
CS 115 Lecture 14
Strings part 2

Neil Moore

Department of Computer Science
University of Kentucky

Lexington, Kentucky 40506
neil@cs.uky.edu

3 November 2015

Searching inside a string

Python has two ways to search inside a string for a substring.

The in operator: needle in haystack
I needle and haystack are both strings (for now).
I Returns a boolean.

if " " in name: # if name contains a space
I The substring can occur anywhere: beginning, middle, or end.

if "CS" in class: # CS115, SCSI, 1CS
I Case-sensitive!

if "cs" in "CS115": # FALSE!
I It must be contiguous:

if "C1" in "CS115": # FALSE!

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 2 / 15

Searching inside a string

Python has two ways to search inside a string for a substring.

The in operator: needle in haystack
I needle and haystack are both strings (for now).
I Returns a boolean.

if " " in name: # if name contains a space

I The substring can occur anywhere: beginning, middle, or end.
if "CS" in class: # CS115, SCSI, 1CS

I Case-sensitive!
if "cs" in "CS115": # FALSE!

I It must be contiguous:
if "C1" in "CS115": # FALSE!

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 2 / 15

Searching inside a string

Python has two ways to search inside a string for a substring.

The in operator: needle in haystack
I needle and haystack are both strings (for now).
I Returns a boolean.

if " " in name: # if name contains a space
I The substring can occur anywhere: beginning, middle, or end.

if "CS" in class: # CS115, SCSI, 1CS

I Case-sensitive!
if "cs" in "CS115": # FALSE!

I It must be contiguous:
if "C1" in "CS115": # FALSE!

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 2 / 15

Searching inside a string

Python has two ways to search inside a string for a substring.

The in operator: needle in haystack
I needle and haystack are both strings (for now).
I Returns a boolean.

if " " in name: # if name contains a space
I The substring can occur anywhere: beginning, middle, or end.

if "CS" in class: # CS115, SCSI, 1CS
I Case-sensitive!

if "cs" in "CS115": # FALSE!

I It must be contiguous:
if "C1" in "CS115": # FALSE!

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 2 / 15

Searching inside a string

Python has two ways to search inside a string for a substring.

The in operator: needle in haystack
I needle and haystack are both strings (for now).
I Returns a boolean.

if " " in name: # if name contains a space
I The substring can occur anywhere: beginning, middle, or end.

if "CS" in class: # CS115, SCSI, 1CS
I Case-sensitive!

if "cs" in "CS115": # FALSE!
I It must be contiguous:

if "C1" in "CS115": # FALSE!

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 2 / 15

Searching inside a string

Python has two ways to search inside a string for a substring.

The in operator: needle in haystack
I needle and haystack are both strings (for now).
I Returns a boolean.

if " " in name: # if name contains a space
I The substring can occur anywhere: beginning, middle, or end.

if "CS" in class: # CS115, SCSI, 1CS
I Case-sensitive!

if "cs" in "CS115": # FALSE!
I It must be contiguous:

if "C1" in "CS115": # FALSE!

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 2 / 15

Searching inside a string
Sometimes you need to know now just whether the substring is there,
but also where it is.

The find method returns the location of a substring.
pos = haystack.find(needle)

I Find the first occurrence of the needle in the haystack.
I Returns the position where it was found (0 = beginning, etc).
I Returns -1 if it was not found.
I Add another argument to start searching in the middle:

pos = haystack.find(needle, 4) # start at position 4
F To “continue”, you can use the last match + 1:

sp1 = haystack.find(" ") # first space

sp2 = haystack.find(" ", sp1 + 1) # next space

rfind is similar, but searches backwards.
I So finds the last occurrence.

text = "the last space here"

lastsp = text.rfind(" ") # 14
I To reverse-search from the middle, give both beginning and end:

prevsp = text.rfind(" ", 0, lastsp) # 8

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 3 / 15

Searching inside a string
Sometimes you need to know now just whether the substring is there,
but also where it is.

The find method returns the location of a substring.
pos = haystack.find(needle)

I Find the first occurrence of the needle in the haystack.
I Returns the position where it was found (0 = beginning, etc).
I Returns -1 if it was not found.

I Add another argument to start searching in the middle:

pos = haystack.find(needle, 4) # start at position 4
F To “continue”, you can use the last match + 1:

sp1 = haystack.find(" ") # first space

sp2 = haystack.find(" ", sp1 + 1) # next space

rfind is similar, but searches backwards.
I So finds the last occurrence.

text = "the last space here"

lastsp = text.rfind(" ") # 14
I To reverse-search from the middle, give both beginning and end:

prevsp = text.rfind(" ", 0, lastsp) # 8

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 3 / 15

Searching inside a string
Sometimes you need to know now just whether the substring is there,
but also where it is.

The find method returns the location of a substring.
pos = haystack.find(needle)

I Find the first occurrence of the needle in the haystack.
I Returns the position where it was found (0 = beginning, etc).
I Returns -1 if it was not found.
I Add another argument to start searching in the middle:

pos = haystack.find(needle, 4) # start at position 4

F To “continue”, you can use the last match + 1:
sp1 = haystack.find(" ") # first space

sp2 = haystack.find(" ", sp1 + 1) # next space

rfind is similar, but searches backwards.
I So finds the last occurrence.

text = "the last space here"

lastsp = text.rfind(" ") # 14
I To reverse-search from the middle, give both beginning and end:

prevsp = text.rfind(" ", 0, lastsp) # 8

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 3 / 15

Searching inside a string
Sometimes you need to know now just whether the substring is there,
but also where it is.

The find method returns the location of a substring.
pos = haystack.find(needle)

I Find the first occurrence of the needle in the haystack.
I Returns the position where it was found (0 = beginning, etc).
I Returns -1 if it was not found.
I Add another argument to start searching in the middle:

pos = haystack.find(needle, 4) # start at position 4
F To “continue”, you can use the last match + 1:

sp1 = haystack.find(" ") # first space

sp2 = haystack.find(" ", sp1 + 1) # next space

rfind is similar, but searches backwards.
I So finds the last occurrence.

text = "the last space here"

lastsp = text.rfind(" ") # 14
I To reverse-search from the middle, give both beginning and end:

prevsp = text.rfind(" ", 0, lastsp) # 8

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 3 / 15

Searching inside a string
Sometimes you need to know now just whether the substring is there,
but also where it is.

The find method returns the location of a substring.
pos = haystack.find(needle)

I Find the first occurrence of the needle in the haystack.
I Returns the position where it was found (0 = beginning, etc).
I Returns -1 if it was not found.
I Add another argument to start searching in the middle:

pos = haystack.find(needle, 4) # start at position 4
F To “continue”, you can use the last match + 1:

sp1 = haystack.find(" ") # first space

sp2 = haystack.find(" ", sp1 + 1) # next space

rfind is similar, but searches backwards.
I So finds the last occurrence.

text = "the last space here"

lastsp = text.rfind(" ") # 14
I To reverse-search from the middle, give both beginning and end:

prevsp = text.rfind(" ", 0, lastsp) # 8

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 3 / 15

Searching inside a string
Sometimes you need to know now just whether the substring is there,
but also where it is.

The find method returns the location of a substring.
pos = haystack.find(needle)

I Find the first occurrence of the needle in the haystack.
I Returns the position where it was found (0 = beginning, etc).
I Returns -1 if it was not found.
I Add another argument to start searching in the middle:

pos = haystack.find(needle, 4) # start at position 4
F To “continue”, you can use the last match + 1:

sp1 = haystack.find(" ") # first space

sp2 = haystack.find(" ", sp1 + 1) # next space

rfind is similar, but searches backwards.
I So finds the last occurrence.

text = "the last space here"

lastsp = text.rfind(" ") # 14

I To reverse-search from the middle, give both beginning and end:
prevsp = text.rfind(" ", 0, lastsp) # 8

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 3 / 15

Searching inside a string
Sometimes you need to know now just whether the substring is there,
but also where it is.

The find method returns the location of a substring.
pos = haystack.find(needle)

I Find the first occurrence of the needle in the haystack.
I Returns the position where it was found (0 = beginning, etc).
I Returns -1 if it was not found.
I Add another argument to start searching in the middle:

pos = haystack.find(needle, 4) # start at position 4
F To “continue”, you can use the last match + 1:

sp1 = haystack.find(" ") # first space

sp2 = haystack.find(" ", sp1 + 1) # next space

rfind is similar, but searches backwards.
I So finds the last occurrence.

text = "the last space here"

lastsp = text.rfind(" ") # 14
I To reverse-search from the middle, give both beginning and end:

prevsp = text.rfind(" ", 0, lastsp) # 8

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 3 / 15

Searching inside a string
Sometimes you need to know now just whether the substring is there,
but also where it is.

The find method returns the location of a substring.
pos = haystack.find(needle)

I Find the first occurrence of the needle in the haystack.
I Returns the position where it was found (0 = beginning, etc).
I Returns -1 if it was not found.
I Add another argument to start searching in the middle:

pos = haystack.find(needle, 4) # start at position 4
F To “continue”, you can use the last match + 1:

sp1 = haystack.find(" ") # first space

sp2 = haystack.find(" ", sp1 + 1) # next space

rfind is similar, but searches backwards.
I So finds the last occurrence.

text = "the last space here"

lastsp = text.rfind(" ") # 14
I To reverse-search from the middle, give both beginning and end:

prevsp = text.rfind(" ", 0, lastsp) # 8

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 3 / 15

Combining find and slicing

You can use find and slicing to extract part of a string:

space = name.find(" ")

if space != -1:

first = name[: space] # before the space

last = name[space + 1 :] # after the space

Here’s a loop to find all the words in a string: words.py

text = "a string with many words"

prevspace = -1

nextspace = text.find(" ", prevspace + 1)

while nextspace != -1:

word = text[prevspace + 1 : nextspace]

print("word: ", word)

prevspace = nextspace

nextspace = text.find(" ", prevspace + 1)

print("last word: ", text[prevspace + 1 :])

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 4 / 15

words.py

Combining find and slicing

You can use find and slicing to extract part of a string:

space = name.find(" ")

if space != -1:

first = name[: space] # before the space

last = name[space + 1 :] # after the space

Here’s a loop to find all the words in a string: words.py

text = "a string with many words"

prevspace = -1

nextspace = text.find(" ", prevspace + 1)

while nextspace != -1:

word = text[prevspace + 1 : nextspace]

print("word: ", word)

prevspace = nextspace

nextspace = text.find(" ", prevspace + 1)

print("last word: ", text[prevspace + 1 :])

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 4 / 15

words.py

Combining find and slicing

You can use find and slicing to extract part of a string:

space = name.find(" ")

if space != -1:

first = name[: space] # before the space

last = name[space + 1 :] # after the space

Here’s a loop to find all the words in a string: words.py

text = "a string with many words"

prevspace = -1

nextspace = text.find(" ", prevspace + 1)

while nextspace != -1:

word = text[prevspace + 1 : nextspace]

print("word: ", word)

prevspace = nextspace

nextspace = text.find(" ", prevspace + 1)

print("last word: ", text[prevspace + 1 :])

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 4 / 15

words.py

Combining find and slicing

You can use find and slicing to extract part of a string:

space = name.find(" ")

if space != -1:

first = name[: space] # before the space

last = name[space + 1 :] # after the space

Here’s a loop to find all the words in a string: words.py

text = "a string with many words"

prevspace = -1

nextspace = text.find(" ", prevspace + 1)

while nextspace != -1:

word = text[prevspace + 1 : nextspace]

print("word: ", word)

prevspace = nextspace

nextspace = text.find(" ", prevspace + 1)

print("last word: ", text[prevspace + 1 :])

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 4 / 15

words.py

Search and replace

Often you don’t really care where the substrings are, but just want to
replace them with something else.

Use the replace method.

newstr = str.replace("from", "to")

I Finds all the occurrences of “from” and replaces them with “to”.
I Doesn’t modify the original: returns a new string.

You can tell replace to only replace the first few occurrences.

course = "CS 115 introduction to programming"

print(course.replace(" ", "-", 1)) # first occurrence

→ "CS-115 introduction to programming"

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 5 / 15

Search and replace

Often you don’t really care where the substrings are, but just want to
replace them with something else.

Use the replace method.

newstr = str.replace("from", "to")
I Finds all the occurrences of “from” and replaces them with “to”.
I Doesn’t modify the original: returns a new string.

You can tell replace to only replace the first few occurrences.

course = "CS 115 introduction to programming"

print(course.replace(" ", "-", 1)) # first occurrence

→ "CS-115 introduction to programming"

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 5 / 15

Search and replace

Often you don’t really care where the substrings are, but just want to
replace them with something else.

Use the replace method.

newstr = str.replace("from", "to")
I Finds all the occurrences of “from” and replaces them with “to”.
I Doesn’t modify the original: returns a new string.

You can tell replace to only replace the first few occurrences.

course = "CS 115 introduction to programming"

print(course.replace(" ", "-", 1)) # first occurrence

→ "CS-115 introduction to programming"

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 5 / 15

Search and replace

Often you don’t really care where the substrings are, but just want to
replace them with something else.

Use the replace method.

newstr = str.replace("from", "to")
I Finds all the occurrences of “from” and replaces them with “to”.
I Doesn’t modify the original: returns a new string.

You can tell replace to only replace the first few occurrences.

course = "CS 115 introduction to programming"

print(course.replace(" ", "-", 1)) # first occurrence

→ "CS-115 introduction to programming"

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 5 / 15

Strip

When getting input from the user or a file, sometimes there is extra
whitespace.

The strip method removes whitespace from the beginning
and the end of the string.

I Whitespace: space, tab, newline, etc. . .
I Does not affect whitespace in the middle!

I Does not change the original string: returns a new one.

userin = " \tCS 115 \n"
clean = userin.strip() # "CS 115"

Can strip from only the left or right with lstrip and rstrip:

lclean = userin.lstrip() # "CS 115 \n"
rclean = userin.rstrip() # " \tCS 115"
print(userin) # What does this print?

F Original doesn’t change! " \tCS 115 \n"

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 6 / 15

Strip

When getting input from the user or a file, sometimes there is extra
whitespace.

The strip method removes whitespace from the beginning
and the end of the string.

I Whitespace: space, tab, newline, etc. . .
I Does not affect whitespace in the middle!
I Does not change the original string: returns a new one.

userin = " \tCS 115 \n"
clean = userin.strip() # "CS 115"

Can strip from only the left or right with lstrip and rstrip:

lclean = userin.lstrip() # "CS 115 \n"
rclean = userin.rstrip() # " \tCS 115"
print(userin) # What does this print?

F Original doesn’t change! " \tCS 115 \n"

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 6 / 15

Strip

When getting input from the user or a file, sometimes there is extra
whitespace.

The strip method removes whitespace from the beginning
and the end of the string.

I Whitespace: space, tab, newline, etc. . .
I Does not affect whitespace in the middle!
I Does not change the original string: returns a new one.

userin = " \tCS 115 \n"
clean = userin.strip() # "CS 115"

Can strip from only the left or right with lstrip and rstrip:

lclean = userin.lstrip() # "CS 115 \n"
rclean = userin.rstrip() # " \tCS 115"
print(userin) # What does this print?

F Original doesn’t change! " \tCS 115 \n"

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 6 / 15

Strip

When getting input from the user or a file, sometimes there is extra
whitespace.

The strip method removes whitespace from the beginning
and the end of the string.

I Whitespace: space, tab, newline, etc. . .
I Does not affect whitespace in the middle!
I Does not change the original string: returns a new one.

userin = " \tCS 115 \n"
clean = userin.strip() # "CS 115"

Can strip from only the left or right with lstrip and rstrip:

lclean = userin.lstrip() # "CS 115 \n"
rclean = userin.rstrip() # " \tCS 115"

print(userin) # What does this print?
F Original doesn’t change! " \tCS 115 \n"

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 6 / 15

Strip

When getting input from the user or a file, sometimes there is extra
whitespace.

The strip method removes whitespace from the beginning
and the end of the string.

I Whitespace: space, tab, newline, etc. . .
I Does not affect whitespace in the middle!
I Does not change the original string: returns a new one.

userin = " \tCS 115 \n"
clean = userin.strip() # "CS 115"

Can strip from only the left or right with lstrip and rstrip:

lclean = userin.lstrip() # "CS 115 \n"
rclean = userin.rstrip() # " \tCS 115"
print(userin) # What does this print?

F Original doesn’t change! " \tCS 115 \n"

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 6 / 15

Strip

When getting input from the user or a file, sometimes there is extra
whitespace.

The strip method removes whitespace from the beginning
and the end of the string.

I Whitespace: space, tab, newline, etc. . .
I Does not affect whitespace in the middle!
I Does not change the original string: returns a new one.

userin = " \tCS 115 \n"
clean = userin.strip() # "CS 115"

Can strip from only the left or right with lstrip and rstrip:

lclean = userin.lstrip() # "CS 115 \n"
rclean = userin.rstrip() # " \tCS 115"
print(userin) # What does this print?

F Original doesn’t change! " \tCS 115 \n"

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 6 / 15

Strip

When getting input from the user or a file, sometimes there is extra
whitespace.

The strip method removes whitespace from the beginning
and the end of the string.

I Whitespace: space, tab, newline, etc. . .
I Does not affect whitespace in the middle!
I Does not change the original string: returns a new one.

userin = " \tCS 115 \n"
clean = userin.strip() # "CS 115"

Can strip from only the left or right with lstrip and rstrip:

lclean = userin.lstrip() # "CS 115 \n"
rclean = userin.rstrip() # " \tCS 115"
print(userin) # What does this print?

F Original doesn’t change! " \tCS 115 \n"

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 6 / 15

Traversing strings

The for loop in Python can iterate not just over a range of integers, but
also over the characters of a string:
for char in name:

Called “iterating over” or traversing (“walking across”) the string.

As usual char is the name of a new variable.

In each iteration of the loop, char will be one character.
I In order.
I Not a number!

So if name is "Hal":
I The first time, char = "H"
I Then, char = "a"
I Finally, char = "l"

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 7 / 15

Traversing strings

The for loop in Python can iterate not just over a range of integers, but
also over the characters of a string:
for char in name:

Called “iterating over” or traversing (“walking across”) the string.

As usual char is the name of a new variable.

In each iteration of the loop, char will be one character.
I In order.
I Not a number!

So if name is "Hal":
I The first time, char = "H"
I Then, char = "a"
I Finally, char = "l"

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 7 / 15

Traversing strings

The for loop in Python can iterate not just over a range of integers, but
also over the characters of a string:
for char in name:

Called “iterating over” or traversing (“walking across”) the string.

As usual char is the name of a new variable.

In each iteration of the loop, char will be one character.
I In order.
I Not a number!

So if name is "Hal":
I The first time, char = "H"
I Then, char = "a"
I Finally, char = "l"

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 7 / 15

Traversing strings

The for loop in Python can iterate not just over a range of integers, but
also over the characters of a string:
for char in name:

Called “iterating over” or traversing (“walking across”) the string.

As usual char is the name of a new variable.

In each iteration of the loop, char will be one character.
I In order.
I Not a number!

So if name is "Hal":
I The first time, char = "H"
I Then, char = "a"
I Finally, char = "l"

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 7 / 15

Traversing strings

The for loop in Python can iterate not just over a range of integers, but
also over the characters of a string:
for char in name:

Called “iterating over” or traversing (“walking across”) the string.

As usual char is the name of a new variable.

In each iteration of the loop, char will be one character.
I In order.
I Not a number!

So if name is "Hal":
I The first time, char = "H"
I Then, char = "a"
I Finally, char = "l"

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 7 / 15

Traversing strings

The for loop in Python can iterate not just over a range of integers, but
also over the characters of a string:
for char in name:

Called “iterating over” or traversing (“walking across”) the string.

As usual char is the name of a new variable.

In each iteration of the loop, char will be one character.
I In order.
I Not a number!

So if name is "Hal":
I The first time, char = "H"
I Then, char = "a"
I Finally, char = "l"

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 7 / 15

String traversal examples

Let’s write a couple of programs using strings and for loops to:
1 Check if a string contains a digit.

I How is this different from string.isdigit()?

I Because that checks if all the characters are digits.
I hasdigit.py

2 Remove the vowels from a string.
I Remember, we can’t modify the original string.
I So we’ll need to build a new string for the result.

F We’ll assign to this new string to append the letters we want.
F The string will be a kind of accumulator!

I devowel.py

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 8 / 15

hasdigit.py
devowel.py

String traversal examples

Let’s write a couple of programs using strings and for loops to:
1 Check if a string contains a digit.

I How is this different from string.isdigit()?
I Because that checks if all the characters are digits.
I hasdigit.py

2 Remove the vowels from a string.
I Remember, we can’t modify the original string.
I So we’ll need to build a new string for the result.

F We’ll assign to this new string to append the letters we want.
F The string will be a kind of accumulator!

I devowel.py

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 8 / 15

hasdigit.py
devowel.py

String traversal examples

Let’s write a couple of programs using strings and for loops to:
1 Check if a string contains a digit.

I How is this different from string.isdigit()?
I Because that checks if all the characters are digits.
I hasdigit.py

2 Remove the vowels from a string.
I Remember, we can’t modify the original string.

I So we’ll need to build a new string for the result.
F We’ll assign to this new string to append the letters we want.
F The string will be a kind of accumulator!

I devowel.py

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 8 / 15

hasdigit.py
devowel.py

String traversal examples

Let’s write a couple of programs using strings and for loops to:
1 Check if a string contains a digit.

I How is this different from string.isdigit()?
I Because that checks if all the characters are digits.
I hasdigit.py

2 Remove the vowels from a string.
I Remember, we can’t modify the original string.
I So we’ll need to build a new string for the result.

F We’ll assign to this new string to append the letters we want.

F The string will be a kind of accumulator!

I devowel.py

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 8 / 15

hasdigit.py
devowel.py

String traversal examples

Let’s write a couple of programs using strings and for loops to:
1 Check if a string contains a digit.

I How is this different from string.isdigit()?
I Because that checks if all the characters are digits.
I hasdigit.py

2 Remove the vowels from a string.
I Remember, we can’t modify the original string.
I So we’ll need to build a new string for the result.

F We’ll assign to this new string to append the letters we want.
F The string will be a kind of accumulator!

I devowel.py

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 8 / 15

hasdigit.py
devowel.py

String traversal examples

Let’s write a couple of programs using strings and for loops to:
1 Check if a string contains a digit.

I How is this different from string.isdigit()?
I Because that checks if all the characters are digits.
I hasdigit.py

2 Remove the vowels from a string.
I Remember, we can’t modify the original string.
I So we’ll need to build a new string for the result.

F We’ll assign to this new string to append the letters we want.
F The string will be a kind of accumulator!

I devowel.py

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 8 / 15

hasdigit.py
devowel.py

Iterating with an index

Traversing a string gives you the characters, but not their positions.

If I’m traversing “HAL 9000”, the body of the loop has no way to
know which “0” it’s currently looking at.

That’s fine for many uses, but sometimes you do care.

There are three ways to do this:
1 Loop over the string and keep a counter.

F Initialize the counter to zero (start at the beginning).
F Increment the counter at the end of each iteration.

2 Loop over the range of indices (plural of “index”):
F for i in range(len(name)):
F Inside the loop, name[i] gives the character at that index.
F Lab 8.

3 Use enumerate to get both at the same time.
F for i, char in enumerate(name):
F Each iteration, i will be the index
F . . . and char the character at that index.

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 9 / 15

Iterating with an index

Traversing a string gives you the characters, but not their positions.

If I’m traversing “HAL 9000”, the body of the loop has no way to
know which “0” it’s currently looking at.

That’s fine for many uses, but sometimes you do care.

There are three ways to do this:
1 Loop over the string and keep a counter.

F Initialize the counter to zero (start at the beginning).
F Increment the counter at the end of each iteration.

2 Loop over the range of indices (plural of “index”):
F for i in range(len(name)):
F Inside the loop, name[i] gives the character at that index.
F Lab 8.

3 Use enumerate to get both at the same time.
F for i, char in enumerate(name):
F Each iteration, i will be the index
F . . . and char the character at that index.

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 9 / 15

Iterating with an index

Traversing a string gives you the characters, but not their positions.

If I’m traversing “HAL 9000”, the body of the loop has no way to
know which “0” it’s currently looking at.

That’s fine for many uses, but sometimes you do care.

There are three ways to do this:
1 Loop over the string and keep a counter.

F Initialize the counter to zero (start at the beginning).
F Increment the counter at the end of each iteration.

2 Loop over the range of indices (plural of “index”):
F for i in range(len(name)):
F Inside the loop, name[i] gives the character at that index.
F Lab 8.

3 Use enumerate to get both at the same time.
F for i, char in enumerate(name):
F Each iteration, i will be the index
F . . . and char the character at that index.

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 9 / 15

Iterating with an index

Traversing a string gives you the characters, but not their positions.

If I’m traversing “HAL 9000”, the body of the loop has no way to
know which “0” it’s currently looking at.

That’s fine for many uses, but sometimes you do care.

There are three ways to do this:
1 Loop over the string and keep a counter.

F Initialize the counter to zero (start at the beginning).
F Increment the counter at the end of each iteration.

2 Loop over the range of indices (plural of “index”):
F for i in range(len(name)):
F Inside the loop, name[i] gives the character at that index.
F Lab 8.

3 Use enumerate to get both at the same time.
F for i, char in enumerate(name):
F Each iteration, i will be the index
F . . . and char the character at that index.

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 9 / 15

Iterating with an index

Traversing a string gives you the characters, but not their positions.

If I’m traversing “HAL 9000”, the body of the loop has no way to
know which “0” it’s currently looking at.

That’s fine for many uses, but sometimes you do care.

There are three ways to do this:
1 Loop over the string and keep a counter.

F Initialize the counter to zero (start at the beginning).
F Increment the counter at the end of each iteration.

2 Loop over the range of indices (plural of “index”):
F for i in range(len(name)):
F Inside the loop, name[i] gives the character at that index.
F Lab 8.

3 Use enumerate to get both at the same time.
F for i, char in enumerate(name):
F Each iteration, i will be the index
F . . . and char the character at that index.

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 9 / 15

Iterating with an index

Traversing a string gives you the characters, but not their positions.

If I’m traversing “HAL 9000”, the body of the loop has no way to
know which “0” it’s currently looking at.

That’s fine for many uses, but sometimes you do care.

There are three ways to do this:
1 Loop over the string and keep a counter.

F Initialize the counter to zero (start at the beginning).
F Increment the counter at the end of each iteration.

2 Loop over the range of indices (plural of “index”):
F for i in range(len(name)):
F Inside the loop, name[i] gives the character at that index.
F Lab 8.

3 Use enumerate to get both at the same time.
F for i, char in enumerate(name):
F Each iteration, i will be the index
F . . . and char the character at that index.

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 9 / 15

Iterating with an index

Traversing a string gives you the characters, but not their positions.

If I’m traversing “HAL 9000”, the body of the loop has no way to
know which “0” it’s currently looking at.

That’s fine for many uses, but sometimes you do care.

There are three ways to do this:
1 Loop over the string and keep a counter.

F Initialize the counter to zero (start at the beginning).
F Increment the counter at the end of each iteration.

2 Loop over the range of indices (plural of “index”):
F for i in range(len(name)):
F Inside the loop, name[i] gives the character at that index.
F Lab 8.

3 Use enumerate to get both at the same time.
F for i, char in enumerate(name):
F Each iteration, i will be the index
F . . . and char the character at that index.

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 9 / 15

Iterating with an index

Let’s change our “hasdigit” function to “finddigit” in three ways.

1 finddigit-counter.py

2 finddigit-range.py

3 finddigit-enumerate.py

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 10 / 15

finddigit-counter.py
finddigit-range.py
finddigit-enumerate.py

Strings to lists to strings

There are two string methods that work with lists of strings:

split splits a string into words or other parts.
I And returns a list of strings.

join takes a list of strings and combines them.
I And returns a single string.

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 11 / 15

Strings to lists to strings

There are two string methods that work with lists of strings:

split splits a string into words or other parts.
I And returns a list of strings.

join takes a list of strings and combines them.
I And returns a single string.

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 11 / 15

Strings to lists to strings

There are two string methods that work with lists of strings:

split splits a string into words or other parts.
I And returns a list of strings.

join takes a list of strings and combines them.
I And returns a single string.

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 11 / 15

Splitting strings

The split method breaks a string apart and returns a list of the pieces.
There are two ways to call split.

No arguments: name.split()
I Splits the string on sequences whitespace.
I Gives you a list of “words”:

phrase = "attention CS 115 students"

words = phrase.split()

→ ["attention", "CS", "115", "students"]
I Multiple spaces in a row are skipped, as is leading/trailing space:

phrase = " CS 115-001\t"
words = sphrase.split()

→ ["CS", "115-001"]

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 12 / 15

Splitting strings

The split method breaks a string apart and returns a list of the pieces.
There are two ways to call split.

No arguments: name.split()
I Splits the string on sequences whitespace.

I Gives you a list of “words”:
phrase = "attention CS 115 students"

words = phrase.split()

→ ["attention", "CS", "115", "students"]
I Multiple spaces in a row are skipped, as is leading/trailing space:

phrase = " CS 115-001\t"
words = sphrase.split()

→ ["CS", "115-001"]

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 12 / 15

Splitting strings

The split method breaks a string apart and returns a list of the pieces.
There are two ways to call split.

No arguments: name.split()
I Splits the string on sequences whitespace.
I Gives you a list of “words”:

phrase = "attention CS 115 students"

words = phrase.split()

→ ["attention", "CS", "115", "students"]

I Multiple spaces in a row are skipped, as is leading/trailing space:
phrase = " CS 115-001\t"
words = sphrase.split()

→ ["CS", "115-001"]

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 12 / 15

Splitting strings

The split method breaks a string apart and returns a list of the pieces.
There are two ways to call split.

No arguments: name.split()
I Splits the string on sequences whitespace.
I Gives you a list of “words”:

phrase = "attention CS 115 students"

words = phrase.split()

→ ["attention", "CS", "115", "students"]
I Multiple spaces in a row are skipped, as is leading/trailing space:

phrase = " CS 115-001\t"
words = sphrase.split()

→ ["CS", "115-001"]

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 12 / 15

Splitting strings

The split method breaks a string apart and returns a list of the pieces.
There are two ways to call split.

No arguments: name.split()
I Splits the string on sequences whitespace.
I Gives you a list of “words”:

phrase = "attention CS 115 students"

words = phrase.split()

→ ["attention", "CS", "115", "students"]
I Multiple spaces in a row are skipped, as is leading/trailing space:

phrase = " CS 115-001\t"
words = sphrase.split()

→ ["CS", "115-001"]

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 12 / 15

Splitting with a separator

You can also pass an arbitrary separator as an argument to split.

It will break the string apart on that separator:
date = "04/02/2015"

parts = date.split("/")

→ ["04", "02", "2015"]

But there are a few differences from word-splitting:
I Multiple separators in a row aren’t combined. Instead, you get an

empty string in the resulting list:
parts = "A,,B,C".split(",")

→ ["A", "", "B", "C"]
I Separators at the beginning/end also give empty strings:

parts = ":A:2:".split(":")

→ ["", "A", "2", ""]

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 13 / 15

Splitting with a separator

You can also pass an arbitrary separator as an argument to split.

It will break the string apart on that separator:
date = "04/02/2015"

parts = date.split("/")

→ ["04", "02", "2015"]

But there are a few differences from word-splitting:
I Multiple separators in a row aren’t combined. Instead, you get an

empty string in the resulting list:
parts = "A,,B,C".split(",")

→ ["A", "", "B", "C"]

I Separators at the beginning/end also give empty strings:
parts = ":A:2:".split(":")

→ ["", "A", "2", ""]

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 13 / 15

Splitting with a separator

You can also pass an arbitrary separator as an argument to split.

It will break the string apart on that separator:
date = "04/02/2015"

parts = date.split("/")

→ ["04", "02", "2015"]

But there are a few differences from word-splitting:
I Multiple separators in a row aren’t combined. Instead, you get an

empty string in the resulting list:
parts = "A,,B,C".split(",")

→ ["A", "", "B", "C"]
I Separators at the beginning/end also give empty strings:

parts = ":A:2:".split(":")

→ ["", "A", "2", ""]

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 13 / 15

Splitting with a separator

You can also pass an arbitrary separator as an argument to split.

It will break the string apart on that separator:
date = "04/02/2015"

parts = date.split("/")

→ ["04", "02", "2015"]

But there are a few differences from word-splitting:
I Multiple separators in a row aren’t combined. Instead, you get an

empty string in the resulting list:
parts = "A,,B,C".split(",")

→ ["A", "", "B", "C"]
I Separators at the beginning/end also give empty strings:

parts = ":A:2:".split(":")

→ ["", "A", "2", ""]

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 13 / 15

Joining strings

What if we want to do the opposite of split?

That is, take a list of strings. . .

. . . and join them together with a separator.

First, let’s write the code to do this by hand:
I join.py

Python has a built-in method to do this: join
I But calling it is a little funny. . .

result = "-".join(parts)
I The separator, not the list, comes before the dot!

F We ask the separator to join the list of strings together.

I parts is a sequence of strings (usually a list)

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 14 / 15

join.py

Joining strings

What if we want to do the opposite of split?

That is, take a list of strings. . .

. . . and join them together with a separator.

First, let’s write the code to do this by hand:
I join.py

Python has a built-in method to do this: join
I But calling it is a little funny. . .

result = "-".join(parts)
I The separator, not the list, comes before the dot!

F We ask the separator to join the list of strings together.

I parts is a sequence of strings (usually a list)

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 14 / 15

join.py

Joining strings

What if we want to do the opposite of split?

That is, take a list of strings. . .

. . . and join them together with a separator.

First, let’s write the code to do this by hand:
I join.py

Python has a built-in method to do this: join
I But calling it is a little funny. . .

result = "-".join(parts)
I The separator, not the list, comes before the dot!

F We ask the separator to join the list of strings together.

I parts is a sequence of strings (usually a list)

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 14 / 15

join.py

Joining strings

What if we want to do the opposite of split?

That is, take a list of strings. . .

. . . and join them together with a separator.

First, let’s write the code to do this by hand:
I join.py

Python has a built-in method to do this: join

I But calling it is a little funny. . .
result = "-".join(parts)

I The separator, not the list, comes before the dot!
F We ask the separator to join the list of strings together.

I parts is a sequence of strings (usually a list)

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 14 / 15

join.py

Joining strings

What if we want to do the opposite of split?

That is, take a list of strings. . .

. . . and join them together with a separator.

First, let’s write the code to do this by hand:
I join.py

Python has a built-in method to do this: join
I But calling it is a little funny. . .

result = "-".join(parts)

I The separator, not the list, comes before the dot!
F We ask the separator to join the list of strings together.

I parts is a sequence of strings (usually a list)

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 14 / 15

join.py

Joining strings

What if we want to do the opposite of split?

That is, take a list of strings. . .

. . . and join them together with a separator.

First, let’s write the code to do this by hand:
I join.py

Python has a built-in method to do this: join
I But calling it is a little funny. . .

result = "-".join(parts)
I The separator, not the list, comes before the dot!

F We ask the separator to join the list of strings together.

I parts is a sequence of strings (usually a list)

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 14 / 15

join.py

Joining strings

What if we want to do the opposite of split?

That is, take a list of strings. . .

. . . and join them together with a separator.

First, let’s write the code to do this by hand:
I join.py

Python has a built-in method to do this: join
I But calling it is a little funny. . .

result = "-".join(parts)
I The separator, not the list, comes before the dot!

F We ask the separator to join the list of strings together.

I parts is a sequence of strings (usually a list)

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 14 / 15

join.py

Joining strings

What if we want to do the opposite of split?

That is, take a list of strings. . .

. . . and join them together with a separator.

First, let’s write the code to do this by hand:
I join.py

Python has a built-in method to do this: join
I But calling it is a little funny. . .

result = "-".join(parts)
I The separator, not the list, comes before the dot!

F We ask the separator to join the list of strings together.

I parts is a sequence of strings (usually a list)

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 14 / 15

join.py

Filling in blanks: format

The format method builds a string by “filling in the blanks”.
I You could use concatenation, but format is often simpler.

Call it on a format string with slots marked with braces {}
I Usually a literal string: "...".format(...)
I Returns a new string, so use in an expression.

Slots refer to arguments in order:
print("{}:{} {}:{}".format(userid, first, last, salted))

Or out of order, by index:
author = "{1}, {0}".format(first name, last name)

Or with keyword arguments (like print’s sep=)
madlib = "The {noun} {verb}s the {noun2}".format(

noun = "programmer", noun2 = "bug", verb = "cause"

)

Don’t mix these in a single format string! Pick one.

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 15 / 15

Filling in blanks: format

The format method builds a string by “filling in the blanks”.
I You could use concatenation, but format is often simpler.

Call it on a format string with slots marked with braces {}
I Usually a literal string: "...".format(...)
I Returns a new string, so use in an expression.

Slots refer to arguments in order:
print("{}:{} {}:{}".format(userid, first, last, salted))

Or out of order, by index:
author = "{1}, {0}".format(first name, last name)

Or with keyword arguments (like print’s sep=)
madlib = "The {noun} {verb}s the {noun2}".format(

noun = "programmer", noun2 = "bug", verb = "cause"

)

Don’t mix these in a single format string! Pick one.

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 15 / 15

Filling in blanks: format

The format method builds a string by “filling in the blanks”.
I You could use concatenation, but format is often simpler.

Call it on a format string with slots marked with braces {}
I Usually a literal string: "...".format(...)
I Returns a new string, so use in an expression.

Slots refer to arguments in order:
print("{}:{} {}:{}".format(userid, first, last, salted))

Or out of order, by index:
author = "{1}, {0}".format(first name, last name)

Or with keyword arguments (like print’s sep=)
madlib = "The {noun} {verb}s the {noun2}".format(

noun = "programmer", noun2 = "bug", verb = "cause"

)

Don’t mix these in a single format string! Pick one.

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 15 / 15

Filling in blanks: format

The format method builds a string by “filling in the blanks”.
I You could use concatenation, but format is often simpler.

Call it on a format string with slots marked with braces {}
I Usually a literal string: "...".format(...)
I Returns a new string, so use in an expression.

Slots refer to arguments in order:
print("{}:{} {}:{}".format(userid, first, last, salted))

Or out of order, by index:
author = "{1}, {0}".format(first name, last name)

Or with keyword arguments (like print’s sep=)
madlib = "The {noun} {verb}s the {noun2}".format(

noun = "programmer", noun2 = "bug", verb = "cause"

)

Don’t mix these in a single format string! Pick one.

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 15 / 15

Filling in blanks: format

The format method builds a string by “filling in the blanks”.
I You could use concatenation, but format is often simpler.

Call it on a format string with slots marked with braces {}
I Usually a literal string: "...".format(...)
I Returns a new string, so use in an expression.

Slots refer to arguments in order:
print("{}:{} {}:{}".format(userid, first, last, salted))

Or out of order, by index:
author = "{1}, {0}".format(first name, last name)

Or with keyword arguments (like print’s sep=)
madlib = "The {noun} {verb}s the {noun2}".format(

noun = "programmer", noun2 = "bug", verb = "cause"

)

Don’t mix these in a single format string! Pick one.

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 15 / 15

Filling in blanks: format

The format method builds a string by “filling in the blanks”.
I You could use concatenation, but format is often simpler.

Call it on a format string with slots marked with braces {}
I Usually a literal string: "...".format(...)
I Returns a new string, so use in an expression.

Slots refer to arguments in order:
print("{}:{} {}:{}".format(userid, first, last, salted))

Or out of order, by index:
author = "{1}, {0}".format(first name, last name)

Or with keyword arguments (like print’s sep=)
madlib = "The {noun} {verb}s the {noun2}".format(

noun = "programmer", noun2 = "bug", verb = "cause"

)

Don’t mix these in a single format string! Pick one.

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 15 / 15

Filling in blanks: format

The format method builds a string by “filling in the blanks”.
I You could use concatenation, but format is often simpler.

Call it on a format string with slots marked with braces {}
I Usually a literal string: "...".format(...)
I Returns a new string, so use in an expression.

Slots refer to arguments in order:
print("{}:{} {}:{}".format(userid, first, last, salted))

Or out of order, by index:
author = "{1}, {0}".format(first name, last name)

Or with keyword arguments (like print’s sep=)
madlib = "The {noun} {verb}s the {noun2}".format(

noun = "programmer", noun2 = "bug", verb = "cause"

)

Don’t mix these in a single format string! Pick one.

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 15 / 15

