CS 115 Lecture 13

Strings

Neil Moore

Department of Computer Science
University of Kentucky
Lexington, Kentucky 40506
neil@cs.uky.edu

29 October 2015

Strings

We've been using strings for a while. What can we do with them?

Neil Moore (UK CS) CS 115 Lecture 13

Strings

We've been using strings for a while. What can we do with them?
@ Read them from the user: mystr = input("Name? ")

@ Print them to the screen: print (mystr)

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 2 /16

Strings

We've been using strings for a while. What can we do with them?
@ Read them from the user: mystr = input("Name? ")
@ Print them to the screen: print (mystr)

o Convert (type-cast) them into ints or floats: num = int(userin)

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 2 /16

Strings

We've been using strings for a while. What can we do with them?
@ Read them from the user: mystr = input("Name? ")
@ Print them to the screen: print (mystr)
o Convert (type-cast) them into ints or floats: num = int(userin)
°

Concatenate them with +: name = first + " " + last

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 2 /16

Strings

We've been using strings for a while. What can we do with them?
@ Read them from the user: mystr = input("Name? ")
Print them to the screen: print (mystr)
Convert (type-cast) them into ints or floats: num = int(userin)

Concatenate them with +: name = first + " " + last

Compare with other strings: if "A" <= name < "K":

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 2 /16

Strings

We've been using strings for a while. What can we do with them?
@ Read them from the user: mystr = input("Name? ")
Print them to the screen: print (mystr)
Convert (type-cast) them into ints or floats: num = int(userin)
Concatenate them with +: name = first + " " + last

Compare with other strings: if "A" <= name < "K":

Check whether they are all digits: if mystr.isdigit()

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 2 /16

Strings

We've been using strings for a while. What can we do with them?
@ Read them from the user: mystr = input("Name? ")
Print them to the screen: print (mystr)
Convert (type-cast) them into ints or floats: num = int(userin)
Concatenate them with +: name = first + " " + last

Compare with other strings: if "A" <= name < "K":

Check whether they are all digits: if mystr.isdigit()

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 2 /16

String in detail

Let's see how to do more things with strings:

o Find the length.

@ Get individual characters.

e Extract ranges of characters (“slicing”).
o Convert to uppercase/lowercase.

Search for letters or substrings.

@ Search and replace substrings.

@ Remove whitespace.

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 3/16

String in detail

Let's see how to do more things with strings:

o Find the length.

@ Get individual characters.

e Extract ranges of characters (“slicing”).
o Convert to uppercase/lowercase.

Search for letters or substrings.

@ Search and replace substrings.

@ Remove whitespace.

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 3/16

String length

The length of a string is the number of characters in it.
@ Spaces count!

@ So do newlines and other special characters.

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 4/ 16

String length

The length of a string is the number of characters in it.
@ Spaces count!
@ So do newlines and other special characters.

@ To get the length of a string, use the len function:

name = "HAL 9000"
numchars = len(name) # 8

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015

4/16

String length

The length of a string is the number of characters in it.
@ Spaces count!
@ So do newlines and other special characters.

@ To get the length of a string, use the len function:

name = "HAL 9000"
numchars = len(name) # 8

» Argument type: string
» Return type: integer

@ What is 1len("")?

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015

4/16

String length

The length of a string is the number of characters in it.
@ Spaces count!
@ So do newlines and other special characters.

@ To get the length of a string, use the len function:

name = "HAL 9000"
numchars = len(name) # 8

» Argument type: string
» Return type: integer

@ What is 1len("")?
» Zero.

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 4/ 16

String length

The length of a string is the number of characters in it.
@ Spaces count!
@ So do newlines and other special characters.

@ To get the length of a string, use the len function:

name = "HAL 9000"
numchars = len(name) # 8

» Argument type: string
» Return type: integer

@ What is 1len("")?
» Zero.

We'll see later that 1en works with lists too.

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015

4/16

String length

The length of a string is the number of characters in it.
@ Spaces count!
@ So do newlines and other special characters.

@ To get the length of a string, use the len function:

name = "HAL 9000"
numchars = len(name) # 8

» Argument type: string
» Return type: integer

@ What is 1len("")?
» Zero.

We'll see later that 1en works with lists too.

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015

4/16

Extracting characters
The characters in a string are numbered from 0 to length — 1

HAL 9000 (length = 8)
01234567

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 5/ 16

Extracting characters
The characters in a string are numbered from 0 to length — 1

HAL 9000 (length = 8)
01234567

@ This number is called the position or index of the character.

@ You can use square brackets to get the character at a given position.

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 5/ 16

Extracting characters
The characters in a string are numbered from 0 to length — 1

HAL 9000 (length = 8)
01234567

@ This number is called the position or index of the character.

@ You can use square brackets to get the character at a given position.
first = name[0] # "H"

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 5/ 16

Extracting characters
The characters in a string are numbered from 0 to length — 1

HAL 9000 (length = 8)
01234567

@ This number is called the position or index of the character.

@ You can use square brackets to get the character at a given position.
first = name[0] # "H"
» This is called subscripting or indexing.

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 5/ 16

Extracting characters
The characters in a string are numbered from 0 to length — 1

HAL 9000 (length = 8)
01234567

@ This number is called the position or index of the character.
@ You can use square brackets to get the character at a given position.
first = name[0] # "H"

» This is called subscripting or indexing.
» The position must be smaller than the length:
print(name[8]) # ERROR: out of range

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 5/ 16

Extracting characters
The characters in a string are numbered from 0 to length — 1

HAL 9000 (length = 8)
01234567

@ This number is called the position or index of the character.

@ You can use square brackets to get the character at a given position.
first = name[0] # "H"

» This is called subscripting or indexing.
» The position must be smaller than the length:
print(name[8]) # ERROR: out of range

@ You can subscript with negative numbers, to count from the end.

» name[-1] is the last character (rightmost).
» name[-2] is the next-to-last character.
-

» name[-len(name)] is the first character.

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 5/ 16

Extracting characters
The characters in a string are numbered from 0 to length — 1

HAL 9000 (length = 8)
01234567

@ This number is called the position or index of the character.

@ You can use square brackets to get the character at a given position.
first = name[0O] # "H"
» This is called subscripting or indexing.
» The position must be smaller than the length:
print(name[8]) # ERROR: out of range
@ You can subscript with negative numbers, to count from the end.

» name[-1] is the last character (rightmost).
» name[-2] is the next-to-last character.
-

» name[-len(name)] is the first character.
o name[-i] is like name [len(name) - il
» name [-9] would still be out of range!

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 5/ 16

Extracting characters
The characters in a string are numbered from 0 to length — 1

HAL 9000 (length = 8)
01234567

@ This number is called the position or index of the character.

@ You can use square brackets to get the character at a given position.
first = name[0O] # "H"
» This is called subscripting or indexing.
» The position must be smaller than the length:
print(name[8]) # ERROR: out of range
@ You can subscript with negative numbers, to count from the end.

» name[-1] is the last character (rightmost).
» name[-2] is the next-to-last character.
-

» name[-len(name)] is the first character.
o name[-i] is like name [len(name) - il
» name [-9] would still be out of range!

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 5/ 16

Extracting whole substrings: slicing
The square-bracket notation also lets us extract multiple characters.

HAL 9000 (length = 8)
01234567

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 6 /16

Extracting whole substrings: slicing
The square-bracket notation also lets us extract multiple characters.

HAL 9000 (length = 8)
01234567

@ For example, “The first 3 characters” or “Characters 2 through 4".

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 6 /16

Extracting whole substrings: slicing
The square-bracket notation also lets us extract multiple characters.

HAL 9000 (length = 8)
01234567

@ For example, “The first 3 characters” or “Characters 2 through 4".
@ Subscript using a slice (“slicing™).
» Syntax: start, a colon “", and stop (one-past-the-end).
* Similar semantics to range(start, stop).

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 6 /16

Extracting whole substrings: slicing
The square-bracket notation also lets us extract multiple characters.

HAL 9000 (length = 8)
01234567

@ For example, “The first 3 characters” or “Characters 2 through 4".
@ Subscript using a slice (“slicing”).
» Syntax: start, a colon “", and stop (one-past-the-end).
* Similar semantics to range(start, stop).
> The first three characters: name[0:3] # "HAL"
* “Start at character 0, stop before character 3.”

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 6 /16

Extracting whole substrings: slicing

The square-bracket notation also lets us extract multiple characters.
HAL 9000 (length = 8)
01234567

@ For example, “The first 3 characters” or “Characters 2 through 4".
@ Subscript using a slice (“slicing”).
» Syntax: start, a colon “", and stop (one-past-the-end).
* Similar semantics to range(start, stop).
> The first three characters: name[0:3] # "HAL"
* “Start at character 0, stop before character 3.”
» Two through four: name[2:5] # "L 9"

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 6 /16

Extracting whole substrings: slicing
The square-bracket notation also lets us extract multiple characters.

HAL 9000 (length = 8)
01234567

@ For example, “The first 3 characters” or “Characters 2 through 4".

@ Subscript using a slice (“slicing™).
» Syntax: start, a colon “", and stop (one-past-the-end).
* Similar semantics to range(start, stop).
> The first three characters: name[0:3] # "HAL"
* “Start at character 0, stop before character 3.”
» Two through four: name[2:5] # "L 9"
» Can leave out either part:

* Leave out start: start at the beginning.
first = name[:3] # "HAL"

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015

6/16

Extracting whole substrings: slicing
The square-bracket notation also lets us extract multiple characters.

HAL 9000 (length = 8)
01234567

@ For example, “The first 3 characters” or “Characters 2 through 4".

@ Subscript using a slice (“slicing™).
» Syntax: start, a colon “", and stop (one-past-the-end).
* Similar semantics to range(start, stop).
> The first three characters: name[0:3] # "HAL"
* “Start at character 0, stop before character 3.”
» Two through four: name[2:5] # "L 9"
» Can leave out either part:
* Leave out start: start at the beginning.
first = name[:3] # "HAL"
* Leave out stop: go until the end.
last = name[4:] # "9000"

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015

6/16

Extracting whole substrings: slicing
The square-bracket notation also lets us extract multiple characters.

HAL 9000 (length = 8)
01234567

@ For example, “The first 3 characters” or “Characters 2 through 4".

@ Subscript using a slice (“slicing™).
» Syntax: start, a colon “", and stop (one-past-the-end).
* Similar semantics to range(start, stop).
> The first three characters: name[0:3] # "HAL"
* “Start at character 0, stop before character 3.”
» Two through four: name[2:5] # "L 9"
» Can leave out either part:
* Leave out start: start at the beginning.
first = name[:3] # "HAL"
* Leave out stop: go until the end.
last = name[4:] # "9000"
* The whole thing (kind of silly here):
copy = namel[:] # "HAL 9000"

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015

6/16

Extracting whole substrings: slicing
The square-bracket notation also lets us extract multiple characters.

HAL 9000 (length = 8)
01234567

@ For example, “The first 3 characters” or “Characters 2 through 4".

@ Subscript using a slice (“slicing™).
» Syntax: start, a colon “", and stop (one-past-the-end).
* Similar semantics to range(start, stop).
> The first three characters: name[0:3] # "HAL"
* “Start at character 0, stop before character 3.”
» Two through four: name[2:5] # "L 9"
» Can leave out either part:
* Leave out start: start at the beginning.
first = name[:3] # "HAL"
* Leave out stop: go until the end.
last = name[4:] # "9000"
* The whole thing (kind of silly here):
copy = namel[:] # "HAL 9000"

@ Doesn't change the original string! (Makes a new one).

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015

6/16

Extracting whole substrings: slicing
The square-bracket notation also lets us extract multiple characters.

HAL 9000 (length = 8)
01234567

@ For example, “The first 3 characters” or “Characters 2 through 4".

@ Subscript using a slice (“slicing™).
» Syntax: start, a colon “", and stop (one-past-the-end).
* Similar semantics to range(start, stop).
> The first three characters: name[0:3] # "HAL"
* “Start at character 0, stop before character 3.”
» Two through four: name[2:5] # "L 9"
» Can leave out either part:
* Leave out start: start at the beginning.
first = name[:3] # "HAL"
* Leave out stop: go until the end.
last = name[4:] # "9000"
* The whole thing (kind of silly here):
copy = namel[:] # "HAL 9000"

@ Doesn't change the original string! (Makes a new one).

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015

6/16

Converting case

Python strings have several methods to change their case (capitalization).
@ These methods don't change the original string, either.
» They return a new string, so use them with assignment.

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 7 /16

Converting case

Python strings have several methods to change their case (capitalization).
@ These methods don't change the original string, either.
» They return a new string, so use them with assignment.

o All lowercase:
lazy = name.lower() — “albert einstein”

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 7 /16

Converting case

Python strings have several methods to change their case (capitalization).

@ These methods don't change the original string, either.
» They return a new string, so use them with assignment.

o All lowercase:
lazy = name.lower() — “albert einstein”

@ All uppercase:
telegraph = name.upper() — “ALBERT EINSTEIN"

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015

7/16

Converting case

Python strings have several methods to change their case (capitalization).

@ These methods don't change the original string, either.
» They return a new string, so use them with assignment.

o All lowercase:
lazy = name.lower() — “albert einstein”

@ All uppercase:
telegraph = name.upper() — “ALBERT EINSTEIN"

o First letter uppercase:
almost = name.capitalize() — “Albert einstein”

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015

7/16

Converting case

Python strings have several methods to change their case (capitalization).

@ These methods don't change the original string, either.
» They return a new string, so use them with assignment.

All lowercase:
lazy = name.lower() — “albert einstein”

All uppercase:
telegraph = name.upper() — “ALBERT EINSTEIN"

o First letter uppercase:
almost = name.capitalize() — “Albert einstein”

First letter of each word uppercase:
good = name.title() — Gives “Albert Einstein”

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015

7/16

Converting case

Python strings have several methods to change their case (capitalization).
@ These methods don't change the original string, either.
» They return a new string, so use them with assignment.

All lowercase:
lazy = name.lower() — “albert einstein”

All uppercase:
telegraph = name.upper() — “ALBERT EINSTEIN"

o First letter uppercase:
almost = name.capitalize() — “Albert einstein”

First letter of each word uppercase:

good = name.title() — Gives “Albert Einstein”
@ One use: case-insensitive comparison.

» For example, a yes-no prompt:

uon won

» The user might type “Y" or “y" or “N" or “n".

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 7 /16

Converting case

Python strings have several methods to change their case (capitalization).

@ These methods don't change the original string, either.
» They return a new string, so use them with assignment.

All lowercase:
lazy = name.lower() — “albert einstein”

All uppercase:
telegraph = name.upper() — “ALBERT EINSTEIN"

o First letter uppercase:
almost = name.capitalize() — “Albert einstein”

First letter of each word uppercase:
good = name.title() — Gives “Albert Einstein”

@ One use: case-insensitive comparison.
» For example, a yes-no prompt:

uon won

» The user might type “Y" or “y" or “N" or “n".
» Convert the input to uppercase and compare that!

if userin.upper() == "Y": # handles "y" too

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015

7/16

Converting case

Python strings have several methods to change their case (capitalization).

@ These methods don't change the original string, either.
» They return a new string, so use them with assignment.

All lowercase:
lazy = name.lower() — “albert einstein”

All uppercase:
telegraph = name.upper() — “ALBERT EINSTEIN"

o First letter uppercase:
almost = name.capitalize() — “Albert einstein”

First letter of each word uppercase:
good = name.title() — Gives “Albert Einstein”

@ One use: case-insensitive comparison.
» For example, a yes-no prompt:

uon won

» The user might type “Y" or “y" or “N" or “n".
» Convert the input to uppercase and compare that!

if userin.upper() == "Y": # handles "y" too

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015

7/16

Searching inside a string

Python has two ways to search inside a string for a substring.

@ The in operator: needle in haystack

» needle and haystack are both strings (for now).
» Returns a boolean.

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015

8/16

Searching inside a string

Python has two ways to search inside a string for a substring.

@ The in operator: needle in haystack

» needle and haystack are both strings (for now).
» Returns a boolean.
if " " in name: # if name contains a space

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015

8/16

Searching inside a string

Python has two ways to search inside a string for a substring.

@ The in operator: needle in haystack

>

>

needle and haystack are both strings (for now).

Returns a boolean.

if " " in name: # if name contains a space

The substring can occur anywhere: beginning, middle, or end.
if "CS" in class: # CS115, SCSI, 1CS

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015

8/16

Searching inside a string

Python has two ways to search inside a string for a substring.

@ The in operator: needle in haystack

>

>

needle and haystack are both strings (for now).

Returns a boolean.

if " " in name: # if name contains a space

The substring can occur anywhere: beginning, middle, or end.
if "CS" in class: # CS115, SCSI, 1CS
Case-sensitive!

if "cs" in "CS115": # FALSE!

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015

8/16

Searching inside a string

Python has two ways to search inside a string for a substring.

@ The in operator: needle in haystack

>

>

needle and haystack are both strings (for now).

Returns a boolean.

if " " in name: # if name contains a space

The substring can occur anywhere: beginning, middle, or end.
if "CS" in class: # CS115, SCSI, 1CS
Case-sensitive!

if "cs" in "CS115": # FALSE!

It must be contiguous:

if "C1" in "CS115": # FALSE!

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015

8/16

Searching inside a string

Python has two ways to search inside a string for a substring.

@ The in operator: needle in haystack

>

>

needle and haystack are both strings (for now).

Returns a boolean.

if " " in name: # if name contains a space

The substring can occur anywhere: beginning, middle, or end.
if "CS" in class: # CS115, SCSI, 1CS
Case-sensitive!

if "cs" in "CS115": # FALSE!

It must be contiguous:

if "C1" in "CS115": # FALSE!

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015

8/16

Searching inside a string

Sometimes you need to know now just whether the substring is there,
but also where it is.

@ The find method returns the location of a substring.
pos = haystack.find(needle)

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 9 /16

Searching inside a string
Sometimes you need to know now just whether the substring is there,

but also where it is.

@ The find method returns the location of a substring.
pos = haystack.find(needle)
» Find the first occurrence of the needle in the haystack.
> Returns the position where it was found (0 = beginning, etc).
» Returns -1 if it was not found.

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015

9/16

Searching inside a string
Sometimes you need to know now just whether the substring is there,
but also where it is.

@ The find method returns the location of a substring.

pos = haystack.find(needle)
Find the first occurrence of the needle in the haystack.
Returns the position where it was found (0 = beginning, etc).

Returns -1 if it was not found.
Add another argument to start searching in the middle:

pos = haystack.find(needle, 4) # start at position 4

vvyVvyy

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015

9/16

Searching inside a string
Sometimes you need to know now just whether the substring is there,
but also where it is.

@ The find method returns the location of a substring.

pos = haystack.find(needle)
Find the first occurrence of the needle in the haystack.

>

> Returns the position where it was found (0 = beginning, etc).
» Returns -1 if it was not found.

» Add another argument to start searching in the middle:

pos = haystack.find(needle, 4) # start at position 4
* In a loop you can use the last match + 1:

spl = haystack.find(" ") # first space

sp2 = haystack.find(" ", spl + 1) # next space

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 9 /16

Searching inside a string
Sometimes you need to know now just whether the substring is there,
but also where it is.

@ The find method returns the location of a substring.
pos = haystack.find(needle)
Find the first occurrence of the needle in the haystack.
Returns the position where it was found (0 = beginning, etc).
Returns -1 if it was not found.
Add another argument to start searching in the middle:
pos = haystack.find(needle, 4) # start at position 4
* In a loop you can use the last match + 1:
spl = haystack.find(" ") # first space
sp2 = haystack.find(" ", spl + 1) # next space

v

vYyy

o rfind is similar, but searches backwards.
» So finds the /ast occurrence.

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 9 /16

Searching inside a string
Sometimes you need to know now just whether the substring is there,
but also where it is.

@ The find method returns the location of a substring.
pos = haystack.find(needle)
Find the first occurrence of the needle in the haystack.
Returns the position where it was found (0 = beginning, etc).
Returns -1 if it was not found.
Add another argument to start searching in the middle:
pos = haystack.find(needle, 4) # start at position 4
* In a loop you can use the last match + 1:
spl = haystack.find(" ") # first space
sp2 = haystack.find(" ", spl + 1) # next space

v

vYyy

o rfind is similar, but searches backwards.

» So finds the /ast occurrence.
text = "the last space here"
lastsp = text.rfind(" ") # 14

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 9 /16

Searching inside a string
Sometimes you need to know now just whether the substring is there,
but also where it is.

@ The find method returns the location of a substring.
pos = haystack.find(needle)
Find the first occurrence of the needle in the haystack.
Returns the position where it was found (0 = beginning, etc).
Returns -1 if it was not found.
Add another argument to start searching in the middle:
pos = haystack.find(needle, 4) # start at position 4
* In a loop you can use the last match + 1:
spl = haystack.find(" ") # first space
sp2 = haystack.find(" ", spl + 1) # next space

v

vYyy

o rfind is similar, but searches backwards.
» So finds the last occurrence.
text = "the last space here"
lastsp = text.rfind(" ") # 14
» To reverse-search from the middle, give the beginning and end:
prevsp = text.rfind(" ", O, lastsp) # 8

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015

9/16

Searching inside a string
Sometimes you need to know now just whether the substring is there,
but also where it is.

@ The find method returns the location of a substring.
pos = haystack.find(needle)
Find the first occurrence of the needle in the haystack.
Returns the position where it was found (0 = beginning, etc).
Returns -1 if it was not found.
Add another argument to start searching in the middle:
pos = haystack.find(needle, 4) # start at position 4
* In a loop you can use the last match + 1:
spl = haystack.find(" ") # first space
sp2 = haystack.find(" ", spl + 1) # next space

v

vYyy

o rfind is similar, but searches backwards.
» So finds the last occurrence.
text = "the last space here"
lastsp = text.rfind(" ") # 14
» To reverse-search from the middle, give the beginning and end:
prevsp = text.rfind(" ", O, lastsp) # 8

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015

9/16

Combining find and slicing
You can use find and slicing to extract part of a string:

space = name.find(" ")

if space != -1:
first = name[: space] # before the space
last = name[space + 1 :] # after the space

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015

10/ 16

words.py

Combining find and slicing

You can use find and slicing to extract part of a string:
space = name.find(" ")
if space != -1:
first = name[: space] # before the space
last = name[space + 1 :] # after the space

Here's a loop to find all the words in a string:

text = "a string with many words"
prevspace = -1
nextspace = text.find(" ", prevspace + 1)
while nextspace != -1:
word = text[prevspace + 1 : nextspace]
print("word: ", word)

prevspace = nextspace
nextspace = text.find(" ", prevspace + 1)

print("last word: ", textl[prevspace + 1 : 1)
words.py
Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015

10 / 16

words.py

Combining find and slicing

You can use find and slicing to extract part of a string:
space = name.find(" ")
if space != -1:
first = name[: space] # before the space
last = name[space + 1 :] # after the space

Here's a loop to find all the words in a string:

text = "a string with many words"
prevspace = -1
nextspace = text.find(" ", prevspace + 1)
while nextspace != -1:
word = text[prevspace + 1 : nextspace]
print("word: ", word)

prevspace = nextspace
nextspace = text.find(" ", prevspace + 1)

print("last word: ", textl[prevspace + 1 : 1)
words.py
Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015

10 / 16

words.py

Search and replace

Often you don't really care where the substrings are, but just want to
replace them with something else.

@ Use the replace method.
newstr = str.replace("from", "to")

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 11 /16

Search and replace

Often you don't really care where the substrings are, but just want to
replace them with something else.

@ Use the replace method.
newstr = str.replace("from", "to")

» Finds all the occurrences of “from” and replaces them with “to".
» Doesn't modify the original: returns a new string.

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 11 /16

Search and replace

Often you don't really care where the substrings are, but just want to
replace them with something else.

@ Use the replace method.
newstr = str.replace("from", "to")

» Finds all the occurrences of “from” and replaces them with “to".
» Doesn't modify the original: returns a new string.

@ You can tell replace to only replace the first few occurrences.

course = "CS 115 introduction to programming"
print(course.replace(" ", "-", 1)) # first occurrence

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 11 /16

Search and replace

Often you don't really care where the substrings are, but just want to
replace them with something else.

@ Use the replace method.
newstr = str.replace("from", "to")

» Finds all the occurrences of “from” and replaces them with “to".
» Doesn't modify the original: returns a new string.

@ You can tell replace to only replace the first few occurrences.

course = "CS 115 introduction to programming"
print(course.replace(" ", "-", 1)) # first occurrence
— "CS-115 introduction to programming"

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 11 /16

Strip

When getting input from the user or a file, sometimes there is extra
whitespace.
@ The strip method removes whitespace from the beginning
and the end of the string.

» Whitespace: space, tab, newline, etc. ..
» Does not affect whitespace in the middle!

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015

12 /16

Strip

When getting input from the user or a file, sometimes there is extra
whitespace.
@ The strip method removes whitespace from the beginning
and the end of the string.

» Whitespace: space, tab, newline, etc. ..
» Does not affect whitespace in the middle!
» Does not change the original string: returns a new one.

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015

12 /16

Strip

When getting input from the user or a file, sometimes there is extra
whitespace.
@ The strip method removes whitespace from the beginning
and the end of the string.

» Whitespace: space, tab, newline, etc. ..
» Does not affect whitespace in the middle!
» Does not change the original string: returns a new one.

@ userin = "__ \tCS__115_\n"
clean = userin.strip() # "CS_.115"

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015

12 /16

Strip

When getting input from the user or a file, sometimes there is extra
whitespace.

@ The strip method removes whitespace from the beginning
and the end of the string.
» Whitespace: space, tab, newline, etc. ..
» Does not affect whitespace in the middle!
» Does not change the original string: returns a new one.
@ userin = "__ \tCS__115_\n"
clean = userin.strip() # "CS._115"
@ Can strip from only the left or right with 1strip and rstrip:

lclean = userin.lstrip() # "CS._.115.\n"
rclean = userin.rstrip() # "__\tCS__115"

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015

12 /16

Strip

When getting input from the user or a file, sometimes there is extra
whitespace.

@ The strip method removes whitespace from the beginning
and the end of the string.
» Whitespace: space, tab, newline, etc. ..
» Does not affect whitespace in the middle!
» Does not change the original string: returns a new one.
@ userin = "__ \tCS__115_\n"
clean = userin.strip() # "CS_.115"
@ Can strip from only the left or right with 1strip and rstrip:
lclean = userin.lstrip() # "CS._.115.\n"

rclean = userin.rstrip() # "__\tCS__115"
print(userin) # What does this print?

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015

12 /16

Strip

When getting input from the user or a file, sometimes there is extra
whitespace.

@ The strip method removes whitespace from the beginning
and the end of the string.
» Whitespace: space, tab, newline, etc. ..
» Does not affect whitespace in the middle!
» Does not change the original string: returns a new one.
@ userin = "__ \tCS__115_\n"
clean = userin.strip() # "CS_.115"
@ Can strip from only the left or right with 1strip and rstrip:
lclean = userin.lstrip() # "CS._.115.\n"

rclean = userin.rstrip() # "__\tCS__115"
print(userin) # What does this print?

* Original doesn't change! "__\tCS_.115_\n"

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015

12 /16

Strip

When getting input from the user or a file, sometimes there is extra
whitespace.

@ The strip method removes whitespace from the beginning
and the end of the string.
» Whitespace: space, tab, newline, etc. ..
» Does not affect whitespace in the middle!
» Does not change the original string: returns a new one.
@ userin = "__ \tCS__115_\n"
clean = userin.strip() # "CS_.115"
@ Can strip from only the left or right with 1strip and rstrip:
lclean = userin.lstrip() # "CS._.115.\n"

rclean = userin.rstrip() # "__\tCS__115"
print(userin) # What does this print?

* Original doesn't change! "__\tCS_.115_\n"

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015

12 /16

Traversing strings

The for loop in Python can iterate not just over a range of integers, but
also over the characters of a string:
for char in name:

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 13 /16

Traversing strings

The for loop in Python can iterate not just over a range of integers, but
also over the characters of a string:
for char in name:

o Called “iterating over” or traversing (“walking across”) the string.

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 13 /16

Traversing strings

The for loop in Python can iterate not just over a range of integers, but
also over the characters of a string:
for char in name:

o Called “iterating over” or traversing (“walking across”) the string.

@ As usual char is the name of a new variable.

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 13 /16

Traversing strings

The for loop in Python can iterate not just over a range of integers, but
also over the characters of a string:
for char in name:
o Called “iterating over” or traversing (“walking across”) the string.
@ As usual char is the name of a new variable.

@ In each iteration of the loop, char will be one character.

» In order.
» Not a number!

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 13 /16

Traversing strings

The for loop in Python can iterate not just over a range of integers, but
also over the characters of a string:
for char in name:

o Called “iterating over” or traversing (“walking across”) the string.

@ As usual char is the name of a new variable.

@ In each iteration of the loop, char will be one character.
> In order.
» Not a number!

@ So if name is "Hal":

» The first time, char = "H"
» Then, char = "a"
» Finally, char = "1"

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 13 / 16

Traversing strings

The for loop in Python can iterate not just over a range of integers, but
also over the characters of a string:
for char in name:

o Called “iterating over” or traversing (“walking across”) the string.

@ As usual char is the name of a new variable.

@ In each iteration of the loop, char will be one character.
> In order.
» Not a number!

@ So if name is "Hal":

» The first time, char = "H"
» Then, char = "a"
» Finally, char = "1"

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 13 /16

String traversal examples

Let's write a couple of programs using strings and for loops to:
@ Check if a string contains a digit.
» How is this different from string.isdigit()?

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015

14 /16

hasdigit.py
devowel.py

String traversal examples

Let's write a couple of programs using strings and for loops to:
@ Check if a string contains a digit.

» How is this different from string.isdigit()?
» Because that checks if all the characters are digits.

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015

14 / 16

hasdigit.py
devowel.py

String traversal examples

Let's write a couple of programs using strings and for loops to:
@ Check if a string contains a digit.

» How is this different from string.isdigit()?
» Because that checks if all the characters are digits.
> hasdigit.py

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015

14 /16

hasdigit.py
devowel.py

String traversal examples

Let's write a couple of programs using strings and for loops to:
@ Check if a string contains a digit.

» How is this different from string.isdigit()?
» Because that checks if all the characters are digits.
> hasdigit.py

@ Remove the vowels from a string.
» Remember, we can't modify the original string.

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015

14 /16

hasdigit.py
devowel.py

String traversal examples

Let's write a couple of programs using strings and for loops to:
@ Check if a string contains a digit.
» How is this different from string.isdigit()?
» Because that checks if all the characters are digits.
» hasdigit.py
@ Remove the vowels from a string.

» Remember, we can't modify the original string.
» So we'll need to build a new string for the result.

* We'll assign to this new string to append the letters we want.

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 14 / 16

hasdigit.py
devowel.py

String traversal examples

Let's write a couple of programs using strings and for loops to:
@ Check if a string contains a digit.
» How is this different from string.isdigit()?
» Because that checks if all the characters are digits.
» hasdigit.py
@ Remove the vowels from a string.

» Remember, we can't modify the original string.
» So we'll need to build a new string for the result.

* We'll assign to this new string to append the letters we want.
* The string will be a kind of accumulator!

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 14 / 16

hasdigit.py
devowel.py

String traversal examples

Let's write a couple of programs using strings and for loops to:
@ Check if a string contains a digit.
» How is this different from string.isdigit()?
» Because that checks if all the characters are digits.
» hasdigit.py
@ Remove the vowels from a string.

» Remember, we can't modify the original string.
» So we'll need to build a new string for the result.

* We'll assign to this new string to append the letters we want.
* The string will be a kind of accumulator!

» devowel.py

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 14 / 16

hasdigit.py
devowel.py

String traversal examples

Let's write a couple of programs using strings and for loops to:
@ Check if a string contains a digit.
» How is this different from string.isdigit()?
» Because that checks if all the characters are digits.
» hasdigit.py
@ Remove the vowels from a string.

» Remember, we can't modify the original string.
» So we'll need to build a new string for the result.

* We'll assign to this new string to append the letters we want.
* The string will be a kind of accumulator!

» devowel.py

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 14 / 16

hasdigit.py
devowel.py

lterating with an index
Traversing a string gives you the characters, but not their positions.

o If I'm traversing “HAL 9000", the body of the loop has no way to
know which “0" it's currently looking at.

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 15 / 16

lterating with an index

Traversing a string gives you the characters, but not their positions.

o If I'm traversing “HAL 9000", the body of the loop has no way to
know which “0" it's currently looking at.

@ That's fine for many uses, but sometimes you do care.

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 15 / 16

lterating with an index

Traversing a string gives you the characters, but not their positions.
o If I'm traversing “HAL 9000", the body of the loop has no way to
know which “0" it's currently looking at.
@ That's fine for many uses, but sometimes you do care.

@ There are three ways to do this:
@ Loop over the string and keep a counter.

* Initialize the counter to zero (start at the beginning).
* Increment the counter at the end of each iteration.

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015

15 / 16

lterating with an index

Traversing a string gives you the characters, but not their positions.
o If I'm traversing “HAL 9000", the body of the loop has no way to
know which “0" it's currently looking at.
@ That's fine for many uses, but sometimes you do care.

@ There are three ways to do this:
@ Loop over the string and keep a counter.
* Initialize the counter to zero (start at the beginning).
* Increment the counter at the end of each iteration.
@ Loop over the range of indices (plural of “index"):

* for i in range(len(name)):
* Inside the loop, name[i] gives the character at that index.

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 15 / 16

lterating with an index

Traversing a string gives you the characters, but not their positions.

o If I'm traversing “HAL 9000", the body of the loop has no way to
know which “0" it's currently looking at.

@ That's fine for many uses, but sometimes you do care.

@ There are three ways to do this:
@ Loop over the string and keep a counter.

* Initialize the counter to zero (start at the beginning).
* Increment the counter at the end of each iteration.

@ Loop over the range of indices (plural of “index"):

* for i in range(len(name)):

* Inside the loop, name[i] gives the character at that index.
© Use enumerate to get both at the same time.

* for i, char in enumerate(name):
* Each iteration, i will be the index
* ...and char the character at that index.

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015

15 / 16

lterating with an index

Traversing a string gives you the characters, but not their positions.

o If I'm traversing “HAL 9000", the body of the loop has no way to
know which “0" it's currently looking at.

@ That's fine for many uses, but sometimes you do care.

@ There are three ways to do this:
@ Loop over the string and keep a counter.

* Initialize the counter to zero (start at the beginning).
* Increment the counter at the end of each iteration.

@ Loop over the range of indices (plural of “index"):

* for i in range(len(name)):

* Inside the loop, name[i] gives the character at that index.
© Use enumerate to get both at the same time.

* for i, char in enumerate(name):
* Each iteration, i will be the index
* ...and char the character at that index.

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015

15 / 16

lterating with an index

Traversing a string gives you the characters, but not their positions.

o If I'm traversing “HAL 9000", the body of the loop has no way to
know which “0" it's currently looking at.

@ That's fine for many uses, but sometimes you do care.

@ There are three ways to do this:
@ Loop over the string and keep a counter.

* Initialize the counter to zero (start at the beginning).
* Increment the counter at the end of each iteration.

@ Loop over the range of indices (plural of “index"):

* for i in range(len(name)):

* Inside the loop, name[i] gives the character at that index.
© Use enumerate to get both at the same time.

* for i, char in enumerate(name):
* Each iteration, i will be the index
* ...and char the character at that index.

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015

15 / 16

lterating with an index

Let's change our "hasdigit” function to “finddigit” in three ways.
© finddigit-counter.py
©Q finddigit-range.py
© finddigit-enumerate.py

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 16 / 16

finddigit-counter.py
finddigit-range.py
finddigit-enumerate.py

