
CS 115 Lecture 15
Lists part 1

Neil Moore

Department of Computer Science
University of Kentucky

Lexington, Kentucky 40506
neil@cs.uky.edu

5 November 2015

Lists

In Python a string is a sequence of characters, but there are other kinds of
sequences, too. The most important is the list.

A list is, like a string, a sequence of things.

But unlike a string, the things can be any type:
I List of numbers: [7, 1, 3]
I List of strings: ["hello", "world"]
I Even lists of lists.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 2 / 21

Lists

In Python a string is a sequence of characters, but there are other kinds of
sequences, too. The most important is the list.

A list is, like a string, a sequence of things.

But unlike a string, the things can be any type:
I List of numbers: [7, 1, 3]
I List of strings: ["hello", "world"]
I Even lists of lists.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 2 / 21

Lists

In Python a string is a sequence of characters, but there are other kinds of
sequences, too. The most important is the list.

A list is, like a string, a sequence of things.

But unlike a string, the things can be any type:
I List of numbers: [7, 1, 3]
I List of strings: ["hello", "world"]
I Even lists of lists.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 2 / 21

List syntax

To write a literal list in your program, use square brackets:
poets = ["Coleridge", "Neruda", "Hughes"]

The things in a list are called its elements.
I This list has three elements, each a string.
I Its length is 3 (the number of elements).
I Use len to get the length:

print(len(poets)) # 3

Elements are numbered starting from zero.
I As with strings, we call this the index or position of the element.
I The last element has index length - 1.

Lists can be concatenated with +:
print([3, 1, 4] + [1, 5, 9])
→ [3, 1, 4, 1, 5, 9]
I But only with other lists!

[3, 1, 4] + 1 → TypeError

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 3 / 21

List syntax

To write a literal list in your program, use square brackets:
poets = ["Coleridge", "Neruda", "Hughes"]

The things in a list are called its elements.
I This list has three elements, each a string.
I Its length is 3 (the number of elements).

I Use len to get the length:
print(len(poets)) # 3

Elements are numbered starting from zero.
I As with strings, we call this the index or position of the element.
I The last element has index length - 1.

Lists can be concatenated with +:
print([3, 1, 4] + [1, 5, 9])
→ [3, 1, 4, 1, 5, 9]
I But only with other lists!

[3, 1, 4] + 1 → TypeError

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 3 / 21

List syntax

To write a literal list in your program, use square brackets:
poets = ["Coleridge", "Neruda", "Hughes"]

The things in a list are called its elements.
I This list has three elements, each a string.
I Its length is 3 (the number of elements).
I Use len to get the length:

print(len(poets)) # 3

Elements are numbered starting from zero.
I As with strings, we call this the index or position of the element.
I The last element has index length - 1.

Lists can be concatenated with +:
print([3, 1, 4] + [1, 5, 9])
→ [3, 1, 4, 1, 5, 9]
I But only with other lists!

[3, 1, 4] + 1 → TypeError

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 3 / 21

List syntax

To write a literal list in your program, use square brackets:
poets = ["Coleridge", "Neruda", "Hughes"]

The things in a list are called its elements.
I This list has three elements, each a string.
I Its length is 3 (the number of elements).
I Use len to get the length:

print(len(poets)) # 3

Elements are numbered starting from zero.
I As with strings, we call this the index or position of the element.
I The last element has index length - 1.

Lists can be concatenated with +:
print([3, 1, 4] + [1, 5, 9])
→ [3, 1, 4, 1, 5, 9]
I But only with other lists!

[3, 1, 4] + 1 → TypeError

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 3 / 21

List syntax

To write a literal list in your program, use square brackets:
poets = ["Coleridge", "Neruda", "Hughes"]

The things in a list are called its elements.
I This list has three elements, each a string.
I Its length is 3 (the number of elements).
I Use len to get the length:

print(len(poets)) # 3

Elements are numbered starting from zero.
I As with strings, we call this the index or position of the element.
I The last element has index length - 1.

Lists can be concatenated with +:
print([3, 1, 4] + [1, 5, 9])
→ [3, 1, 4, 1, 5, 9]

I But only with other lists!
[3, 1, 4] + 1 → TypeError

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 3 / 21

List syntax

To write a literal list in your program, use square brackets:
poets = ["Coleridge", "Neruda", "Hughes"]

The things in a list are called its elements.
I This list has three elements, each a string.
I Its length is 3 (the number of elements).
I Use len to get the length:

print(len(poets)) # 3

Elements are numbered starting from zero.
I As with strings, we call this the index or position of the element.
I The last element has index length - 1.

Lists can be concatenated with +:
print([3, 1, 4] + [1, 5, 9])
→ [3, 1, 4, 1, 5, 9]
I But only with other lists!

[3, 1, 4] + 1 → TypeError

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 3 / 21

List syntax

To write a literal list in your program, use square brackets:
poets = ["Coleridge", "Neruda", "Hughes"]

The things in a list are called its elements.
I This list has three elements, each a string.
I Its length is 3 (the number of elements).
I Use len to get the length:

print(len(poets)) # 3

Elements are numbered starting from zero.
I As with strings, we call this the index or position of the element.
I The last element has index length - 1.

Lists can be concatenated with +:
print([3, 1, 4] + [1, 5, 9])
→ [3, 1, 4, 1, 5, 9]
I But only with other lists!

[3, 1, 4] + 1 → TypeError

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 3 / 21

Accessing elements of a list

You can get elements of a list using the subscript syntax:

scores = [75.0, 68.5, 83.0]

third = scores[2] # 83.0

Negative indices count from the end:
last = scores[-1] # 83.0

Notice the difference with strings:
I Subscripting a string gives you another (one-character) string.
I Subscripting a list gives you the element. . .

F . . . which could have any type.

Lists also support slicing. Slicing a list gives another list:
exams = scores[1:3] # [68.5, 83.0]

Again:
I Subscripting gives a single element.
I Slicing gives a list of elements.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 4 / 21

Accessing elements of a list

You can get elements of a list using the subscript syntax:

scores = [75.0, 68.5, 83.0]

third = scores[2] # 83.0

Negative indices count from the end:
last = scores[-1] # 83.0

Notice the difference with strings:
I Subscripting a string gives you another (one-character) string.
I Subscripting a list gives you the element. . .

F . . . which could have any type.

Lists also support slicing. Slicing a list gives another list:
exams = scores[1:3] # [68.5, 83.0]

Again:
I Subscripting gives a single element.
I Slicing gives a list of elements.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 4 / 21

Accessing elements of a list

You can get elements of a list using the subscript syntax:

scores = [75.0, 68.5, 83.0]

third = scores[2] # 83.0

Negative indices count from the end:
last = scores[-1] # 83.0

Notice the difference with strings:
I Subscripting a string gives you another (one-character) string.
I Subscripting a list gives you the element. . .

F . . . which could have any type.

Lists also support slicing. Slicing a list gives another list:
exams = scores[1:3] # [68.5, 83.0]

Again:
I Subscripting gives a single element.
I Slicing gives a list of elements.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 4 / 21

Accessing elements of a list

You can get elements of a list using the subscript syntax:

scores = [75.0, 68.5, 83.0]

third = scores[2] # 83.0

Negative indices count from the end:
last = scores[-1] # 83.0

Notice the difference with strings:
I Subscripting a string gives you another (one-character) string.
I Subscripting a list gives you the element. . .

F . . . which could have any type.

Lists also support slicing. Slicing a list gives another list:
exams = scores[1:3] # [68.5, 83.0]

Again:
I Subscripting gives a single element.
I Slicing gives a list of elements.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 4 / 21

Accessing elements of a list

You can get elements of a list using the subscript syntax:

scores = [75.0, 68.5, 83.0]

third = scores[2] # 83.0

Negative indices count from the end:
last = scores[-1] # 83.0

Notice the difference with strings:
I Subscripting a string gives you another (one-character) string.
I Subscripting a list gives you the element. . .

F . . . which could have any type.

Lists also support slicing. Slicing a list gives another list:
exams = scores[1:3] # [68.5, 83.0]

Again:
I Subscripting gives a single element.
I Slicing gives a list of elements.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 4 / 21

Accessing elements of a list

You can get elements of a list using the subscript syntax:

scores = [75.0, 68.5, 83.0]

third = scores[2] # 83.0

Negative indices count from the end:
last = scores[-1] # 83.0

Notice the difference with strings:
I Subscripting a string gives you another (one-character) string.
I Subscripting a list gives you the element. . .

F . . . which could have any type.

Lists also support slicing. Slicing a list gives another list:
exams = scores[1:3] # [68.5, 83.0]

Again:
I Subscripting gives a single element.
I Slicing gives a list of elements.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 4 / 21

Searching in lists

There are two ways to search for an element in a list:

You can use in to check whether it’s there:
if "Eliot" in poets:

Check for that exact element; doesn’t look “inside” the elements:
if "ridge" in poets: # False!

To find an element’s position in the list, use the index method.
rank = poets.index("Coleridge") # 0

I It works mostly like the string find method.
I Can give another argument to specify where to start.
I One important difference: if it was not found:

F mystring.find(...) returns -1
F mylist.index(...) gives a run-time error!
F To be safe you can use in first:

pos = -1

if thing in list:

pos = list.index(thing)

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 5 / 21

Searching in lists

There are two ways to search for an element in a list:

You can use in to check whether it’s there:
if "Eliot" in poets:

Check for that exact element; doesn’t look “inside” the elements:
if "ridge" in poets: # False!

To find an element’s position in the list, use the index method.
rank = poets.index("Coleridge") # 0

I It works mostly like the string find method.
I Can give another argument to specify where to start.
I One important difference: if it was not found:

F mystring.find(...) returns -1
F mylist.index(...) gives a run-time error!
F To be safe you can use in first:

pos = -1

if thing in list:

pos = list.index(thing)

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 5 / 21

Searching in lists

There are two ways to search for an element in a list:

You can use in to check whether it’s there:
if "Eliot" in poets:

Check for that exact element; doesn’t look “inside” the elements:
if "ridge" in poets: # False!

To find an element’s position in the list, use the index method.
rank = poets.index("Coleridge") # 0

I It works mostly like the string find method.
I Can give another argument to specify where to start.
I One important difference: if it was not found:

F mystring.find(...) returns -1
F mylist.index(...) gives a run-time error!
F To be safe you can use in first:

pos = -1

if thing in list:

pos = list.index(thing)

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 5 / 21

Searching in lists

There are two ways to search for an element in a list:

You can use in to check whether it’s there:
if "Eliot" in poets:

Check for that exact element; doesn’t look “inside” the elements:
if "ridge" in poets: # False!

To find an element’s position in the list, use the index method.
rank = poets.index("Coleridge") # 0

I It works mostly like the string find method.
I Can give another argument to specify where to start.

I One important difference: if it was not found:
F mystring.find(...) returns -1
F mylist.index(...) gives a run-time error!
F To be safe you can use in first:

pos = -1

if thing in list:

pos = list.index(thing)

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 5 / 21

Searching in lists

There are two ways to search for an element in a list:

You can use in to check whether it’s there:
if "Eliot" in poets:

Check for that exact element; doesn’t look “inside” the elements:
if "ridge" in poets: # False!

To find an element’s position in the list, use the index method.
rank = poets.index("Coleridge") # 0

I It works mostly like the string find method.
I Can give another argument to specify where to start.
I One important difference: if it was not found:

F mystring.find(...) returns -1
F mylist.index(...) gives a run-time error!

F To be safe you can use in first:
pos = -1

if thing in list:

pos = list.index(thing)

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 5 / 21

Searching in lists

There are two ways to search for an element in a list:

You can use in to check whether it’s there:
if "Eliot" in poets:

Check for that exact element; doesn’t look “inside” the elements:
if "ridge" in poets: # False!

To find an element’s position in the list, use the index method.
rank = poets.index("Coleridge") # 0

I It works mostly like the string find method.
I Can give another argument to specify where to start.
I One important difference: if it was not found:

F mystring.find(...) returns -1
F mylist.index(...) gives a run-time error!
F To be safe you can use in first:

pos = -1

if thing in list:

pos = list.index(thing)

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 5 / 21

Traversing lists

You can traverse a list with a for loop:
scores = [85, 72, 56, 98, 84, 72]

sum = 0

for grade in scores:

sum += grade

This works the same as with a string.

In each iteration the loop variable will be one element of the list.

To get both indices and elements, you can use the same techniques as
with strings:

I Use a counter to track the index.
I Use a range loop with subscripting.
I Use enumerate(mylist).

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 6 / 21

Traversing lists

You can traverse a list with a for loop:
scores = [85, 72, 56, 98, 84, 72]

sum = 0

for grade in scores:

sum += grade

This works the same as with a string.

In each iteration the loop variable will be one element of the list.

To get both indices and elements, you can use the same techniques as
with strings:

I Use a counter to track the index.
I Use a range loop with subscripting.
I Use enumerate(mylist).

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 6 / 21

Traversing lists

You can traverse a list with a for loop:
scores = [85, 72, 56, 98, 84, 72]

sum = 0

for grade in scores:

sum += grade

This works the same as with a string.

In each iteration the loop variable will be one element of the list.

To get both indices and elements, you can use the same techniques as
with strings:

I Use a counter to track the index.
I Use a range loop with subscripting.
I Use enumerate(mylist).

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 6 / 21

Strings versus lists

You’ve probably noticed a lot of similarities between lists and strings.

Sometimes the very same code works with both!
I len, subscripts, and slicing.
I Traversal.
I Concatenation.

But there are also many differences:
I Each element of a string is a character.

F In Python, characters are strings (of length 1).

I But the elements of a list can be anything.
F And are usually not lists.

I With strings, in searches for a substring.
I With lists, in searches for single elements only!
I Strings use find to locate a substring (-1 if not found)
I Lists use index to locate an element (error if not found)

Another big difference: lists are mutable.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 7 / 21

Strings versus lists

You’ve probably noticed a lot of similarities between lists and strings.

Sometimes the very same code works with both!
I len, subscripts, and slicing.
I Traversal.
I Concatenation.

But there are also many differences:
I Each element of a string is a character.

F In Python, characters are strings (of length 1).

I But the elements of a list can be anything.
F And are usually not lists.

I With strings, in searches for a substring.
I With lists, in searches for single elements only!
I Strings use find to locate a substring (-1 if not found)
I Lists use index to locate an element (error if not found)

Another big difference: lists are mutable.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 7 / 21

Strings versus lists

You’ve probably noticed a lot of similarities between lists and strings.

Sometimes the very same code works with both!
I len, subscripts, and slicing.
I Traversal.
I Concatenation.

But there are also many differences:
I Each element of a string is a character.

F In Python, characters are strings (of length 1).

I But the elements of a list can be anything.
F And are usually not lists.

I With strings, in searches for a substring.
I With lists, in searches for single elements only!

I Strings use find to locate a substring (-1 if not found)
I Lists use index to locate an element (error if not found)

Another big difference: lists are mutable.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 7 / 21

Strings versus lists

You’ve probably noticed a lot of similarities between lists and strings.

Sometimes the very same code works with both!
I len, subscripts, and slicing.
I Traversal.
I Concatenation.

But there are also many differences:
I Each element of a string is a character.

F In Python, characters are strings (of length 1).

I But the elements of a list can be anything.
F And are usually not lists.

I With strings, in searches for a substring.
I With lists, in searches for single elements only!
I Strings use find to locate a substring (-1 if not found)
I Lists use index to locate an element (error if not found)

Another big difference: lists are mutable.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 7 / 21

Strings versus lists

You’ve probably noticed a lot of similarities between lists and strings.

Sometimes the very same code works with both!
I len, subscripts, and slicing.
I Traversal.
I Concatenation.

But there are also many differences:
I Each element of a string is a character.

F In Python, characters are strings (of length 1).

I But the elements of a list can be anything.
F And are usually not lists.

I With strings, in searches for a substring.
I With lists, in searches for single elements only!
I Strings use find to locate a substring (-1 if not found)
I Lists use index to locate an element (error if not found)

Another big difference: lists are mutable.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 7 / 21

Strings versus lists

You’ve probably noticed a lot of similarities between lists and strings.

Sometimes the very same code works with both!
I len, subscripts, and slicing.
I Traversal.
I Concatenation.

But there are also many differences:
I Each element of a string is a character.

F In Python, characters are strings (of length 1).

I But the elements of a list can be anything.
F And are usually not lists.

I With strings, in searches for a substring.
I With lists, in searches for single elements only!
I Strings use find to locate a substring (-1 if not found)
I Lists use index to locate an element (error if not found)

Another big difference: lists are mutable.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 7 / 21

Immutability

Strings, ints, and floats are immutable.

Which means: these objects doesn’t change once they are created.
I You can’t change the number 4.
I Instead, operations on these types create and return new objects.
I . . . which you may then assign back into the same variable

Ordinary assignment doesn’t change the object!
I It changes a variable to point at a different object.
I More on this later. . .

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 8 / 21

Immutability

Strings, ints, and floats are immutable.

Which means: these objects doesn’t change once they are created.
I You can’t change the number 4.

I Instead, operations on these types create and return new objects.
I . . . which you may then assign back into the same variable

Ordinary assignment doesn’t change the object!
I It changes a variable to point at a different object.
I More on this later. . .

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 8 / 21

Immutability

Strings, ints, and floats are immutable.

Which means: these objects doesn’t change once they are created.
I You can’t change the number 4.
I Instead, operations on these types create and return new objects.

I . . . which you may then assign back into the same variable

Ordinary assignment doesn’t change the object!
I It changes a variable to point at a different object.
I More on this later. . .

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 8 / 21

Immutability

Strings, ints, and floats are immutable.

Which means: these objects doesn’t change once they are created.
I You can’t change the number 4.
I Instead, operations on these types create and return new objects.
I . . . which you may then assign back into the same variable

Ordinary assignment doesn’t change the object!
I It changes a variable to point at a different object.
I More on this later. . .

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 8 / 21

Immutability

Strings, ints, and floats are immutable.

Which means: these objects doesn’t change once they are created.
I You can’t change the number 4.
I Instead, operations on these types create and return new objects.
I . . . which you may then assign back into the same variable

Ordinary assignment doesn’t change the object!
I It changes a variable to point at a different object.

I More on this later. . .

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 8 / 21

Immutability

Strings, ints, and floats are immutable.

Which means: these objects doesn’t change once they are created.
I You can’t change the number 4.
I Instead, operations on these types create and return new objects.
I . . . which you may then assign back into the same variable

Ordinary assignment doesn’t change the object!
I It changes a variable to point at a different object.
I More on this later. . .

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 8 / 21

Immutability

Strings, ints, and floats are immutable.

Which means: these objects doesn’t change once they are created.
I You can’t change the number 4.
I Instead, operations on these types create and return new objects.
I . . . which you may then assign back into the same variable

Ordinary assignment doesn’t change the object!
I It changes a variable to point at a different object.
I More on this later. . .

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 8 / 21

Mutability

Some kinds of objects can be changed after they are created.

Remember graphics shapes. You can:
I Draw and undraw them.
I Change the fill and outline colors.
I Move them around.
I Set the text (Text and Entry only).

How does this differ from assignment?

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 9 / 21

Mutability

Some kinds of objects can be changed after they are created.

Remember graphics shapes.

You can:
I Draw and undraw them.
I Change the fill and outline colors.
I Move them around.
I Set the text (Text and Entry only).

How does this differ from assignment?

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 9 / 21

Mutability

Some kinds of objects can be changed after they are created.

Remember graphics shapes. You can:
I Draw and undraw them.
I Change the fill and outline colors.
I Move them around.
I Set the text (Text and Entry only).

How does this differ from assignment?

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 9 / 21

Mutability

Some kinds of objects can be changed after they are created.

Remember graphics shapes. You can:
I Draw and undraw them.
I Change the fill and outline colors.
I Move them around.
I Set the text (Text and Entry only).

How does this differ from assignment?

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 9 / 21

Mutability

Some kinds of objects can be changed after they are created.

Remember graphics shapes. You can:
I Draw and undraw them.
I Change the fill and outline colors.
I Move them around.
I Set the text (Text and Entry only).

How does this differ from assignment?

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 9 / 21

The meaning of assignment

A variable in Python is like a finger pointing at an object.

Assigning to the variable makes the finger point somewhere else.

The variable itself stays in the same location in memory.
I Same finger!

. . . but now points at (“refers to”) a different value.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 10 / 21

The meaning of assignment

A variable in Python is like a finger pointing at an object.

Assigning to the variable makes the finger point somewhere else.

The variable itself stays in the same location in memory.
I Same finger!

. . . but now points at (“refers to”) a different value.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 10 / 21

The meaning of assignment

A variable in Python is like a finger pointing at an object.

Assigning to the variable makes the finger point somewhere else.

The variable itself stays in the same location in memory.
I Same finger!

. . . but now points at (“refers to”) a different value.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 10 / 21

The meaning of assignment

A variable in Python is like a finger pointing at an object.

Assigning to the variable makes the finger point somewhere else.

The variable itself stays in the same location in memory.
I Same finger!

. . . but now points at (“refers to”) a different value.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 10 / 21

Mutability and functions
Function parameters are separate variables from the arguments.

I So assigning to the parameter doesn’t change the argument.
def squareplus(x):

x = x ** 2 # changes x, not num

return x + 1

def main():

num = 5

sp1 = squareplus(num)

print("sq+ of", num, "is", sp1) # num is still 5

I The function gets what the finger points at, not the finger itself.
However, they refer to the values of the arguments.

I The parameter is another “finger” pointing at the same object.
I And if that object is mutable, the function can mutate it:

def addseven(lst):

lst.append(7) # mutates the list

def main():

scores = [5, 9, 6]

addseven(scores)

print(scores) # [5, 9, 6, 7]

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 11 / 21

Mutability and functions
Function parameters are separate variables from the arguments.

I So assigning to the parameter doesn’t change the argument.
def squareplus(x):

x = x ** 2 # changes x, not num

return x + 1

def main():

num = 5

sp1 = squareplus(num)

print("sq+ of", num, "is", sp1) # num is still 5
I The function gets what the finger points at, not the finger itself.

However, they refer to the values of the arguments.
I The parameter is another “finger” pointing at the same object.
I And if that object is mutable, the function can mutate it:

def addseven(lst):

lst.append(7) # mutates the list

def main():

scores = [5, 9, 6]

addseven(scores)

print(scores) # [5, 9, 6, 7]

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 11 / 21

Mutability and functions
Function parameters are separate variables from the arguments.

I So assigning to the parameter doesn’t change the argument.
def squareplus(x):

x = x ** 2 # changes x, not num

return x + 1

def main():

num = 5

sp1 = squareplus(num)

print("sq+ of", num, "is", sp1) # num is still 5
I The function gets what the finger points at, not the finger itself.

However, they refer to the values of the arguments.
I The parameter is another “finger” pointing at the same object.

I And if that object is mutable, the function can mutate it:
def addseven(lst):

lst.append(7) # mutates the list

def main():

scores = [5, 9, 6]

addseven(scores)

print(scores) # [5, 9, 6, 7]

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 11 / 21

Mutability and functions
Function parameters are separate variables from the arguments.

I So assigning to the parameter doesn’t change the argument.
def squareplus(x):

x = x ** 2 # changes x, not num

return x + 1

def main():

num = 5

sp1 = squareplus(num)

print("sq+ of", num, "is", sp1) # num is still 5
I The function gets what the finger points at, not the finger itself.

However, they refer to the values of the arguments.
I The parameter is another “finger” pointing at the same object.
I And if that object is mutable, the function can mutate it:

def addseven(lst):

lst.append(7) # mutates the list

def main():

scores = [5, 9, 6]

addseven(scores)

print(scores) # [5, 9, 6, 7]

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 11 / 21

Mutability and functions

Call by reference: functions can modify their arguments.
I In Python, only by mutation, not assignment!

F Assignment changes a variable (re-point the finger)
F Mutation changes an object (the thing pointed to)

Side effects: things that are changed by the function.
I Printing output, creating a file, etc.
I Mutating parameters.
I Postconditions describe the return value and side effects.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 12 / 21

Mutability and functions

Call by reference: functions can modify their arguments.
I In Python, only by mutation, not assignment!

F Assignment changes a variable (re-point the finger)
F Mutation changes an object (the thing pointed to)

Side effects: things that are changed by the function.
I Printing output, creating a file, etc.

I Mutating parameters.
I Postconditions describe the return value and side effects.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 12 / 21

Mutability and functions

Call by reference: functions can modify their arguments.
I In Python, only by mutation, not assignment!

F Assignment changes a variable (re-point the finger)
F Mutation changes an object (the thing pointed to)

Side effects: things that are changed by the function.
I Printing output, creating a file, etc.
I Mutating parameters.

I Postconditions describe the return value and side effects.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 12 / 21

Mutability and functions

Call by reference: functions can modify their arguments.
I In Python, only by mutation, not assignment!

F Assignment changes a variable (re-point the finger)
F Mutation changes an object (the thing pointed to)

Side effects: things that are changed by the function.
I Printing output, creating a file, etc.
I Mutating parameters.
I Postconditions describe the return value and side effects.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 12 / 21

List mutability

Lists are mutable: they can be changed in several ways:

Appending or inserting a new element.

Removing an element.

Sorting and reversing.

Changing the values of existing elements.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 13 / 21

List mutability

Lists are mutable: they can be changed in several ways:

Appending or inserting a new element.

Removing an element.

Sorting and reversing.

Changing the values of existing elements.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 13 / 21

Inserting into a list

The append method adds a new element to the end of a list:
poets.append("Angelou")

I Mutates the list.
I Increases the length by one.
I Does not return a value!

To add a whole list to the end, use the extend method:
scores.extend([55, 88, 79])

I This example increases the length by 3.
I Also returns nothing.
I What would happen if you used append instead?

F That would add the list as a single element!
F Not usually what you want.

The insert method adds a new element in the middle.
poets.insert(2, "Homer")

I The new element will be at index 2.
I The indices of the following elements shift up by one to make room.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 14 / 21

Inserting into a list

The append method adds a new element to the end of a list:
poets.append("Angelou")

I Mutates the list.
I Increases the length by one.
I Does not return a value!

To add a whole list to the end, use the extend method:
scores.extend([55, 88, 79])

I This example increases the length by 3.
I Also returns nothing.
I What would happen if you used append instead?

F That would add the list as a single element!
F Not usually what you want.

The insert method adds a new element in the middle.
poets.insert(2, "Homer")

I The new element will be at index 2.
I The indices of the following elements shift up by one to make room.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 14 / 21

Inserting into a list

The append method adds a new element to the end of a list:
poets.append("Angelou")

I Mutates the list.
I Increases the length by one.
I Does not return a value!

To add a whole list to the end, use the extend method:
scores.extend([55, 88, 79])

I This example increases the length by 3.
I Also returns nothing.

I What would happen if you used append instead?
F That would add the list as a single element!
F Not usually what you want.

The insert method adds a new element in the middle.
poets.insert(2, "Homer")

I The new element will be at index 2.
I The indices of the following elements shift up by one to make room.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 14 / 21

Inserting into a list

The append method adds a new element to the end of a list:
poets.append("Angelou")

I Mutates the list.
I Increases the length by one.
I Does not return a value!

To add a whole list to the end, use the extend method:
scores.extend([55, 88, 79])

I This example increases the length by 3.
I Also returns nothing.
I What would happen if you used append instead?

F That would add the list as a single element!
F Not usually what you want.

The insert method adds a new element in the middle.
poets.insert(2, "Homer")

I The new element will be at index 2.
I The indices of the following elements shift up by one to make room.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 14 / 21

Inserting into a list

The append method adds a new element to the end of a list:
poets.append("Angelou")

I Mutates the list.
I Increases the length by one.
I Does not return a value!

To add a whole list to the end, use the extend method:
scores.extend([55, 88, 79])

I This example increases the length by 3.
I Also returns nothing.
I What would happen if you used append instead?

F That would add the list as a single element!
F Not usually what you want.

The insert method adds a new element in the middle.
poets.insert(2, "Homer")

I The new element will be at index 2.
I The indices of the following elements shift up by one to make room.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 14 / 21

Inserting into a list

The append method adds a new element to the end of a list:
poets.append("Angelou")

I Mutates the list.
I Increases the length by one.
I Does not return a value!

To add a whole list to the end, use the extend method:
scores.extend([55, 88, 79])

I This example increases the length by 3.
I Also returns nothing.
I What would happen if you used append instead?

F That would add the list as a single element!
F Not usually what you want.

The insert method adds a new element in the middle.
poets.insert(2, "Homer")

I The new element will be at index 2.
I The indices of the following elements shift up by one to make room.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 14 / 21

Inserting into a list

The append method adds a new element to the end of a list:
poets.append("Angelou")

I Mutates the list.
I Increases the length by one.
I Does not return a value!

To add a whole list to the end, use the extend method:
scores.extend([55, 88, 79])

I This example increases the length by 3.
I Also returns nothing.
I What would happen if you used append instead?

F That would add the list as a single element!
F Not usually what you want.

The insert method adds a new element in the middle.
poets.insert(2, "Homer")

I The new element will be at index 2.
I The indices of the following elements shift up by one to make room.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 14 / 21

Inserting into a list

The append method adds a new element to the end of a list:
poets.append("Angelou")

I Mutates the list.
I Increases the length by one.
I Does not return a value!

To add a whole list to the end, use the extend method:
scores.extend([55, 88, 79])

I This example increases the length by 3.
I Also returns nothing.
I What would happen if you used append instead?

F That would add the list as a single element!
F Not usually what you want.

The insert method adds a new element in the middle.
poets.insert(2, "Homer")

I The new element will be at index 2.
I The indices of the following elements shift up by one to make room.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 14 / 21

Mutation versus making new objects

Notice that append, extend, and insert return nothing!
I Most mutating functions in Python work this way.
I (With a few exceptions we’ll point out).

I So don’t do this:
colors = colors.append("yellow") # ERROR: colors = None

I Instead:
colors.append("yellow") # GOOD: mutates colors

Conversely, concatenating with + doesn’t mutate the list.
I Instead, it returns a new list.
I So don’t do this:

colors + primaries # ERROR: throws away new list
I Instead:

colors = colors + primaries # OR

colors += primaries

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 15 / 21

Mutation versus making new objects

Notice that append, extend, and insert return nothing!
I Most mutating functions in Python work this way.
I (With a few exceptions we’ll point out).
I So don’t do this:

colors = colors.append("yellow") # ERROR: colors = None

I Instead:
colors.append("yellow") # GOOD: mutates colors

Conversely, concatenating with + doesn’t mutate the list.
I Instead, it returns a new list.
I So don’t do this:

colors + primaries # ERROR: throws away new list
I Instead:

colors = colors + primaries # OR

colors += primaries

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 15 / 21

Mutation versus making new objects

Notice that append, extend, and insert return nothing!
I Most mutating functions in Python work this way.
I (With a few exceptions we’ll point out).
I So don’t do this:

colors = colors.append("yellow") # ERROR: colors = None
I Instead:

colors.append("yellow") # GOOD: mutates colors

Conversely, concatenating with + doesn’t mutate the list.
I Instead, it returns a new list.
I So don’t do this:

colors + primaries # ERROR: throws away new list
I Instead:

colors = colors + primaries # OR

colors += primaries

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 15 / 21

Mutation versus making new objects

Notice that append, extend, and insert return nothing!
I Most mutating functions in Python work this way.
I (With a few exceptions we’ll point out).
I So don’t do this:

colors = colors.append("yellow") # ERROR: colors = None
I Instead:

colors.append("yellow") # GOOD: mutates colors

Conversely, concatenating with + doesn’t mutate the list.
I Instead, it returns a new list.

I So don’t do this:
colors + primaries # ERROR: throws away new list

I Instead:
colors = colors + primaries # OR

colors += primaries

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 15 / 21

Mutation versus making new objects

Notice that append, extend, and insert return nothing!
I Most mutating functions in Python work this way.
I (With a few exceptions we’ll point out).
I So don’t do this:

colors = colors.append("yellow") # ERROR: colors = None
I Instead:

colors.append("yellow") # GOOD: mutates colors

Conversely, concatenating with + doesn’t mutate the list.
I Instead, it returns a new list.
I So don’t do this:

colors + primaries # ERROR: throws away new list

I Instead:
colors = colors + primaries # OR

colors += primaries

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 15 / 21

Mutation versus making new objects

Notice that append, extend, and insert return nothing!
I Most mutating functions in Python work this way.
I (With a few exceptions we’ll point out).
I So don’t do this:

colors = colors.append("yellow") # ERROR: colors = None
I Instead:

colors.append("yellow") # GOOD: mutates colors

Conversely, concatenating with + doesn’t mutate the list.
I Instead, it returns a new list.
I So don’t do this:

colors + primaries # ERROR: throws away new list
I Instead:

colors = colors + primaries # OR

colors += primaries

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 15 / 21

Mutation versus making new objects

Notice that append, extend, and insert return nothing!
I Most mutating functions in Python work this way.
I (With a few exceptions we’ll point out).
I So don’t do this:

colors = colors.append("yellow") # ERROR: colors = None
I Instead:

colors.append("yellow") # GOOD: mutates colors

Conversely, concatenating with + doesn’t mutate the list.
I Instead, it returns a new list.
I So don’t do this:

colors + primaries # ERROR: throws away new list
I Instead:

colors = colors + primaries # OR

colors += primaries

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 15 / 21

Deleting from a list

You can delete from a list by index:

Syntax: del list[index]
I Removes the element at position index.

I Shifts down the following elements to fill in the gap:
list[index] = list[index + 1]

list[index + 1] = list[index + 2]

...
I Can also delete a range by using a slice:

del list[2:5] # remove elements 2, 3, and 4

Or you can remove a specific value (“search-and-destroy”):

Syntax: colors.remove("blue")

Searches for the first occurrence of ”blue” and deletes it.

Gives a runtime error if it wasn’t found!

How could you do this using del?
pos = colors.index("blue")

del colors[pos]

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 16 / 21

Deleting from a list

You can delete from a list by index:

Syntax: del list[index]
I Removes the element at position index.
I Shifts down the following elements to fill in the gap:

list[index] = list[index + 1]

list[index + 1] = list[index + 2]

...

I Can also delete a range by using a slice:
del list[2:5] # remove elements 2, 3, and 4

Or you can remove a specific value (“search-and-destroy”):

Syntax: colors.remove("blue")

Searches for the first occurrence of ”blue” and deletes it.

Gives a runtime error if it wasn’t found!

How could you do this using del?
pos = colors.index("blue")

del colors[pos]

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 16 / 21

Deleting from a list

You can delete from a list by index:

Syntax: del list[index]
I Removes the element at position index.
I Shifts down the following elements to fill in the gap:

list[index] = list[index + 1]

list[index + 1] = list[index + 2]

...
I Can also delete a range by using a slice:

del list[2:5] # remove elements 2, 3, and 4

Or you can remove a specific value (“search-and-destroy”):

Syntax: colors.remove("blue")

Searches for the first occurrence of ”blue” and deletes it.

Gives a runtime error if it wasn’t found!

How could you do this using del?
pos = colors.index("blue")

del colors[pos]

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 16 / 21

Deleting from a list

You can delete from a list by index:

Syntax: del list[index]
I Removes the element at position index.
I Shifts down the following elements to fill in the gap:

list[index] = list[index + 1]

list[index + 1] = list[index + 2]

...
I Can also delete a range by using a slice:

del list[2:5] # remove elements 2, 3, and 4

Or you can remove a specific value (“search-and-destroy”):

Syntax: colors.remove("blue")

Searches for the first occurrence of ”blue” and deletes it.

Gives a runtime error if it wasn’t found!

How could you do this using del?
pos = colors.index("blue")

del colors[pos]

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 16 / 21

Deleting from a list

You can delete from a list by index:

Syntax: del list[index]
I Removes the element at position index.
I Shifts down the following elements to fill in the gap:

list[index] = list[index + 1]

list[index + 1] = list[index + 2]

...
I Can also delete a range by using a slice:

del list[2:5] # remove elements 2, 3, and 4

Or you can remove a specific value (“search-and-destroy”):

Syntax: colors.remove("blue")

Searches for the first occurrence of ”blue” and deletes it.

Gives a runtime error if it wasn’t found!

How could you do this using del?
pos = colors.index("blue")

del colors[pos]

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 16 / 21

Deleting from a list

You can delete from a list by index:

Syntax: del list[index]
I Removes the element at position index.
I Shifts down the following elements to fill in the gap:

list[index] = list[index + 1]

list[index + 1] = list[index + 2]

...
I Can also delete a range by using a slice:

del list[2:5] # remove elements 2, 3, and 4

Or you can remove a specific value (“search-and-destroy”):

Syntax: colors.remove("blue")

Searches for the first occurrence of ”blue” and deletes it.

Gives a runtime error if it wasn’t found!

How could you do this using del?
pos = colors.index("blue")

del colors[pos]

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 16 / 21

Deleting from a list

You can delete from a list by index:

Syntax: del list[index]
I Removes the element at position index.
I Shifts down the following elements to fill in the gap:

list[index] = list[index + 1]

list[index + 1] = list[index + 2]

...
I Can also delete a range by using a slice:

del list[2:5] # remove elements 2, 3, and 4

Or you can remove a specific value (“search-and-destroy”):

Syntax: colors.remove("blue")

Searches for the first occurrence of ”blue” and deletes it.

Gives a runtime error if it wasn’t found!

How could you do this using del?

pos = colors.index("blue")

del colors[pos]

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 16 / 21

Deleting from a list

You can delete from a list by index:

Syntax: del list[index]
I Removes the element at position index.
I Shifts down the following elements to fill in the gap:

list[index] = list[index + 1]

list[index + 1] = list[index + 2]

...
I Can also delete a range by using a slice:

del list[2:5] # remove elements 2, 3, and 4

Or you can remove a specific value (“search-and-destroy”):

Syntax: colors.remove("blue")

Searches for the first occurrence of ”blue” and deletes it.

Gives a runtime error if it wasn’t found!

How could you do this using del?
pos = colors.index("blue")

del colors[pos]

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 16 / 21

Deleting from a list

You can delete from a list by index:

Syntax: del list[index]
I Removes the element at position index.
I Shifts down the following elements to fill in the gap:

list[index] = list[index + 1]

list[index + 1] = list[index + 2]

...
I Can also delete a range by using a slice:

del list[2:5] # remove elements 2, 3, and 4

Or you can remove a specific value (“search-and-destroy”):

Syntax: colors.remove("blue")

Searches for the first occurrence of ”blue” and deletes it.

Gives a runtime error if it wasn’t found!

How could you do this using del?
pos = colors.index("blue")

del colors[pos]

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 16 / 21

Sorting and reversing

The reverse method reverses the order of a list.

mylist = ["red", "green", "blue"]

mylist.reverse()

print(mylist) → ["blue", "green", "red"]

Reverse mutates the list!
I So the original order is lost.

And doesn’t return a value.
I So don’t assign back into the list:

mylist = mylist.reverse() # ERROR: mylist = None
I If you need a new reversed copy, use:

backwards = list(reversed(mylist))
F mylist is unchanged.

Note the differences:
I reverse is a method that mutates the list.
I reversed is a function that returns a new sequence.

F Not actually a list—convert with list(...)

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 17 / 21

Sorting and reversing

The reverse method reverses the order of a list.

mylist = ["red", "green", "blue"]

mylist.reverse()

print(mylist) → ["blue", "green", "red"]

Reverse mutates the list!
I So the original order is lost.

And doesn’t return a value.
I So don’t assign back into the list:

mylist = mylist.reverse() # ERROR: mylist = None
I If you need a new reversed copy, use:

backwards = list(reversed(mylist))
F mylist is unchanged.

Note the differences:
I reverse is a method that mutates the list.
I reversed is a function that returns a new sequence.

F Not actually a list—convert with list(...)

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 17 / 21

Sorting and reversing

The reverse method reverses the order of a list.

mylist = ["red", "green", "blue"]

mylist.reverse()

print(mylist) → ["blue", "green", "red"]

Reverse mutates the list!
I So the original order is lost.

And doesn’t return a value.
I So don’t assign back into the list:

mylist = mylist.reverse() # ERROR: mylist = None
I If you need a new reversed copy, use:

backwards = list(reversed(mylist))
F mylist is unchanged.

Note the differences:
I reverse is a method that mutates the list.
I reversed is a function that returns a new sequence.

F Not actually a list—convert with list(...)

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 17 / 21

Sorting and reversing

The reverse method reverses the order of a list.

mylist = ["red", "green", "blue"]

mylist.reverse()

print(mylist) → ["blue", "green", "red"]

Reverse mutates the list!
I So the original order is lost.

And doesn’t return a value.
I So don’t assign back into the list:

mylist = mylist.reverse() # ERROR: mylist = None

I If you need a new reversed copy, use:
backwards = list(reversed(mylist))

F mylist is unchanged.

Note the differences:
I reverse is a method that mutates the list.
I reversed is a function that returns a new sequence.

F Not actually a list—convert with list(...)

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 17 / 21

Sorting and reversing

The reverse method reverses the order of a list.

mylist = ["red", "green", "blue"]

mylist.reverse()

print(mylist) → ["blue", "green", "red"]

Reverse mutates the list!
I So the original order is lost.

And doesn’t return a value.
I So don’t assign back into the list:

mylist = mylist.reverse() # ERROR: mylist = None
I If you need a new reversed copy, use:

backwards = list(reversed(mylist))

F mylist is unchanged.

Note the differences:
I reverse is a method that mutates the list.
I reversed is a function that returns a new sequence.

F Not actually a list—convert with list(...)

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 17 / 21

Sorting and reversing

The reverse method reverses the order of a list.

mylist = ["red", "green", "blue"]

mylist.reverse()

print(mylist) → ["blue", "green", "red"]

Reverse mutates the list!
I So the original order is lost.

And doesn’t return a value.
I So don’t assign back into the list:

mylist = mylist.reverse() # ERROR: mylist = None
I If you need a new reversed copy, use:

backwards = list(reversed(mylist))
F mylist is unchanged.

Note the differences:
I reverse is a method that mutates the list.
I reversed is a function that returns a new sequence.

F Not actually a list—convert with list(...)

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 17 / 21

Sorting and reversing

The reverse method reverses the order of a list.

mylist = ["red", "green", "blue"]

mylist.reverse()

print(mylist) → ["blue", "green", "red"]

Reverse mutates the list!
I So the original order is lost.

And doesn’t return a value.
I So don’t assign back into the list:

mylist = mylist.reverse() # ERROR: mylist = None
I If you need a new reversed copy, use:

backwards = list(reversed(mylist))
F mylist is unchanged.

Note the differences:
I reverse is a method that mutates the list.
I reversed is a function that returns a new sequence.

F Not actually a list—convert with list(...)

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 17 / 21

Sorting and reversing

The reverse method reverses the order of a list.

mylist = ["red", "green", "blue"]

mylist.reverse()

print(mylist) → ["blue", "green", "red"]

Reverse mutates the list!
I So the original order is lost.

And doesn’t return a value.
I So don’t assign back into the list:

mylist = mylist.reverse() # ERROR: mylist = None
I If you need a new reversed copy, use:

backwards = list(reversed(mylist))
F mylist is unchanged.

Note the differences:
I reverse is a method that mutates the list.
I reversed is a function that returns a new sequence.

F Not actually a list—convert with list(...)

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 17 / 21

Sorting a list
You can also sort a list with the sort method.

Defaults to ascending order.
scores = [75, 63, 92]

scores.sort()

print(scores) → [63, 75, 92]

On strings, that means alphabetic order:
poets = ["Coleridge", "Neruda", "Hughes", "Eliot"]

poets.sort()

print(poets)

→ ["Coleridge", "Eliot", "Hughes", "Neruda"]

Can do descending order instead:
scores.sort(reverse = True)

print(scores) → [92, 75, 63]

To make a new sorted list and keep the original:
ascending = sorted(scores) # Doesn’t mutate

I scores is unchanged.
I Similar to the difference between reverse and reversed.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 18 / 21

Sorting a list
You can also sort a list with the sort method.

Defaults to ascending order.
scores = [75, 63, 92]

scores.sort()

print(scores) → [63, 75, 92]

On strings, that means alphabetic order:
poets = ["Coleridge", "Neruda", "Hughes", "Eliot"]

poets.sort()

print(poets)

→ ["Coleridge", "Eliot", "Hughes", "Neruda"]

Can do descending order instead:
scores.sort(reverse = True)

print(scores) → [92, 75, 63]

To make a new sorted list and keep the original:
ascending = sorted(scores) # Doesn’t mutate

I scores is unchanged.
I Similar to the difference between reverse and reversed.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 18 / 21

Sorting a list
You can also sort a list with the sort method.

Defaults to ascending order.
scores = [75, 63, 92]

scores.sort()

print(scores) → [63, 75, 92]

On strings, that means alphabetic order:
poets = ["Coleridge", "Neruda", "Hughes", "Eliot"]

poets.sort()

print(poets)

→ ["Coleridge", "Eliot", "Hughes", "Neruda"]

Can do descending order instead:
scores.sort(reverse = True)

print(scores) → [92, 75, 63]

To make a new sorted list and keep the original:
ascending = sorted(scores) # Doesn’t mutate

I scores is unchanged.
I Similar to the difference between reverse and reversed.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 18 / 21

Sorting a list
You can also sort a list with the sort method.

Defaults to ascending order.
scores = [75, 63, 92]

scores.sort()

print(scores) → [63, 75, 92]

On strings, that means alphabetic order:
poets = ["Coleridge", "Neruda", "Hughes", "Eliot"]

poets.sort()

print(poets)

→ ["Coleridge", "Eliot", "Hughes", "Neruda"]

Can do descending order instead:
scores.sort(reverse = True)

print(scores) → [92, 75, 63]

To make a new sorted list and keep the original:
ascending = sorted(scores) # Doesn’t mutate

I scores is unchanged.
I Similar to the difference between reverse and reversed.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 18 / 21

Sorting a list
You can also sort a list with the sort method.

Defaults to ascending order.
scores = [75, 63, 92]

scores.sort()

print(scores) → [63, 75, 92]

On strings, that means alphabetic order:
poets = ["Coleridge", "Neruda", "Hughes", "Eliot"]

poets.sort()

print(poets)

→ ["Coleridge", "Eliot", "Hughes", "Neruda"]

Can do descending order instead:
scores.sort(reverse = True)

print(scores) → [92, 75, 63]

To make a new sorted list and keep the original:
ascending = sorted(scores) # Doesn’t mutate

I scores is unchanged.
I Similar to the difference between reverse and reversed.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 18 / 21

Sorting a list
You can also sort a list with the sort method.

Defaults to ascending order.
scores = [75, 63, 92]

scores.sort()

print(scores) → [63, 75, 92]

On strings, that means alphabetic order:
poets = ["Coleridge", "Neruda", "Hughes", "Eliot"]

poets.sort()

print(poets)

→ ["Coleridge", "Eliot", "Hughes", "Neruda"]

Can do descending order instead:
scores.sort(reverse = True)

print(scores) → [92, 75, 63]

To make a new sorted list and keep the original:
ascending = sorted(scores) # Doesn’t mutate

I scores is unchanged.
I Similar to the difference between reverse and reversed.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 18 / 21

Sorting a list
You can also sort a list with the sort method.

Defaults to ascending order.
scores = [75, 63, 92]

scores.sort()

print(scores) → [63, 75, 92]

On strings, that means alphabetic order:
poets = ["Coleridge", "Neruda", "Hughes", "Eliot"]

poets.sort()

print(poets)

→ ["Coleridge", "Eliot", "Hughes", "Neruda"]

Can do descending order instead:
scores.sort(reverse = True)

print(scores) → [92, 75, 63]

To make a new sorted list and keep the original:
ascending = sorted(scores) # Doesn’t mutate

I scores is unchanged.
I Similar to the difference between reverse and reversed.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 18 / 21

Lists and assignments

The slots in a Python list work like variables.

They refer to (point to) objects:
I A list is like a box of fingers

(eww)

They can be assigned to, making them refer to new values.
colors[0] = "purple"

I This is mutation! Doesn’t work with strings!
I A function that takes a list parameter can change the list this way.
I . . . mutating the original list argument.
I When you get the box, you get all the fingers inside it.

F But not the finger that points at the box.
F Assigning to the whole list won’t change the original.

Can’t assign into a slot that doesn’t exist!
I It is an error if the index is ≥ the length.
I Need append instead.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 19 / 21

Lists and assignments

The slots in a Python list work like variables.

They refer to (point to) objects:
I A list is like a box of fingers (eww)

They can be assigned to, making them refer to new values.
colors[0] = "purple"

I This is mutation! Doesn’t work with strings!
I A function that takes a list parameter can change the list this way.
I . . . mutating the original list argument.
I When you get the box, you get all the fingers inside it.

F But not the finger that points at the box.
F Assigning to the whole list won’t change the original.

Can’t assign into a slot that doesn’t exist!
I It is an error if the index is ≥ the length.
I Need append instead.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 19 / 21

Lists and assignments

The slots in a Python list work like variables.

They refer to (point to) objects:
I A list is like a box of fingers (eww)

They can be assigned to, making them refer to new values.
colors[0] = "purple"

I This is mutation! Doesn’t work with strings!
I A function that takes a list parameter can change the list this way.
I . . . mutating the original list argument.
I When you get the box, you get all the fingers inside it.

F But not the finger that points at the box.
F Assigning to the whole list won’t change the original.

Can’t assign into a slot that doesn’t exist!
I It is an error if the index is ≥ the length.
I Need append instead.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 19 / 21

Lists and assignments

The slots in a Python list work like variables.

They refer to (point to) objects:
I A list is like a box of fingers (eww)

They can be assigned to, making them refer to new values.
colors[0] = "purple"

I This is mutation! Doesn’t work with strings!

I A function that takes a list parameter can change the list this way.
I . . . mutating the original list argument.
I When you get the box, you get all the fingers inside it.

F But not the finger that points at the box.
F Assigning to the whole list won’t change the original.

Can’t assign into a slot that doesn’t exist!
I It is an error if the index is ≥ the length.
I Need append instead.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 19 / 21

Lists and assignments

The slots in a Python list work like variables.

They refer to (point to) objects:
I A list is like a box of fingers (eww)

They can be assigned to, making them refer to new values.
colors[0] = "purple"

I This is mutation! Doesn’t work with strings!
I A function that takes a list parameter can change the list this way.
I . . . mutating the original list argument.

I When you get the box, you get all the fingers inside it.
F But not the finger that points at the box.
F Assigning to the whole list won’t change the original.

Can’t assign into a slot that doesn’t exist!
I It is an error if the index is ≥ the length.
I Need append instead.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 19 / 21

Lists and assignments

The slots in a Python list work like variables.

They refer to (point to) objects:
I A list is like a box of fingers (eww)

They can be assigned to, making them refer to new values.
colors[0] = "purple"

I This is mutation! Doesn’t work with strings!
I A function that takes a list parameter can change the list this way.
I . . . mutating the original list argument.
I When you get the box, you get all the fingers inside it.

F But not the finger that points at the box.
F Assigning to the whole list won’t change the original.

Can’t assign into a slot that doesn’t exist!
I It is an error if the index is ≥ the length.
I Need append instead.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 19 / 21

Lists and assignments

The slots in a Python list work like variables.

They refer to (point to) objects:
I A list is like a box of fingers (eww)

They can be assigned to, making them refer to new values.
colors[0] = "purple"

I This is mutation! Doesn’t work with strings!
I A function that takes a list parameter can change the list this way.
I . . . mutating the original list argument.
I When you get the box, you get all the fingers inside it.

F But not the finger that points at the box.
F Assigning to the whole list won’t change the original.

Can’t assign into a slot that doesn’t exist!
I It is an error if the index is ≥ the length.
I Need append instead.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 19 / 21

Lists and assignments

The slots in a Python list work like variables.

They refer to (point to) objects:
I A list is like a box of fingers (eww)

They can be assigned to, making them refer to new values.
colors[0] = "purple"

I This is mutation! Doesn’t work with strings!
I A function that takes a list parameter can change the list this way.
I . . . mutating the original list argument.
I When you get the box, you get all the fingers inside it.

F But not the finger that points at the box.
F Assigning to the whole list won’t change the original.

Can’t assign into a slot that doesn’t exist!
I It is an error if the index is ≥ the length.
I Need append instead.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 19 / 21

Lists and assignments

The slots in a Python list work like variables.

They refer to (point to) objects:
I A list is like a box of fingers (eww)

They can be assigned to, making them refer to new values.
colors[0] = "purple"

I This is mutation! Doesn’t work with strings!
I A function that takes a list parameter can change the list this way.
I . . . mutating the original list argument.
I When you get the box, you get all the fingers inside it.

F But not the finger that points at the box.
F Assigning to the whole list won’t change the original.

Can’t assign into a slot that doesn’t exist!
I It is an error if the index is ≥ the length.
I Need append instead.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 19 / 21

Lists, mutability, aliasing
Remember aliasing from when we looked at the graphics package.

Aliasing happens with all mutable objects.

It is possible to have two variables referring to the very same list.
I Arguments and parameters, for example.
I Or by assignment.

If so, mutations to one variable will be reflected in the alias.
testscores = [84, 100, 78]

myscores = testscores

myscores.append(96)

print(testscores) → [84, 100, 78, 96]

Often you want the two variables to be independent.
I You need to “break the alias”

F That was the purpose of the graphics shape clone method.
I There are two ways to clone a list:

F Use a whole-list slice: newcopy = orig[:]
F Or the built-in copy method: newcopy = orig.copy()
F Now copy and orig point to two different lists. . .
F . . . but those lists hold the same values.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 20 / 21

Lists, mutability, aliasing
Remember aliasing from when we looked at the graphics package.

Aliasing happens with all mutable objects.

It is possible to have two variables referring to the very same list.
I Arguments and parameters, for example.
I Or by assignment.

If so, mutations to one variable will be reflected in the alias.
testscores = [84, 100, 78]

myscores = testscores

myscores.append(96)

print(testscores) → [84, 100, 78, 96]

Often you want the two variables to be independent.
I You need to “break the alias”

F That was the purpose of the graphics shape clone method.
I There are two ways to clone a list:

F Use a whole-list slice: newcopy = orig[:]
F Or the built-in copy method: newcopy = orig.copy()
F Now copy and orig point to two different lists. . .
F . . . but those lists hold the same values.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 20 / 21

Lists, mutability, aliasing
Remember aliasing from when we looked at the graphics package.

Aliasing happens with all mutable objects.

It is possible to have two variables referring to the very same list.
I Arguments and parameters, for example.
I Or by assignment.

If so, mutations to one variable will be reflected in the alias.
testscores = [84, 100, 78]

myscores = testscores

myscores.append(96)

print(testscores) → [84, 100, 78, 96]

Often you want the two variables to be independent.
I You need to “break the alias”

F That was the purpose of the graphics shape clone method.
I There are two ways to clone a list:

F Use a whole-list slice: newcopy = orig[:]
F Or the built-in copy method: newcopy = orig.copy()
F Now copy and orig point to two different lists. . .
F . . . but those lists hold the same values.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 20 / 21

Lists, mutability, aliasing
Remember aliasing from when we looked at the graphics package.

Aliasing happens with all mutable objects.

It is possible to have two variables referring to the very same list.
I Arguments and parameters, for example.
I Or by assignment.

If so, mutations to one variable will be reflected in the alias.
testscores = [84, 100, 78]

myscores = testscores

myscores.append(96)

print(testscores) → [84, 100, 78, 96]

Often you want the two variables to be independent.
I You need to “break the alias”

F That was the purpose of the graphics shape clone method.

I There are two ways to clone a list:
F Use a whole-list slice: newcopy = orig[:]
F Or the built-in copy method: newcopy = orig.copy()
F Now copy and orig point to two different lists. . .
F . . . but those lists hold the same values.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 20 / 21

Lists, mutability, aliasing
Remember aliasing from when we looked at the graphics package.

Aliasing happens with all mutable objects.

It is possible to have two variables referring to the very same list.
I Arguments and parameters, for example.
I Or by assignment.

If so, mutations to one variable will be reflected in the alias.
testscores = [84, 100, 78]

myscores = testscores

myscores.append(96)

print(testscores) → [84, 100, 78, 96]

Often you want the two variables to be independent.
I You need to “break the alias”

F That was the purpose of the graphics shape clone method.
I There are two ways to clone a list:

F Use a whole-list slice: newcopy = orig[:]
F Or the built-in copy method: newcopy = orig.copy()

F Now copy and orig point to two different lists. . .
F . . . but those lists hold the same values.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 20 / 21

Lists, mutability, aliasing
Remember aliasing from when we looked at the graphics package.

Aliasing happens with all mutable objects.

It is possible to have two variables referring to the very same list.
I Arguments and parameters, for example.
I Or by assignment.

If so, mutations to one variable will be reflected in the alias.
testscores = [84, 100, 78]

myscores = testscores

myscores.append(96)

print(testscores) → [84, 100, 78, 96]

Often you want the two variables to be independent.
I You need to “break the alias”

F That was the purpose of the graphics shape clone method.
I There are two ways to clone a list:

F Use a whole-list slice: newcopy = orig[:]
F Or the built-in copy method: newcopy = orig.copy()
F Now copy and orig point to two different lists. . .
F . . . but those lists hold the same values.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 20 / 21

Lists, mutability, aliasing
Remember aliasing from when we looked at the graphics package.

Aliasing happens with all mutable objects.

It is possible to have two variables referring to the very same list.
I Arguments and parameters, for example.
I Or by assignment.

If so, mutations to one variable will be reflected in the alias.
testscores = [84, 100, 78]

myscores = testscores

myscores.append(96)

print(testscores) → [84, 100, 78, 96]

Often you want the two variables to be independent.
I You need to “break the alias”

F That was the purpose of the graphics shape clone method.
I There are two ways to clone a list:

F Use a whole-list slice: newcopy = orig[:]
F Or the built-in copy method: newcopy = orig.copy()
F Now copy and orig point to two different lists. . .
F . . . but those lists hold the same values.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 20 / 21

How to create a list

We’ve seen several different ways we can make a list:

Hard-code it: lst = [1, 2, 3]

Start out empty and append:
lst = []

lst.append(1)
lst.append(2)

I Useful as an accumulator.

Start out empty and concatenate:
lst = []

lst += [1]

lst += [2]

Split a string: lst = "one two three".split()

Replication: lst = [0] * 100
I Makes a list with 100 copies of 0.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 21 / 21

How to create a list

We’ve seen several different ways we can make a list:

Hard-code it: lst = [1, 2, 3]

Start out empty and append:
lst = []

lst.append(1)
lst.append(2)

I Useful as an accumulator.

Start out empty and concatenate:
lst = []

lst += [1]

lst += [2]

Split a string: lst = "one two three".split()

Replication: lst = [0] * 100
I Makes a list with 100 copies of 0.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 21 / 21

How to create a list

We’ve seen several different ways we can make a list:

Hard-code it: lst = [1, 2, 3]

Start out empty and append:
lst = []

lst.append(1)
lst.append(2)

I Useful as an accumulator.

Start out empty and concatenate:
lst = []

lst += [1]

lst += [2]

Split a string: lst = "one two three".split()

Replication: lst = [0] * 100
I Makes a list with 100 copies of 0.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 21 / 21

How to create a list

We’ve seen several different ways we can make a list:

Hard-code it: lst = [1, 2, 3]

Start out empty and append:
lst = []

lst.append(1)
lst.append(2)

I Useful as an accumulator.

Start out empty and concatenate:
lst = []

lst += [1]

lst += [2]

Split a string: lst = "one two three".split()

Replication: lst = [0] * 100
I Makes a list with 100 copies of 0.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 21 / 21

How to create a list

We’ve seen several different ways we can make a list:

Hard-code it: lst = [1, 2, 3]

Start out empty and append:
lst = []

lst.append(1)
lst.append(2)

I Useful as an accumulator.

Start out empty and concatenate:
lst = []

lst += [1]

lst += [2]

Split a string: lst = "one two three".split()

Replication: lst = [0] * 100
I Makes a list with 100 copies of 0.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 21 / 21

How to create a list

We’ve seen several different ways we can make a list:

Hard-code it: lst = [1, 2, 3]

Start out empty and append:
lst = []

lst.append(1)
lst.append(2)

I Useful as an accumulator.

Start out empty and concatenate:
lst = []

lst += [1]

lst += [2]

Split a string: lst = "one two three".split()

Replication: lst = [0] * 100
I Makes a list with 100 copies of 0.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 21 / 21

How to create a list

We’ve seen several different ways we can make a list:

Hard-code it: lst = [1, 2, 3]

Start out empty and append:
lst = []

lst.append(1)
lst.append(2)

I Useful as an accumulator.

Start out empty and concatenate:
lst = []

lst += [1]

lst += [2]

Split a string: lst = "one two three".split()

Replication: lst = [0] * 100
I Makes a list with 100 copies of 0.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 21 / 21

