CS 115 Lecture 15

Lists part 1

Neil Moore

Department of Computer Science
University of Kentucky
Lexington, Kentucky 40506
neil@cs.uky.edu

5 November 2015

Lists

In Python a string is a sequence of characters, but there are other kinds of
sequences, too. The most important is the list.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 2/21

Lists

In Python a string is a sequence of characters, but there are other kinds of
sequences, too. The most important is the list.

@ A list is, like a string, a sequence of things.
@ But unlike a string, the things can be any type:

» List of numbers: [7, 1, 3]
» List of strings: ["hello", "world"]
» Even lists of lists.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 2/21

Lists

In Python a string is a sequence of characters, but there are other kinds of
sequences, too. The most important is the list.

@ A list is, like a string, a sequence of things.
@ But unlike a string, the things can be any type:

» List of numbers: [7, 1, 3]
» List of strings: ["hello", "world"]
» Even lists of lists.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 2/21

List syntax

@ To write a literal list in your program, use square brackets:
poets = ["Coleridge", "Neruda", "Hughes"]

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 3/21

List syntax

@ To write a literal list in your program, use square brackets:
poets = ["Coleridge", "Neruda", "Hughes"]
@ The things in a list are called its elements.

» This list has three elements, each a string.
> lts length is 3 (the number of elements).

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015

3/21

List syntax

@ To write a literal list in your program, use square brackets:
poets = ["Coleridge", "Neruda", "Hughes"]
@ The things in a list are called its elements.

» This list has three elements, each a string.

> lts length is 3 (the number of elements).

» Use len to get the length:
print(len(poets)) # 3

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015

3/21

List syntax

@ To write a literal list in your program, use square brackets:
poets = ["Coleridge", "Neruda", "Hughes"]
@ The things in a list are called its elements.

» This list has three elements, each a string.

> Its length is 3 (the number of elements).

» Use len to get the length:
print(len(poets)) # 3

@ Elements are numbered starting from zero.

» As with strings, we call this the index or position of the element.

» The last element has index length - 1.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015

3/21

List syntax

@ To write a literal list in your program, use square brackets:

poets = ["Coleridge", "Neruda", "Hughes"]

@ The things in a list are called its elements.
» This list has three elements, each a string.
> Its length is 3 (the number of elements).
» Use len to get the length:
print(len(poets)) # 3
@ Elements are numbered starting from zero.
» As with strings, we call this the index or position of the element.

» The last element has index length - 1.

@ Lists can be concatenated with +:

print([3, 1, 4] + [1, 5, 91)
— [3,1, 4, 1, 5, 9]

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015

3/21

List syntax

@ To write a literal list in your program, use square brackets:

poets = ["Coleridge", "Neruda", "Hughes"]

@ The things in a list are called its elements.
» This list has three elements, each a string.
> Its length is 3 (the number of elements).
» Use len to get the length:
print(len(poets)) # 3
@ Elements are numbered starting from zero.
» As with strings, we call this the index or position of the element.

» The last element has index length - 1.

@ Lists can be concatenated with +:
print([3, 1, 4] + [1, 5, 91)
— [3, 1, 4, 1,5, 91
» But only with other lists!

[3, 1, 4] + 1 — TypeError

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015

3/21

List syntax

@ To write a literal list in your program, use square brackets:

poets = ["Coleridge", "Neruda", "Hughes"]

@ The things in a list are called its elements.
» This list has three elements, each a string.
> Its length is 3 (the number of elements).
» Use len to get the length:
print(len(poets)) # 3
@ Elements are numbered starting from zero.
» As with strings, we call this the index or position of the element.

» The last element has index length - 1.

@ Lists can be concatenated with +:
print([3, 1, 4] + [1, 5, 91)
— [3, 1, 4, 1,5, 91
» But only with other lists!

[3, 1, 4] + 1 — TypeError

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015

3/21

Accessing elements of a list

You can get elements of a list using the subscript syntax:

scores = [75.0, 68.5, 83.0]
third = scores[2] # 83.0

Neil Moore (UK CS) CS 115 Lecture 15

Fall 2015

4/21

Accessing elements of a list

You can get elements of a list using the subscript syntax:
scores = [75.0, 68.5, 83.0]
third = scores[2] # 83.0

@ Negative indices count from the end:
last = scores[-1] # 83.0

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015

4/21

Accessing elements of a list

You can get elements of a list using the subscript syntax:
scores = [75.0, 68.5, 83.0]
third = scores[2] # 83.0
@ Negative indices count from the end:
last = scores[-1] # 83.0
@ Notice the difference with strings:

» Subscripting a string gives you another (one-character) string.
» Subscripting a list gives you the element. ..

* . ..which could have any type.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015

4/21

Accessing elements of a list

You can get elements of a list using the subscript syntax:

scores = [75.0, 68.5, 83.0]
third = scores[2] # 83.0

@ Negative indices count from the end:
last = scores[-1] # 83.0

@ Notice the difference with strings:

» Subscripting a string gives you another (one-character) string.
» Subscripting a list gives you the element. ..

* . ..which could have any type.

@ Lists also support slicing. Slicing a list gives another list:
exams = scores[1:3] # [68.5, 83.0]

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015

4/21

Accessing elements of a list

You can get elements of a list using the subscript syntax:

scores = [75.0, 68.5, 83.0]
third = scores[2] # 83.0

Negative indices count from the end:
last = scores[-1] # 83.0
Notice the difference with strings:

» Subscripting a string gives you another (one-character) string.
» Subscripting a list gives you the element. ..

* . ..which could have any type.
@ Lists also support slicing. Slicing a list gives another list:
exams = scores[1:3] # [68.5, 83.0]
o Again:
» Subscripting gives a single element.
» Slicing gives a list of elements.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 4 /21

Accessing elements of a list

You can get elements of a list using the subscript syntax:

scores = [75.0, 68.5, 83.0]
third = scores[2] # 83.0

Negative indices count from the end:
last = scores[-1] # 83.0
Notice the difference with strings:

» Subscripting a string gives you another (one-character) string.
» Subscripting a list gives you the element. ..

* . ..which could have any type.
@ Lists also support slicing. Slicing a list gives another list:
exams = scores[1:3] # [68.5, 83.0]
o Again:
» Subscripting gives a single element.
» Slicing gives a list of elements.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 4 /21

Searching in lists

There are two ways to search for an element in a list:

@ You can use in to check whether it's there:
if "Eliot" in poets:

Neil Moore (UK CS) CS 115 Lecture 15

Fall 2015

5/21

Searching in lists

There are two ways to search for an element in a list:
@ You can use in to check whether it's there:
if "Eliot" in poets:
@ Check for that exact element; doesn't look “inside” the elements:
if "ridge" in poets: #False!

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 5/21

Searching in lists

There are two ways to search for an element in a list:
@ You can use in to check whether it's there:
if "Eliot" in poets:
@ Check for that exact element; doesn't look “inside” the elements:
if "ridge" in poets: #False!

@ To find an element’s position in the list, use the index method.
rank = poets.index("Coleridge") # 0

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 5/21

Searching in lists

There are two ways to search for an element in a list:
@ You can use in to check whether it's there:
if "Eliot" in poets:
@ Check for that exact element; doesn't look “inside” the elements:
if "ridge" in poets: #False!
@ To find an element’s position in the list, use the index method.
rank = poets.index("Coleridge") # 0

> It works mostly like the string £ind method.
» Can give another argument to specify where to start.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 5/21

Searching in lists

There are two ways to search for an element in a list:

@ You can use in to check whether it's there:
if "Eliot" in poets:

@ Check for that exact element; doesn't look “inside” the elements:

if "ridge" in poets: #False!

@ To find an element’s position in the list, use the index method.

rank = poets.index("Coleridge") # 0
> It works mostly like the string £ind method.

» Can give another argument to specify where to start.

» One important difference: if it was not found:

* mystring.find(...) returns -1
* mylist.index(...) gives a run-time error!

Neil Moore (UK CS) CS 115 Lecture 15

Fall 2015

5/21

Searching in lists

There are two ways to search for an element in a list:
@ You can use in to check whether it's there:
if "Eliot" in poets:
@ Check for that exact element; doesn't look “inside” the elements:
if "ridge" in poets: #False!

@ To find an element’s position in the list, use the index method.
rank = poets.index("Coleridge") # 0

> It works mostly like the string £ind method.
» Can give another argument to specify where to start.
» One important difference: if it was not found:
* mystring.find(...) returns -1
* mylist.index(...) gives a run-time error!
* To be safe you can use in first:
pos = -1
if thing in list:
pos = list.index(thing)

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 5/21

Traversing lists

You can traverse a list with a for loop:
scores = [85, 72, 56, 98, 84, 72 1]
sum = O
for grade in scores:

sum += grade

@ This works the same as with a string.

@ In each iteration the loop variable will be one element of the list.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 6 /21

Traversing lists

You can traverse a list with a for loop:
scores = [85, 72, 56, 98, 84, 72 1]
sum = O
for grade in scores:

sum += grade

@ This works the same as with a string.

@ In each iteration the loop variable will be one element of the list.
@ To get both indices and elements, you can use the same techniques as
with strings:
» Use a counter to track the index.

» Use a range loop with subscripting.
> Use enumerate(mylist).

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 6 /21

Traversing lists

You can traverse a list with a for loop:
scores = [85, 72, 56, 98, 84, 72 1]
sum = O
for grade in scores:

sum += grade

@ This works the same as with a string.

@ In each iteration the loop variable will be one element of the list.
@ To get both indices and elements, you can use the same techniques as
with strings:
» Use a counter to track the index.

» Use a range loop with subscripting.
> Use enumerate(mylist).

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 6 /21

Strings versus lists

You've probably noticed a lot of similarities between lists and strings.
@ Sometimes the very same code works with both!

» len, subscripts, and slicing.
» Traversal.
» Concatenation.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 7/21

Strings versus lists

You've probably noticed a lot of similarities between lists and strings.
@ Sometimes the very same code works with both!
» len, subscripts, and slicing.
» Traversal.
» Concatenation.
@ But there are also many differences:
» Each element of a string is a character.
* In Python, characters are strings (of length 1).
» But the elements of a list can be anything.
* And are usually not lists.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 7/21

Strings versus lists

You've probably noticed a lot of similarities between lists and strings.
@ Sometimes the very same code works with both!
» len, subscripts, and slicing.
> Traversal.
» Concatenation.
@ But there are also many differences:
» Each element of a string is a character.
* In Python, characters are strings (of length 1).
» But the elements of a list can be anything.
* And are usually not lists.
» With strings, in searches for a substring.
» With lists, in searches for single elements only!

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015

7/21

Strings versus lists

You've probably noticed a lot of similarities between lists and strings.
@ Sometimes the very same code works with both!
» len, subscripts, and slicing.
» Traversal.
» Concatenation.
@ But there are also many differences:
» Each element of a string is a character.
* In Python, characters are strings (of length 1).

» But the elements of a list can be anything.
* And are usually not lists.
» With strings, in searches for a substring.
» With lists, in searches for single elements only!
» Strings use find to locate a substring (-1 if not found)
» Lists use index to locate an element (error if not found)

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015

7/21

Strings versus lists

You've probably noticed a lot of similarities between lists and strings.
@ Sometimes the very same code works with both!
» len, subscripts, and slicing.
» Traversal.
» Concatenation.
@ But there are also many differences:
» Each element of a string is a character.
* In Python, characters are strings (of length 1).

» But the elements of a list can be anything.
* And are usually not lists.
» With strings, in searches for a substring.
» With lists, in searches for single elements only!
» Strings use find to locate a substring (-1 if not found)
» Lists use index to locate an element (error if not found)

@ Another big difference: lists are mutable.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015

7/21

Strings versus lists

You've probably noticed a lot of similarities between lists and strings.
@ Sometimes the very same code works with both!
» len, subscripts, and slicing.
» Traversal.
» Concatenation.
@ But there are also many differences:
» Each element of a string is a character.
* In Python, characters are strings (of length 1).

» But the elements of a list can be anything.
* And are usually not lists.
» With strings, in searches for a substring.
» With lists, in searches for single elements only!
» Strings use find to locate a substring (-1 if not found)
» Lists use index to locate an element (error if not found)

@ Another big difference: lists are mutable.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015

7/21

Immutability

@ Strings, ints, and floats are immutable.

Neil Moore (UK CS) CS 115 Lecture 15

Immutability

@ Strings, ints, and floats are immutable.
@ Which means: these objects doesn’'t change once they are created.
» You can't change the number 4.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 8/21

Immutability

@ Strings, ints, and floats are immutable.
@ Which means: these objects doesn’'t change once they are created.

» You can't change the number 4.
> Instead, operations on these types create and return new objects.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 8/21

Immutability

@ Strings, ints, and floats are immutable.
@ Which means: these objects doesn’'t change once they are created.

» You can't change the number 4.
> Instead, operations on these types create and return new objects.
> ...which you may then assign back into the same variable

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 8/21

Immutability

@ Strings, ints, and floats are immutable.
@ Which means: these objects doesn’'t change once they are created.

» You can't change the number 4.
> Instead, operations on these types create and return new objects.
> ...which you may then assign back into the same variable

@ Ordinary assignment doesn't change the object!
» It changes a variable to point at a different object.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 8/21

Immutability

@ Strings, ints, and floats are immutable.
@ Which means: these objects doesn’'t change once they are created.

» You can't change the number 4.
> Instead, operations on these types create and return new objects.
> ...which you may then assign back into the same variable

@ Ordinary assignment doesn't change the object!

» It changes a variable to point at a different object.
> More on this later. ..

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 8/21

Immutability

@ Strings, ints, and floats are immutable.
@ Which means: these objects doesn’'t change once they are created.

» You can't change the number 4.
> Instead, operations on these types create and return new objects.
> ...which you may then assign back into the same variable

@ Ordinary assignment doesn't change the object!

» It changes a variable to point at a different object.
> More on this later. ..

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 8/21

Mutability

Some kinds of objects can be changed after they are created.

Neil Moore (UK CS) CS 115 Lecture 15

Mutability

Some kinds of objects can be changed after they are created.
@ Remember graphics shapes.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 9/21

Mutability

Some kinds of objects can be changed after they are created.

@ Remember graphics shapes. You can:
» Draw and undraw them.
» Change the fill and outline colors.
» Move them around.
> Set the text (Text and Entry only).

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 9/21

Mutability

Some kinds of objects can be changed after they are created.
@ Remember graphics shapes. You can:

» Draw and undraw them.

» Change the fill and outline colors.

» Move them around.

> Set the text (Text and Entry only).

@ How does this differ from assignment?

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 9/21

Mutability

Some kinds of objects can be changed after they are created.
@ Remember graphics shapes. You can:

» Draw and undraw them.

» Change the fill and outline colors.

» Move them around.

> Set the text (Text and Entry only).

@ How does this differ from assignment?

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 9/21

The meaning of assignment

@ A variable in Python is like a finger pointing at an object.

@ Assigning to the variable makes the finger point somewhere else.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 10 / 21

The meaning of assignment

@ A variable in Python is like a finger pointing at an object.

@ Assigning to the variable makes the finger point somewhere else.
@ The variable itself stays in the same location in memory.
> Same finger!

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 10 / 21

The meaning of assignment

A variable in Python is like a finger pointing at an object.

The variable itself stays in the same location in memory.
> Same finger!

@ ...but now points at (“refers to") a different value.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015

Assigning to the variable makes the finger point somewhere else.

10 /21

The meaning of assignment

A variable in Python is like a finger pointing at an object.

The variable itself stays in the same location in memory.
> Same finger!

@ ...but now points at (“refers to") a different value.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015

Assigning to the variable makes the finger point somewhere else.

10 /21

Mutability and functions

@ Function parameters are separate variables from the arguments.
» So assigning to the parameter doesn’t change the argument.

def

def

squareplus (x) :

X = x ** 2 # changes x, not num

return x + 1

main():

num = 5

spl = squareplus(num)

print("sq+ of", num, "is", spl) # num is still 5

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015

11 /21

Mutability and functions

@ Function parameters are separate variables from the arguments.
» So assigning to the parameter doesn’t change the argument.

def

def

squareplus (x) :

X = x ** 2 # changes x, not num

return x + 1

main():

num = 5

spl = squareplus(num)

print("sq+ of", num, "is", spl) # num is still 5

» The function gets what the finger points at, not the finger itself.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015

11 /21

Mutability and functions

@ Function parameters are separate variables from the arguments.
» So assigning to the parameter doesn’t change the argument.

def

def

squareplus (x) :

X = x ** 2 # changes x, not num

return x + 1

main():

num = 5

spl = squareplus(num)

print("sq+ of", num, "is", spl) # num is still 5

» The function gets what the finger points at, not the finger itself.
@ However, they refer to the values of the arguments.
» The parameter is another “finger” pointing at the same object.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015

11 /21

Mutability and functions

@ Function parameters are separate variables from the arguments.
» So assigning to the parameter doesn't change the argument.
def squareplus(x):
X = x ** 2 # changes x, not num
return x + 1
def main():
num = 5
spl = squareplus(num)
print("sq+ of", num, "is", spl) # num is still 5
» The function gets what the finger points at, not the finger itself.
@ However, they refer to the values of the arguments.
» The parameter is another “finger” pointing at the same object.
» And if that object is mutable, the function can mutate it:
def addseven(lst):
1st.append(7) # mutates the list
def main():
scores = [5, 9, 6]
addseven(scores)
print(scores) # [5, 9, 6, 7]

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015

11 /21

Mutability and functions

o Call by reference: functions can modify their arguments.
> In Python, only by mutation, not assignment!

* Assignment changes a variable (re-point the finger)
* Mutation changes an object (the thing pointed to)

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 12 /21

Mutability and functions

o Call by reference: functions can modify their arguments.
> In Python, only by mutation, not assignment!

* Assignment changes a variable (re-point the finger)
* Mutation changes an object (the thing pointed to)

o Side effects: things that are changed by the function.
» Printing output, creating a file, etc.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 12 /21

Mutability and functions

o Call by reference: functions can modify their arguments.
> In Python, only by mutation, not assignment!

* Assignment changes a variable (re-point the finger)
* Mutation changes an object (the thing pointed to)

o Side effects: things that are changed by the function.

» Printing output, creating a file, etc.
» Mutating parameters.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 12 /21

Mutability and functions

o Call by reference: functions can modify their arguments.
» In Python, only by mutation, not assignment!

* Assignment changes a variable (re-point the finger)
* Mutation changes an object (the thing pointed to)

o Side effects: things that are changed by the function.
» Printing output, creating a file, etc.
» Mutating parameters.
» Postconditions describe the return value and side effects.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 12 /21

List mutability

Lists are mutable: they can be changed in several ways:

@ Appending or inserting a new element.
@ Removing an element.

@ Sorting and reversing.
o

Changing the values of existing elements.

Neil Moore (UK CS) CS 115 Lecture 15

Fall 2015

13 /21

List mutability

Lists are mutable: they can be changed in several ways:

@ Appending or inserting a new element.
@ Removing an element.

@ Sorting and reversing.
o

Changing the values of existing elements.

Neil Moore (UK CS) CS 115 Lecture 15

Fall 2015

13 /21

Inserting into a list

@ The append method adds a new element to the end of a list:
poets.append("Angelou")

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 14 /21

Inserting into a list

@ The append method adds a new element to the end of a list:
poets.append("Angelou")
» Mutates the list.
> Increases the length by one.
» Does not return a value!

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 14 /21

Inserting into a list

@ The append method adds a new element to the end of a list:
poets.append("Angelou")
» Mutates the list.
> Increases the length by one.
> Does not return a value!

@ To add a whole list to the end, use the extend method:
scores.extend([55, 88, 79])

» This example increases the length by 3.
» Also returns nothing.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 14 /21

Inserting into a list

@ The append method adds a new element to the end of a list:
poets.append("Angelou")
» Mutates the list.
> Increases the length by one.
> Does not return a value!

@ To add a whole list to the end, use the extend method:
scores.extend([55, 88, 79])
» This example increases the length by 3.

» Also returns nothing.
» What would happen if you used append instead?

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 14 /21

Inserting into a list

@ The append method adds a new element to the end of a list:
poets.append("Angelou")
» Mutates the list.
> Increases the length by one.
> Does not return a value!

@ To add a whole list to the end, use the extend method:
scores.extend([55, 88, 79])
» This example increases the length by 3.
» Also returns nothing.
» What would happen if you used append instead?

* That would add the list as a single element!
* Not usually what you want.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 14 /21

Inserting into a list

@ The append method adds a new element to the end of a list:
poets.append("Angelou")
» Mutates the list.
> Increases the length by one.
> Does not return a value!

@ To add a whole list to the end, use the extend method:
scores.extend([55, 88, 79])
» This example increases the length by 3.

» Also returns nothing.
» What would happen if you used append instead?

* That would add the list as a single element!
* Not usually what you want.

@ The insert method adds a new element in the middle.
poets.insert(2, "Homer")

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015

14 /21

Inserting into a list

@ The append method adds a new element to the end of a list:
poets.append("Angelou")
» Mutates the list.
> Increases the length by one.
> Does not return a value!

@ To add a whole list to the end, use the extend method:
scores.extend([55, 88, 79])
» This example increases the length by 3.

» Also returns nothing.
» What would happen if you used append instead?

* That would add the list as a single element!
* Not usually what you want.
@ The insert method adds a new element in the middle.
poets.insert(2, "Homer")

» The new element will be at index 2.
» The indices of the following elements shift up by one to make room.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 14 /21

Inserting into a list

@ The append method adds a new element to the end of a list:
poets.append("Angelou")
» Mutates the list.
> Increases the length by one.
> Does not return a value!

@ To add a whole list to the end, use the extend method:
scores.extend([55, 88, 79])
» This example increases the length by 3.

» Also returns nothing.
» What would happen if you used append instead?

* That would add the list as a single element!
* Not usually what you want.
@ The insert method adds a new element in the middle.
poets.insert(2, "Homer")

» The new element will be at index 2.
» The indices of the following elements shift up by one to make room.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 14 /21

Mutation versus making new objects

o Notice that append, extend, and insert return nothing!

» Most mutating functions in Python work this way.
» (With a few exceptions we'll point out).

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 15 /21

Mutation versus making new objects

o Notice that append, extend, and insert return nothing!
» Most mutating functions in Python work this way.
» (With a few exceptions we'll point out).
» So don't do this:
colors = colors.append("yellow") # ERROR: colors = None

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 15 /21

Mutation versus making new objects

o Notice that append, extend, and insert return nothing!
» Most mutating functions in Python work this way.
» (With a few exceptions we'll point out).
» So don't do this:
colors = colors.append("yellow") # ERROR: colors = None
> Instead:
colors.append("yellow") # GOOD: mutates colors

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 15 /21

Mutation versus making new objects

o Notice that append, extend, and insert return nothing!
» Most mutating functions in Python work this way.
» (With a few exceptions we'll point out).
» So don't do this:
colors = colors.append("yellow") # ERROR: colors = None
> Instead:
colors.append("yellow") # GOOD: mutates colors
o Conversely, concatenating with + doesn't mutate the list.
» Instead, it returns a new list.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 15 /21

Mutation versus making new objects

o Notice that append, extend, and insert return nothing!

>

>

>

Most mutating functions in Python work this way.
(With a few exceptions we'll point out).
So don’t do this:

colors = colors.append("yellow") # ERROR: colors = None

Instead:
colors.append("yellow") # GOOD: mutates colors

o Conversely, concatenating with + doesn't mutate the list.

>

>

Instead, it returns a new list.
So don't do this:
colors + primaries # ERROR: throws away new list

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015

15 / 21

Mutation versus making new objects

o Notice that append, extend, and insert return nothing!

>

>

>

Most mutating functions in Python work this way.

(With a few exceptions we'll point out).

So don’t do this:

colors = colors.append("yellow") # ERROR: colors = None
Instead:

colors.append("yellow") # GOOD: mutates colors

o Conversely, concatenating with + doesn't mutate the list.

>

>

>

Instead, it returns a new list.

So don't do this:

colors + primaries # ERROR: throws away new list
Instead:

colors = colors + primaries # OR

colors += primaries

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 15 /21

Mutation versus making new objects

o Notice that append, extend, and insert return nothing!

>

>

>

Most mutating functions in Python work this way.

(With a few exceptions we'll point out).

So don’t do this:

colors = colors.append("yellow") # ERROR: colors = None
Instead:

colors.append("yellow") # GOOD: mutates colors

o Conversely, concatenating with + doesn't mutate the list.

>

>

>

Instead, it returns a new list.

So don't do this:

colors + primaries # ERROR: throws away new list
Instead:

colors = colors + primaries # OR

colors += primaries

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 15 /21

Deleting from a list

You can delete from a list by index:
@ Syntax: del list[index]
» Removes the element at position index.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 16 / 21

Deleting from a list

You can delete from a list by index:
@ Syntax: del list[index]

» Removes the element at position index.

> Shifts down the following elements to fill in the gap:
list[index] = list[index + 1]
list[index + 1] = list[index + 2]

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015

16 / 21

Deleting from a list

You can delete from a list by index:
@ Syntax: del list[index]

» Removes the element at position index.

> Shifts down the following elements to fill in the gap:
list[index] = list[index + 1]
list[index + 1] = list[index + 2]

» Can also delete a range by using a slice:
del 1ist[2:5] # remove elements 2, 3, and 4

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015

16 / 21

Deleting from a list

You can delete from a list by index:
@ Syntax: del list[index]

» Removes the element at position index.

> Shifts down the following elements to fill in the gap:
list[index] = list[index + 1]
list[index + 1] = list[index + 2]

» Can also delete a range by using a slice:
del 1ist[2:5] # remove elements 2, 3, and 4
Or you can remove a specific value (“search-and-destroy”):

@ Syntax: colors.remove("blue")

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015

16 / 21

Deleting from a list

You can delete from a list by index:
@ Syntax: del list[index]

» Removes the element at position index.

» Shifts down the following elements to fill in the gap:
list[index] = list[index + 1]
list[index + 1] = list[index + 2]

» Can also delete a range by using a slice:
del 1ist[2:5] # remove elements 2, 3, and 4
Or you can remove a specific value (“search-and-destroy”):
@ Syntax: colors.remove("blue")

@ Searches for the first occurrence of "blue” and deletes it.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015

16 / 21

Deleting from a list

You can delete from a list by index:
@ Syntax: del list[index]

» Removes the element at position index.

» Shifts down the following elements to fill in the gap:
list[index] = list[index + 1]
list[index + 1] = list[index + 2]

» Can also delete a range by using a slice:
del 1ist[2:5] # remove elements 2, 3, and 4
Or you can remove a specific value (“search-and-destroy”):
@ Syntax: colors.remove("blue")
@ Searches for the first occurrence of "blue” and deletes it.

@ Gives a runtime error if it wasn't found!

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015

16 / 21

Deleting from a list

You can delete from a list by index:
@ Syntax: del list[index]

» Removes the element at position index.

» Shifts down the following elements to fill in the gap:
list[index] = list[index + 1]
list[index + 1] = list[index + 2]

» Can also delete a range by using a slice:
del 1ist[2:5] # remove elements 2, 3, and 4
Or you can remove a specific value (“search-and-destroy”):
Syntax: colors.remove("blue")
Searches for the first occurrence of "blue” and deletes it.

Gives a runtime error if it wasn’'t found!

How could you do this using del?

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015

16 / 21

Deleting from a list

You can delete from a list by index:
@ Syntax: del list[index]

» Removes the element at position index.

» Shifts down the following elements to fill in the gap:
list[index] = list[index + 1]
list[index + 1] = list[index + 2]

» Can also delete a range by using a slice:
del 1ist[2:5] # remove elements 2, 3, and 4
Or you can remove a specific value (“search-and-destroy”):
Syntax: colors.remove("blue")
Searches for the first occurrence of "blue” and deletes it.

Gives a runtime error if it wasn’'t found!

How could you do this using del?
pos = colors.index("blue")
del colors[pos]

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015

16 / 21

Deleting from a list

You can delete from a list by index:
@ Syntax: del list[index]

» Removes the element at position index.

» Shifts down the following elements to fill in the gap:
list[index] = list[index + 1]
list[index + 1] = list[index + 2]

» Can also delete a range by using a slice:
del 1ist[2:5] # remove elements 2, 3, and 4
Or you can remove a specific value (“search-and-destroy”):
Syntax: colors.remove("blue")
Searches for the first occurrence of "blue” and deletes it.

Gives a runtime error if it wasn’'t found!

How could you do this using del?
pos = colors.index("blue")
del colors[pos]

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015

16 / 21

Sorting and reversing

The reverse method reverses the order of a list.

Neil Moore (UK CS) CS 115 Lecture 15

Sorting and reversing

The reverse method reverses the order of a list.
mylist = ["red", "green", "blue"]
mylist.reverse()
print(mylist) — ["blue", "green", "red"]

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 17 /21

Sorting and reversing

The reverse method reverses the order of a list.
mylist = ["red", "green", "blue"]
mylist.reverse()
print (mylist) — ["blue", "green", "red"]
@ Reverse mutates the list!
» So the original order is lost.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 17 /21

Sorting and reversing

The reverse method reverses the order of a list.
mylist = ["red", "green", "blue"]
mylist.reverse()
print (mylist) — ["blue", "green", "red"]
@ Reverse mutates the list!
» So the original order is lost.
@ And doesn't return a value.

» So don't assign back into the list:
mylist = mylist.reverse() # ERROR: mylist = None

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015

17 /21

Sorting and reversing

The reverse method reverses the order of a list.
mylist = ["red", "green", "blue"]
mylist.reverse()
print(mylist) — ["blue", "green", "red"]
@ Reverse mutates the list!
» So the original order is lost.
@ And doesn't return a value.

» So don't assign back into the list:

mylist = mylist.reverse() # ERROR: mylist = None
> If you need a new reversed copy, use:

backwards = list(reversed(mylist))

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015

17 /21

Sorting and reversing

The reverse method reverses the order of a list.
mylist = ["red", "green", "blue"]
mylist.reverse()
print(mylist) — ["blue", "green", "red"]
@ Reverse mutates the list!
» So the original order is lost.
@ And doesn't return a value.

» So don't assign back into the list:

mylist = mylist.reverse() # ERROR: mylist = None
> If you need a new reversed copy, use:

backwards = list(reversed(mylist))

* mylist is unchanged.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015

17 /21

Sorting and reversing

The reverse method reverses the order of a list.
mylist = ["red", "green", "blue"]
mylist.reverse()
print(mylist) — ["blue", "green", "red"]
@ Reverse mutates the list!
> So the original order is lost.
@ And doesn’t return a value.

» So don't assign back into the list:

mylist = mylist.reverse() # ERROR: mylist = None
> If you need a new reversed copy, use:

backwards = list(reversed(mylist))

* mylist is unchanged.
@ Note the differences:

» reverse is a method that mutates the list.
» reversed is a function that returns a new sequence.

* Not actually a list—convert with 1ist(...)

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015

17 /21

Sorting and reversing

The reverse method reverses the order of a list.
mylist = ["red", "green", "blue"]
mylist.reverse()
print(mylist) — ["blue", "green", "red"]
@ Reverse mutates the list!
> So the original order is lost.
@ And doesn’t return a value.

» So don't assign back into the list:

mylist = mylist.reverse() # ERROR: mylist = None
> If you need a new reversed copy, use:

backwards = list(reversed(mylist))

* mylist is unchanged.
@ Note the differences:

» reverse is a method that mutates the list.
» reversed is a function that returns a new sequence.

* Not actually a list—convert with 1ist(...)

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015

17 / 21

Sorting a list

You can also sort a list with the sort method.

Neil Moore (UK CS) CS 115 Lecture 15

Sorting a list

You can also sort a list with the sort method.
@ Defaults to ascending order.

scores = [75, 63, 92]
scores.sort()

print(scores) — [63, 75, 92]

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015

18 /21

Sorting a list
You can also sort a list with the sort method.
@ Defaults to ascending order.
scores = [75, 63, 92]
scores.sort()
print(scores) — [63, 75, 92]
@ On strings, that means alphabetic order:
poets = ["Coleridge", "Neruda", "Hughes", "Eliot"]
poets.sort ()
print (poets)
— ["Coleridge", "Eliot", "Hughes", "Neruda"]

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 18 / 21

Sorting a list
You can also sort a list with the sort method.
@ Defaults to ascending order.
scores = [75, 63, 92]
scores.sort()
print(scores) — [63, 75, 92]
@ On strings, that means alphabetic order:
poets = ["Coleridge", "Neruda", "Hughes", "Eliot"]
poets.sort ()
print (poets)
— ["Coleridge", "Eliot", "Hughes", "Neruda"]
@ Can do descending order instead:
scores.sort(reverse = True)
print(scores) — [92, 75, 63]

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 18 / 21

Sorting a list
You can also sort a list with the sort method.

@ Defaults to ascending order.
scores = [75, 63, 92]
scores.sort()
print(scores) — [63, 75, 92]
@ On strings, that means alphabetic order:
poets = ["Coleridge", "Neruda", "Hughes", "Eliot"]
poets.sort ()
print (poets)
— ["Coleridge", "Eliot", "Hughes", "Neruda"]
@ Can do descending order instead:
scores.sort(reverse = True)
print(scores) — [92, 75, 63]

@ To make a new sorted list and keep the original:
ascending = sorted(scores) # Doesn’t mutate

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 18 / 21

Sorting a list
You can also sort a list with the sort method.

@ Defaults to ascending order.
scores = [75, 63, 92]
scores.sort()
print(scores) — [63, 75, 92]
@ On strings, that means alphabetic order:
poets = ["Coleridge", "Neruda", "Hughes", "Eliot"]
poets.sort ()
print (poets)
— ["Coleridge", "Eliot", "Hughes", "Neruda"]
@ Can do descending order instead:
scores.sort(reverse = True)
print(scores) — [92, 75, 63]
@ To make a new sorted list and keep the original:
ascending = sorted(scores) # Doesn’t mutate
» scores is unchanged.

» Similar to the difference between reverse and reversed.
Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 18 / 21

Sorting a list
You can also sort a list with the sort method.

@ Defaults to ascending order.
scores = [75, 63, 92]
scores.sort()
print(scores) — [63, 75, 92]
@ On strings, that means alphabetic order:
poets = ["Coleridge", "Neruda", "Hughes", "Eliot"]
poets.sort ()
print (poets)
— ["Coleridge", "Eliot", "Hughes", "Neruda"]
@ Can do descending order instead:
scores.sort(reverse = True)
print(scores) — [92, 75, 63]
@ To make a new sorted list and keep the original:
ascending = sorted(scores) # Doesn’t mutate
» scores is unchanged.

» Similar to the difference between reverse and reversed.
Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 18 / 21

Lists and assignments

The slots in a Python list work like variables.

@ They refer to (point to) objects:
> A list is like a box of fingers

Neil Moore (UK CS) CS 115 Lecture 15

Fall 2015

19 /21

Lists and assignments

The slots in a Python list work like variables.

@ They refer to (point to) objects:
> A list is like a box of fingers (eww)

Neil Moore (UK CS) CS 115 Lecture 15

Fall 2015

19 /21

Lists and assignments

The slots in a Python list work like variables.
@ They refer to (point to) objects:
> A list is like a box of fingers (eww)

@ They can be assigned to, making them refer to new values.
colors[0] = "purple"

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015

19 /21

Lists and assignments

The slots in a Python list work like variables.
@ They refer to (point to) objects:
> A list is like a box of fingers (eww)

@ They can be assigned to, making them refer to new values.
colors[0] = "purple"
» This is mutation! Doesn't work with strings!

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015

19 /21

Lists and assignments

The slots in a Python list work like variables.
@ They refer to (point to) objects:
> A list is like a box of fingers (eww)
@ They can be assigned to, making them refer to new values.
colors[0] = "purple"
» This is mutation! Doesn’t work with strings!

» A function that takes a list parameter can change the list this way.
» ...mutating the original list argument.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 19 /21

Lists and assignments

The slots in a Python list work like variables.
@ They refer to (point to) objects:
> A list is like a box of fingers (eww)
@ They can be assigned to, making them refer to new values.
colors[0] = "purple"
» This is mutation! Doesn’t work with strings!
A function that takes a list parameter can change the list this way.

>
» ...mutating the original list argument.
» When you get the box, you get all the fingers inside it.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 19 /21

Lists and assignments

The slots in a Python list work like variables.

@ They refer to (point to) objects:
> A list is like a box of fingers (eww)

@ They can be assigned to, making them refer to new values.

colors[0] = "purple"

» This is mutation! Doesn’t work with strings!
» A function that takes a list parameter can change the list this way.
» ...mutating the original list argument.
» When you get the box, you get all the fingers inside it.

* But not the finger that points at the box.
* Assigning to the whole list won't change the original.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 19 /21

Lists and assignments

The slots in a Python list work like variables.
@ They refer to (point to) objects:
> A list is like a box of fingers (eww)
@ They can be assigned to, making them refer to new values.
colors[0] = "purple"
» This is mutation! Doesn’t work with strings!
» A function that takes a list parameter can change the list this way.
» ...mutating the original list argument.
» When you get the box, you get all the fingers inside it.
* But not the finger that points at the box.
* Assigning to the whole list won't change the original.
@ Can't assign into a slot that doesn't exist!

> It is an error if the index is > the length.
> Need append instead.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 19 /21

Lists and assignments

The slots in a Python list work like variables.
@ They refer to (point to) objects:
> A list is like a box of fingers (eww)
@ They can be assigned to, making them refer to new values.
colors[0] = "purple"
» This is mutation! Doesn’t work with strings!
» A function that takes a list parameter can change the list this way.
» ...mutating the original list argument.
» When you get the box, you get all the fingers inside it.
* But not the finger that points at the box.
* Assigning to the whole list won't change the original.
@ Can't assign into a slot that doesn't exist!

> It is an error if the index is > the length.
> Need append instead.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 19 /21

Lists, mutability, aliasing
Remember aliasing from when we looked at the graphics package.
@ Aliasing happens with all mutable objects.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 20 /21

Lists, mutability, aliasing
Remember aliasing from when we looked at the graphics package.

@ Aliasing happens with all mutable objects.
@ It is possible to have two variables referring to the very same list.

» Arguments and parameters, for example.
» Or by assignment.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 20 /21

Lists, mutability, aliasing
Remember aliasing from when we looked at the graphics package.
@ Aliasing happens with all mutable objects.
@ It is possible to have two variables referring to the very same list.
» Arguments and parameters, for example.
» Or by assignment.
@ If so, mutations to one variable will be reflected in the alias.
testscores = [84, 100, 78 1]
myscores = testscores
myscores.append (96)
print (testscores) — [84, 100, 78, 96]

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 20 /21

Lists, mutability, aliasing
Remember aliasing from when we looked at the graphics package.
@ Aliasing happens with all mutable objects.

@ It is possible to have two variables referring to the very same list.

» Arguments and parameters, for example.
» Or by assignment.
@ If so, mutations to one variable will be reflected in the alias.
testscores = [84, 100, 78 1]
myscores = testscores
myscores.append (96)
print (testscores) — [84, 100, 78, 96]
@ Often you want the two variables to be independent.

» You need to “break the alias”
* That was the purpose of the graphics shape clone method.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015

20 / 21

Lists, mutability, aliasing
Remember aliasing from when we looked at the graphics package.

@ Aliasing happens with all mutable objects.
@ It is possible to have two variables referring to the very same list.
» Arguments and parameters, for example.
» Or by assignment.
@ If so, mutations to one variable will be reflected in the alias.
testscores = [84, 100, 78 1]
myscores = testscores
myscores.append (96)
print (testscores) — [84, 100, 78, 96]
@ Often you want the two variables to be independent.
» You need to “break the alias”
* That was the purpose of the graphics shape clone method.
» There are two ways to clone a list:

* Use a whole-list slice: newcopy = origl:]
* Or the built-in copy method: newcopy = orig.copy()

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015

20 / 21

Lists, mutability, aliasing
Remember aliasing from when we looked at the graphics package.

@ Aliasing happens with all mutable objects.
@ It is possible to have two variables referring to the very same list.
» Arguments and parameters, for example.
» Or by assignment.
@ If so, mutations to one variable will be reflected in the alias.
testscores = [84, 100, 78 1]
myscores = testscores
myscores.append (96)
print (testscores) — [84, 100, 78, 96]
@ Often you want the two variables to be independent.
» You need to “break the alias”
* That was the purpose of the graphics shape clone method.
» There are two ways to clone a list:
* Use a whole-list slice: newcopy = origl:]
* Or the built-in copy method: newcopy = orig.copy()
* Now copy and orig point to two different lists. ..
* . ..but those lists hold the same values.
Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015

20 / 21

Lists, mutability, aliasing
Remember aliasing from when we looked at the graphics package.

@ Aliasing happens with all mutable objects.
@ It is possible to have two variables referring to the very same list.
» Arguments and parameters, for example.
» Or by assignment.
@ If so, mutations to one variable will be reflected in the alias.
testscores = [84, 100, 78 1]
myscores = testscores
myscores.append (96)
print (testscores) — [84, 100, 78, 96]
@ Often you want the two variables to be independent.
» You need to “break the alias”
* That was the purpose of the graphics shape clone method.
» There are two ways to clone a list:
* Use a whole-list slice: newcopy = origl:]
* Or the built-in copy method: newcopy = orig.copy()
* Now copy and orig point to two different lists. ..
* . ..but those lists hold the same values.
Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015

20 / 21

How to create a list

We've seen several different ways we can make a list:
@ Hard-codeit: 1st = [1, 2, 3]

Neil Moore (UK CS) CS 115 Lecture 15

How to create a list

We've seen several different ways we can make a list:
@ Hard-codeit: 1st = [1, 2, 3]
@ Start out empty and append:
1st = []

lst.append (1)
1lst.append(2)

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 21 /21

How to create a list

We've seen several different ways we can make a list:
@ Hard-codeit: 1st = [1, 2, 3]
@ Start out empty and append:
1st = []

lst.append (1)
1lst.append(2)

» Useful as an accumulator.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015

21 /21

How to create a list

We've seen several different ways we can make a list:
@ Hard-codeit: 1st = [1, 2, 3]
@ Start out empty and append:
1st = []

lst.append (1)
1lst.append(2)

» Useful as an accumulator.

@ Start out empty and concatenate:

1st = []
1st += [1]
1st += [2]

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015

21 /21

How to create a list

We've seen several different ways we can make a list:
@ Hard-codeit: 1st = [1, 2, 3]
@ Start out empty and append:
1st = []

lst.append (1)
1lst.append(2)

» Useful as an accumulator.

@ Start out empty and concatenate:

1st = []
1st += [1]
1st += [2]

@ Split a string: 1st = "one two three".split()

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015

21 /21

How to create a list

We've seen several different ways we can make a list:
@ Hard-codeit: 1st = [1, 2, 3]
@ Start out empty and append:
1st = []

lst.append (1)
1lst.append(2)

» Useful as an accumulator.

@ Start out empty and concatenate:

1st = []
1st += [1]
1st += [2]

@ Split a string: 1st = "one two three".split()
@ Replication: 1st = [0] * 100
» Makes a list with 100 copies of 0.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 21 /21

How to create a list

We've seen several different ways we can make a list:
@ Hard-codeit: 1st = [1, 2, 3]
@ Start out empty and append:
1st = []

lst.append (1)
1lst.append(2)

» Useful as an accumulator.

@ Start out empty and concatenate:

1st = []
1st += [1]
1st += [2]

@ Split a string: 1st = "one two three".split()
@ Replication: 1st = [0] * 100
» Makes a list with 100 copies of 0.

Neil Moore (UK CS) CS 115 Lecture 15 Fall 2015 21 /21

