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String in detail

Let's see how to do more things with strings:

o Find the length.

@ Get individual characters.

e Extract ranges of characters (“slicing”).
o Convert to uppercase/lowercase.

Search for letters or substrings.

@ Search and replace substrings.

@ Remove whitespace.
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String length

The length of a string is the number of characters in it.
@ Spaces count!

@ So do newlines and other special characters.
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The length of a string is the number of characters in it.
@ Spaces count!
@ So do newlines and other special characters.

@ To get the length of a string, use the len function:

name = "HAL 9000"
numchars = len(name) # 8

» Argument type: string
» Return type: integer
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» Argument type: string
» Return type: integer

@ What is 1len("")?
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We'll see later that 1en works with lists too.
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Extracting characters
The characters in a string are numbered from 0 to length — 1

HAL 9000 (length = 8)
01234567
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The characters in a string are numbered from 0 to length — 1
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@ This number is called the position or index of the character.

@ You can use square brackets to get the character at a given position.
first = name[0] # "H"

» This is called subscripting or indexing.
» The position must be smaller than the length:
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@ You can subscript with negative numbers, to count from the end.

» name[-1] is the last character (rightmost).
» name[-2] is the next-to-last character.
-

» name[-len(name)] is the first character.
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Extracting whole substrings: slicing
The square-bracket notation also lets us extract multiple characters.
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» Syntax: start, a colon “", and stop (one-past-the-end).
* Similar semantics to range(start, stop).
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Converting case

Python strings have several methods to change their case (capitalization).
@ These methods don't change the original string, either.
» They return a new string, so use them with assignment.
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@ These methods don't change the original string, either.
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Searching inside a string

Python has two ways to search inside a string for a substring.

@ The in operator: needle in haystack

» needle and haystack are both strings (for now).
» Returns a boolean.
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Searching inside a string

Python has two ways to search inside a string for a substring.

@ The in operator: needle in haystack

» needle and haystack are both strings (for now).
» Returns a boolean.
if " " in name: # if name contains a space
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Searching inside a string

Python has two ways to search inside a string for a substring.

@ The in operator: needle in haystack

>

>

needle and haystack are both strings (for now).

Returns a boolean.

if " " in name: # if name contains a space

The substring can occur anywhere: beginning, middle, or end.
if "CS" in class: # CS115, SCSI, 1CS
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Searching inside a string

Sometimes you need to know now just whether the substring is there,
but also where it is.

@ The find method returns the location of a substring.
pos = haystack.find(needle)
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Searching inside a string
Sometimes you need to know now just whether the substring is there,

but also where it is.

@ The find method returns the location of a substring.
pos = haystack.find(needle)
» Find the first occurrence of the needle in the haystack.
> Returns the position where it was found (0 = beginning, etc).
» Returns -1 if it was not found.
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Searching inside a string
Sometimes you need to know now just whether the substring is there,
but also where it is.

@ The find method returns the location of a substring.

pos = haystack.find(needle)
Find the first occurrence of the needle in the haystack.
Returns the position where it was found (0 = beginning, etc).

Returns -1 if it was not found.
Add another argument to start searching in the middle:

pos = haystack.find(needle, 4) # start at position 4

vvyVvyy
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Searching inside a string
Sometimes you need to know now just whether the substring is there,
but also where it is.

@ The find method returns the location of a substring.

pos = haystack.find(needle)
Find the first occurrence of the needle in the haystack.

>

> Returns the position where it was found (0 = beginning, etc).
» Returns -1 if it was not found.

» Add another argument to start searching in the middle:
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* In a loop you can use the last match + 1:

spl = haystack.find(" ") # first space

sp2 = haystack.find(" ", spl + 1) # next space
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v
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o rfind is similar, but searches backwards.
» So finds the /ast occurrence.
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Combining find and slicing
You can use find and slicing to extract part of a string:

space = name.find(" ")

if space != -1:
first = name[ : space] # before the space
last = name[space + 1 : ] # after the space
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words.py

Combining find and slicing

You can use find and slicing to extract part of a string:
space = name.find(" ")
if space != -1:
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Search and replace

Often you don't really care where the substrings are, but just want to
replace them with something else.

@ Use the replace method.
newstr = str.replace("from", "to")
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Strip

When getting input from the user or a file, sometimes there is extra
whitespace.
@ The strip method removes whitespace from the beginning
and the end of the string.

» Whitespace: space, tab, newline, etc. ..
» Does not affect whitespace in the middle!
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Traversing strings

The for loop in Python can iterate not just over a range of integers, but
also over the characters of a string:
for char in name:
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String traversal examples

Let's write a couple of programs using strings and for loops to:
@ Check if a string contains a digit.
» How is this different from string.isdigit()?
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lterating with an index
Traversing a string gives you the characters, but not their positions.

o If I'm traversing “HAL 9000", the body of the loop has no way to
know which “0" it's currently looking at.
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lterating with an index

Let's change our "hasdigit” function to “finddigit” in three ways.
© finddigit-counter.py
©Q finddigit-range.py
© finddigit-enumerate.py
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