 1, 5, 9]
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Accessing elements of a list

You can get elements of a list using the subscript syntax:

scores = [ 75.0, 68.5, 83.0 ]
third = scores[2] # 83.0
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@ Negative indices count from the end:
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last = scores[-1] # 83.0
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* . ..which could have any type.
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Accessing elements of a list

You can get elements of a list using the subscript syntax:

scores = [ 75.0, 68.5, 83.0 ]
third = scores[2] # 83.0

Negative indices count from the end:
last = scores[-1] # 83.0
Notice the difference with strings:

» Subscripting a string gives you another (one-character) string.
» Subscripting a list gives you the element. ..

* . ..which could have any type.
@ Lists also support slicing. Slicing a list gives another list:
exams = scores[1:3] # [ 68.5, 83.0 ]
o Again:
» Subscripting gives a single element.
» Slicing gives a list of elements.
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Searching in lists

There are two ways to search for an element in a list:

@ You can use in to check whether it's there:
if "Eliot" in poets:
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Searching in lists

There are two ways to search for an element in a list:

@ You can use in to check whether it's there:
if "Eliot" in poets:

@ Check for that exact element; doesn't look “inside” the elements:

if "ridge" in poets: #False!

@ To find an element’s position in the list, use the index method.

rank = poets.index("Coleridge") # 0
> It works mostly like the string £ind method.

» Can give another argument to specify where to start.

» One important difference: if it was not found:

* mystring.find(...) returns -1
* mylist.index(...) gives a run-time error!
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Searching in lists

There are two ways to search for an element in a list:
@ You can use in to check whether it's there:
if "Eliot" in poets:
@ Check for that exact element; doesn't look “inside” the elements:
if "ridge" in poets: #False!

@ To find an element’s position in the list, use the index method.
rank = poets.index("Coleridge") # 0

> It works mostly like the string £ind method.
» Can give another argument to specify where to start.
» One important difference: if it was not found:
* mystring.find(...) returns -1
* mylist.index(...) gives a run-time error!
* To be safe you can use in first:
pos = -1
if thing in list:
pos = list.index(thing)
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Traversing lists

You can traverse a list with a for loop:
scores = [ 85, 72, 56, 98, 84, 72 1]
sum = O
for grade in scores:

sum += grade

@ This works the same as with a string.

@ In each iteration the loop variable will be one element of the list.
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You can traverse a list with a for loop:
scores = [ 85, 72, 56, 98, 84, 72 1]
sum = O
for grade in scores:

sum += grade

@ This works the same as with a string.

@ In each iteration the loop variable will be one element of the list.
@ To get both indices and elements, you can use the same techniques as
with strings:
» Use a counter to track the index.

» Use a range loop with subscripting.
> Use enumerate(mylist).
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Strings versus lists

You've probably noticed a lot of similarities between lists and strings.
@ Sometimes the very same code works with both!

» len, subscripts, and slicing.
» Traversal.
» Concatenation.
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Immutability

@ Strings, ints, and floats are immutable.
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@ Strings, ints, and floats are immutable.
@ Which means: these objects doesn’'t change once they are created.
» You can't change the number 4.
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Mutability

Some kinds of objects can be changed after they are created.
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Mutability

Some kinds of objects can be changed after they are created.

@ Remember graphics shapes. You can:
» Draw and undraw them.
» Change the fill and outline colors.
» Move them around.
> Set the text (Text and Entry only).
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Some kinds of objects can be changed after they are created.
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» Draw and undraw them.

» Change the fill and outline colors.

» Move them around.

> Set the text (Text and Entry only).

@ How does this differ from assignment?
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The meaning of assignment

@ A variable in Python is like a finger pointing at an object.

@ Assigning to the variable makes the finger point somewhere else.
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The meaning of assignment

A variable in Python is like a finger pointing at an object.

The variable itself stays in the same location in memory.
> Same finger!

@ ...but now points at (“refers to") a different value.
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Mutability and functions

@ Function parameters are separate variables from the arguments.
» So assigning to the parameter doesn’t change the argument.

def

def

squareplus (x) :

X = x ** 2 # changes x, not num

return x + 1

main():

num = 5

spl = squareplus(num)

print("sq+ of", num, "is", spl) # num is still 5
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spl = squareplus(num)
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@ However, they refer to the values of the arguments.
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Mutability and functions

@ Function parameters are separate variables from the arguments.
» So assigning to the parameter doesn't change the argument.
def squareplus(x):
X = x ** 2 # changes x, not num
return x + 1
def main():
num = 5
spl = squareplus(num)
print("sq+ of", num, "is", spl) # num is still 5
» The function gets what the finger points at, not the finger itself.
@ However, they refer to the values of the arguments.
» The parameter is another “finger” pointing at the same object.
» And if that object is mutable, the function can mutate it:
def addseven(lst):
1st.append(7) # mutates the list
def main():
scores = [ 5, 9, 6 ]
addseven(scores)
print(scores) # [ 5, 9, 6, 7 ]
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Mutability and functions

o Call by reference: functions can modify their arguments.
> In Python, only by mutation, not assignment!

* Assignment changes a variable (re-point the finger)
* Mutation changes an object (the thing pointed to)
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Mutability and functions

o Call by reference: functions can modify their arguments.
» In Python, only by mutation, not assignment!

* Assignment changes a variable (re-point the finger)
* Mutation changes an object (the thing pointed to)

o Side effects: things that are changed by the function.
» Printing output, creating a file, etc.
» Mutating parameters.
» Postconditions describe the return value and side effects.
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List mutability

Lists are mutable: they can be changed in several ways:

@ Appending or inserting a new element.
@ Removing an element.

@ Sorting and reversing.
o

Changing the values of existing elements.
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Inserting into a list

@ The append method adds a new element to the end of a list:
poets.append("Angelou")
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» Mutates the list.
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» Does not return a value!
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» Mutates the list.
> Increases the length by one.
> Does not return a value!

@ To add a whole list to the end, use the extend method:
scores.extend([55, 88, 79])

» This example increases the length by 3.
» Also returns nothing.
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@ The insert method adds a new element in the middle.
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Inserting into a list

@ The append method adds a new element to the end of a list:
poets.append("Angelou")
» Mutates the list.
> Increases the length by one.
> Does not return a value!

@ To add a whole list to the end, use the extend method:
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» Also returns nothing.
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» The new element will be at index 2.
» The indices of the following elements shift up by one to make room.
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Mutation versus making new objects

o Notice that append, extend, and insert return nothing!

» Most mutating functions in Python work this way.
» (With a few exceptions we'll point out).
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Deleting from a list

You can delete from a list by index:
@ Syntax: del list[index]
» Removes the element at position index.
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Lists and assignments

The slots in a Python list work like variables.

@ They refer to (point to) objects:
> A list is like a box of fingers
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Lists, mutability, aliasing
Remember aliasing from when we looked at the graphics package.
@ Aliasing happens with all mutable objects.
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* That was the purpose of the graphics shape clone method.
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