
CS 115 Lecture 10
Structured programming; for loops

Neil Moore

Department of Computer Science
University of Kentucky

Lexington, Kentucky 40506
neil@cs.uky.edu

8 October 2015
13 October 2015

The bad old days: GOTO

In the early days of programming, we didn’t have for loops, if statements,
etc.

Instead, we had simply “if this is true, go to line 10”.

Could use that to skip over code (like an if).

. . . or go to an earlier line to write a loop.

This was very tedious and error prone.
I . . . especially if something has to be changed.
I “Spaghetti code”: trying to trace a program was like trying to trace

one strand in a plate of spaghetti.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 2 / 31

The bad old days: GOTO

In the early days of programming, we didn’t have for loops, if statements,
etc.

Instead, we had simply “if this is true, go to line 10”.

Could use that to skip over code (like an if).

. . . or go to an earlier line to write a loop.

This was very tedious and error prone.
I . . . especially if something has to be changed.
I “Spaghetti code”: trying to trace a program was like trying to trace

one strand in a plate of spaghetti.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 2 / 31

The bad old days: GOTO

In the early days of programming, we didn’t have for loops, if statements,
etc.

Instead, we had simply “if this is true, go to line 10”.

Could use that to skip over code (like an if).

. . . or go to an earlier line to write a loop.

This was very tedious and error prone.
I . . . especially if something has to be changed.
I “Spaghetti code”: trying to trace a program was like trying to trace

one strand in a plate of spaghetti.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 2 / 31

The bad old days: GOTO

In the early days of programming, we didn’t have for loops, if statements,
etc.

Instead, we had simply “if this is true, go to line 10”.

Could use that to skip over code (like an if).

. . . or go to an earlier line to write a loop.

This was very tedious and error prone.
I . . . especially if something has to be changed.
I “Spaghetti code”: trying to trace a program was like trying to trace

one strand in a plate of spaghetti.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 2 / 31

The bad old days: GOTO

In the early days of programming, we didn’t have for loops, if statements,
etc.

Instead, we had simply “if this is true, go to line 10”.

Could use that to skip over code (like an if).

. . . or go to an earlier line to write a loop.

This was very tedious and error prone.
I . . . especially if something has to be changed.

I “Spaghetti code”: trying to trace a program was like trying to trace
one strand in a plate of spaghetti.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 2 / 31

The bad old days: GOTO

In the early days of programming, we didn’t have for loops, if statements,
etc.

Instead, we had simply “if this is true, go to line 10”.

Could use that to skip over code (like an if).

. . . or go to an earlier line to write a loop.

This was very tedious and error prone.
I . . . especially if something has to be changed.
I “Spaghetti code”: trying to trace a program was like trying to trace

one strand in a plate of spaghetti.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 2 / 31

The bad old days: GOTO

In the early days of programming, we didn’t have for loops, if statements,
etc.

Instead, we had simply “if this is true, go to line 10”.

Could use that to skip over code (like an if).

. . . or go to an earlier line to write a loop.

This was very tedious and error prone.
I . . . especially if something has to be changed.
I “Spaghetti code”: trying to trace a program was like trying to trace

one strand in a plate of spaghetti.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 2 / 31

Structured programming

In the 1960s, computer scientists started to think about how to write
programs that were easier to understand and follow.

I Edsger Dijkstra, “Go To Statement Considered Harmful” (1968).

They introduced the paradigm of structured programming.
I Patterns that lead to easier-to-understand programs.

F Easier to test and debug.
F Easier to modify and maintain.
F Easier to collaborate on large programs.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 3 / 31

Structured programming

In the 1960s, computer scientists started to think about how to write
programs that were easier to understand and follow.

I Edsger Dijkstra, “Go To Statement Considered Harmful” (1968).

They introduced the paradigm of structured programming.
I Patterns that lead to easier-to-understand programs.

F Easier to test and debug.
F Easier to modify and maintain.
F Easier to collaborate on large programs.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 3 / 31

Structured programming

In the 1960s, computer scientists started to think about how to write
programs that were easier to understand and follow.

I Edsger Dijkstra, “Go To Statement Considered Harmful” (1968).

They introduced the paradigm of structured programming.
I Patterns that lead to easier-to-understand programs.

F Easier to test and debug.
F Easier to modify and maintain.
F Easier to collaborate on large programs.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 3 / 31

Structured programming

In the 1960s, computer scientists started to think about how to write
programs that were easier to understand and follow.

I Edsger Dijkstra, “Go To Statement Considered Harmful” (1968).

They introduced the paradigm of structured programming.
I Patterns that lead to easier-to-understand programs.

F Easier to test and debug.
F Easier to modify and maintain.
F Easier to collaborate on large programs.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 3 / 31

Structured programming

In the 1960s, computer scientists started to think about how to write
programs that were easier to understand and follow.

I Edsger Dijkstra, “Go To Statement Considered Harmful” (1968).

They introduced the paradigm of structured programming.
I Patterns that lead to easier-to-understand programs.

F Easier to test and debug.
F Easier to modify and maintain.
F Easier to collaborate on large programs.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 3 / 31

Data structures and control structures

We’ve already seen a little about data structures:
I Ways of organizing data within a program.

F (Remember, in the computer it’s all binary)

I Simple: Constants, variables.
I More complex: Graphics objects, strings, lists. . .

Control structures are ways of controlling the execution of a
program.

I Which statements execute, and in which order.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 4 / 31

Data structures and control structures

We’ve already seen a little about data structures:
I Ways of organizing data within a program.

F (Remember, in the computer it’s all binary)

I Simple: Constants, variables.
I More complex: Graphics objects, strings, lists. . .

Control structures are ways of controlling the execution of a
program.

I Which statements execute, and in which order.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 4 / 31

Data structures and control structures

We’ve already seen a little about data structures:
I Ways of organizing data within a program.

F (Remember, in the computer it’s all binary)

I Simple: Constants, variables.
I More complex: Graphics objects, strings, lists. . .

Control structures are ways of controlling the execution of a
program.

I Which statements execute, and in which order.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 4 / 31

Data structures and control structures

We’ve already seen a little about data structures:
I Ways of organizing data within a program.

F (Remember, in the computer it’s all binary)

I Simple: Constants, variables.
I More complex: Graphics objects, strings, lists. . .

Control structures are ways of controlling the execution of a
program.

I Which statements execute, and in which order.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 4 / 31

Data structures and control structures

We’ve already seen a little about data structures:
I Ways of organizing data within a program.

F (Remember, in the computer it’s all binary)

I Simple: Constants, variables.
I More complex: Graphics objects, strings, lists. . .

Control structures are ways of controlling the execution of a
program.

I Which statements execute, and in which order.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 4 / 31

The three basic control structures

In 1966, Böhm and Jacopini showed that any program using “go to” could
be rearranged to use only three simple control structures.

Sequence.

Selection.

Iteration.

We’ll add a fourth: Subprograms (more in chapter 5).

Each of these control structures has two important guarantees:

Only one way to enter the control structure.

Only one way to leave the control structure.

One entrance, one exit.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 5 / 31

The three basic control structures

In 1966, Böhm and Jacopini showed that any program using “go to” could
be rearranged to use only three simple control structures.

Sequence.

Selection.

Iteration.

We’ll add a fourth: Subprograms (more in chapter 5).

Each of these control structures has two important guarantees:

Only one way to enter the control structure.

Only one way to leave the control structure.

One entrance, one exit.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 5 / 31

The three basic control structures

In 1966, Böhm and Jacopini showed that any program using “go to” could
be rearranged to use only three simple control structures.

Sequence.

Selection.

Iteration.

We’ll add a fourth: Subprograms (more in chapter 5).

Each of these control structures has two important guarantees:

Only one way to enter the control structure.

Only one way to leave the control structure.

One entrance, one exit.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 5 / 31

The three basic control structures

In 1966, Böhm and Jacopini showed that any program using “go to” could
be rearranged to use only three simple control structures.

Sequence.

Selection.

Iteration.

We’ll add a fourth: Subprograms (more in chapter 5).

Each of these control structures has two important guarantees:

Only one way to enter the control structure.

Only one way to leave the control structure.

One entrance, one exit.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 5 / 31

The three basic control structures

In 1966, Böhm and Jacopini showed that any program using “go to” could
be rearranged to use only three simple control structures.

Sequence.

Selection.

Iteration.

We’ll add a fourth: Subprograms (more in chapter 5).

Each of these control structures has two important guarantees:

Only one way to enter the control structure.

Only one way to leave the control structure.

One entrance, one exit.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 5 / 31

Sequence

“Sequencing” or “sequential execution” just means:
Running one statement after another.

In Python we just write one line after the next.

“The default” in some sense.

Guarantees:
I The steps will execute in the order given.
I Steps will not be skipped.
I Will always start at the first statement of the sequence. . .
I and finish at the last statement.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 6 / 31

Sequence

“Sequencing” or “sequential execution” just means:
Running one statement after another.

In Python we just write one line after the next.

“The default” in some sense.

Guarantees:
I The steps will execute in the order given.
I Steps will not be skipped.
I Will always start at the first statement of the sequence. . .
I and finish at the last statement.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 6 / 31

Sequence

“Sequencing” or “sequential execution” just means:
Running one statement after another.

In Python we just write one line after the next.

“The default” in some sense.

Guarantees:
I The steps will execute in the order given.
I Steps will not be skipped.
I Will always start at the first statement of the sequence. . .
I and finish at the last statement.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 6 / 31

Selection

“Selection” means choosing which code to run based on some condition or
question.

In Python, an if-else statement.

Two branches: true and false.
I Each branch is another control structure (most often a sequence).

Guarantees:
I Always starts with the question/condition.
I Runs one branch or the other, never both.
I . . . and never neither.

Avoid dead code: code that is never executed.
I Often because the condition is always true or always false.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 7 / 31

Selection

“Selection” means choosing which code to run based on some condition or
question.

In Python, an if-else statement.

Two branches: true and false.
I Each branch is another control structure (most often a sequence).

Guarantees:
I Always starts with the question/condition.
I Runs one branch or the other, never both.
I . . . and never neither.

Avoid dead code: code that is never executed.
I Often because the condition is always true or always false.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 7 / 31

Selection

“Selection” means choosing which code to run based on some condition or
question.

In Python, an if-else statement.

Two branches: true and false.
I Each branch is another control structure (most often a sequence).

Guarantees:
I Always starts with the question/condition.
I Runs one branch or the other, never both.
I . . . and never neither.

Avoid dead code: code that is never executed.
I Often because the condition is always true or always false.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 7 / 31

Selection

“Selection” means choosing which code to run based on some condition or
question.

In Python, an if-else statement.

Two branches: true and false.
I Each branch is another control structure (most often a sequence).

Guarantees:
I Always starts with the question/condition.
I Runs one branch or the other, never both.
I . . . and never neither.

Avoid dead code: code that is never executed.
I Often because the condition is always true or always false.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 7 / 31

Selection

“Selection” means choosing which code to run based on some condition or
question.

In Python, an if-else statement.

Two branches: true and false.
I Each branch is another control structure (most often a sequence).

Guarantees:
I Always starts with the question/condition.
I Runs one branch or the other, never both.
I . . . and never neither.

Avoid dead code: code that is never executed.
I Often because the condition is always true or always false.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 7 / 31

Iteration

“Iteration” means running code multiple times (a loop).

In structured programming, “repeat this body until a condition is
false”.

In Python, a while loop (in about a week).
I for loops are a special case of iteration.

Guarantees:
I Always starts with the question/condition.
I If the condition is true, executes the entire body, then comes back to

the condition.
I Otherwise (the condition is false), leaves the loop.

Be careful to avoid infinite loops, where the condition is always true.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 8 / 31

Iteration

“Iteration” means running code multiple times (a loop).

In structured programming, “repeat this body until a condition is
false”.

In Python, a while loop (in about a week).
I for loops are a special case of iteration.

Guarantees:
I Always starts with the question/condition.
I If the condition is true, executes the entire body, then comes back to

the condition.
I Otherwise (the condition is false), leaves the loop.

Be careful to avoid infinite loops, where the condition is always true.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 8 / 31

Iteration

“Iteration” means running code multiple times (a loop).

In structured programming, “repeat this body until a condition is
false”.

In Python, a while loop (in about a week).
I for loops are a special case of iteration.

Guarantees:
I Always starts with the question/condition.
I If the condition is true, executes the entire body, then comes back to

the condition.
I Otherwise (the condition is false), leaves the loop.

Be careful to avoid infinite loops, where the condition is always true.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 8 / 31

Iteration

“Iteration” means running code multiple times (a loop).

In structured programming, “repeat this body until a condition is
false”.

In Python, a while loop (in about a week).
I for loops are a special case of iteration.

Guarantees:
I Always starts with the question/condition.
I If the condition is true, executes the entire body, then comes back to

the condition.
I Otherwise (the condition is false), leaves the loop.

Be careful to avoid infinite loops, where the condition is always true.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 8 / 31

Subprograms

Sometimes we may need to repeat the same combination of control
structures in several different places.

It would be nice if we didn’t have to write the code multiple times.

A subprogram is a chunk of the flowchart treated as a single unit.

When we need to execute those steps, we call the subprogram.
I Run the subprogram, wait for it to finish.
I Keep going where you left off.
I Sometimes we send values to the subprogram.
I And sometimes the subprogram sends a value back.

In Python, subprograms are called functions.
I Arguments are the values we send to the subprogram.
I And the function can return a result.
I Can you think of Python functions that:

F Take one or more arguments?
F Take no arguments?
F Return a result?
F Don’t return a result?

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 9 / 31

Subprograms

Sometimes we may need to repeat the same combination of control
structures in several different places.

It would be nice if we didn’t have to write the code multiple times.

A subprogram is a chunk of the flowchart treated as a single unit.

When we need to execute those steps, we call the subprogram.
I Run the subprogram, wait for it to finish.
I Keep going where you left off.
I Sometimes we send values to the subprogram.
I And sometimes the subprogram sends a value back.

In Python, subprograms are called functions.
I Arguments are the values we send to the subprogram.
I And the function can return a result.
I Can you think of Python functions that:

F Take one or more arguments?
F Take no arguments?
F Return a result?
F Don’t return a result?

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 9 / 31

Subprograms

Sometimes we may need to repeat the same combination of control
structures in several different places.

It would be nice if we didn’t have to write the code multiple times.

A subprogram is a chunk of the flowchart treated as a single unit.

When we need to execute those steps, we call the subprogram.

I Run the subprogram, wait for it to finish.
I Keep going where you left off.
I Sometimes we send values to the subprogram.
I And sometimes the subprogram sends a value back.

In Python, subprograms are called functions.
I Arguments are the values we send to the subprogram.
I And the function can return a result.
I Can you think of Python functions that:

F Take one or more arguments?
F Take no arguments?
F Return a result?
F Don’t return a result?

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 9 / 31

Subprograms

Sometimes we may need to repeat the same combination of control
structures in several different places.

It would be nice if we didn’t have to write the code multiple times.

A subprogram is a chunk of the flowchart treated as a single unit.

When we need to execute those steps, we call the subprogram.
I Run the subprogram, wait for it to finish.
I Keep going where you left off.

I Sometimes we send values to the subprogram.
I And sometimes the subprogram sends a value back.

In Python, subprograms are called functions.
I Arguments are the values we send to the subprogram.
I And the function can return a result.
I Can you think of Python functions that:

F Take one or more arguments?
F Take no arguments?
F Return a result?
F Don’t return a result?

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 9 / 31

Subprograms

Sometimes we may need to repeat the same combination of control
structures in several different places.

It would be nice if we didn’t have to write the code multiple times.

A subprogram is a chunk of the flowchart treated as a single unit.

When we need to execute those steps, we call the subprogram.
I Run the subprogram, wait for it to finish.
I Keep going where you left off.
I Sometimes we send values to the subprogram.
I And sometimes the subprogram sends a value back.

In Python, subprograms are called functions.
I Arguments are the values we send to the subprogram.
I And the function can return a result.
I Can you think of Python functions that:

F Take one or more arguments?
F Take no arguments?
F Return a result?
F Don’t return a result?

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 9 / 31

Subprograms

Sometimes we may need to repeat the same combination of control
structures in several different places.

It would be nice if we didn’t have to write the code multiple times.

A subprogram is a chunk of the flowchart treated as a single unit.

When we need to execute those steps, we call the subprogram.
I Run the subprogram, wait for it to finish.
I Keep going where you left off.
I Sometimes we send values to the subprogram.
I And sometimes the subprogram sends a value back.

In Python, subprograms are called functions.
I Arguments are the values we send to the subprogram.
I And the function can return a result.

I Can you think of Python functions that:
F Take one or more arguments?
F Take no arguments?
F Return a result?
F Don’t return a result?

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 9 / 31

Subprograms

Sometimes we may need to repeat the same combination of control
structures in several different places.

It would be nice if we didn’t have to write the code multiple times.

A subprogram is a chunk of the flowchart treated as a single unit.

When we need to execute those steps, we call the subprogram.
I Run the subprogram, wait for it to finish.
I Keep going where you left off.
I Sometimes we send values to the subprogram.
I And sometimes the subprogram sends a value back.

In Python, subprograms are called functions.
I Arguments are the values we send to the subprogram.
I And the function can return a result.
I Can you think of Python functions that:

F Take one or more arguments?

F Take no arguments?
F Return a result?
F Don’t return a result?

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 9 / 31

Subprograms

Sometimes we may need to repeat the same combination of control
structures in several different places.

It would be nice if we didn’t have to write the code multiple times.

A subprogram is a chunk of the flowchart treated as a single unit.

When we need to execute those steps, we call the subprogram.
I Run the subprogram, wait for it to finish.
I Keep going where you left off.
I Sometimes we send values to the subprogram.
I And sometimes the subprogram sends a value back.

In Python, subprograms are called functions.
I Arguments are the values we send to the subprogram.
I And the function can return a result.
I Can you think of Python functions that:

F Take one or more arguments?
F Take no arguments?

F Return a result?
F Don’t return a result?

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 9 / 31

Subprograms

Sometimes we may need to repeat the same combination of control
structures in several different places.

It would be nice if we didn’t have to write the code multiple times.

A subprogram is a chunk of the flowchart treated as a single unit.

When we need to execute those steps, we call the subprogram.
I Run the subprogram, wait for it to finish.
I Keep going where you left off.
I Sometimes we send values to the subprogram.
I And sometimes the subprogram sends a value back.

In Python, subprograms are called functions.
I Arguments are the values we send to the subprogram.
I And the function can return a result.
I Can you think of Python functions that:

F Take one or more arguments?
F Take no arguments?
F Return a result?

F Don’t return a result?

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 9 / 31

Subprograms

Sometimes we may need to repeat the same combination of control
structures in several different places.

It would be nice if we didn’t have to write the code multiple times.

A subprogram is a chunk of the flowchart treated as a single unit.

When we need to execute those steps, we call the subprogram.
I Run the subprogram, wait for it to finish.
I Keep going where you left off.
I Sometimes we send values to the subprogram.
I And sometimes the subprogram sends a value back.

In Python, subprograms are called functions.
I Arguments are the values we send to the subprogram.
I And the function can return a result.
I Can you think of Python functions that:

F Take one or more arguments?
F Take no arguments?
F Return a result?
F Don’t return a result?

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 9 / 31

Subprograms

Sometimes we may need to repeat the same combination of control
structures in several different places.

It would be nice if we didn’t have to write the code multiple times.

A subprogram is a chunk of the flowchart treated as a single unit.

When we need to execute those steps, we call the subprogram.
I Run the subprogram, wait for it to finish.
I Keep going where you left off.
I Sometimes we send values to the subprogram.
I And sometimes the subprogram sends a value back.

In Python, subprograms are called functions.
I Arguments are the values we send to the subprogram.
I And the function can return a result.
I Can you think of Python functions that:

F Take one or more arguments?
F Take no arguments?
F Return a result?
F Don’t return a result?

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 9 / 31

Control structures summary

Sequence (one statement after the other: easy to forget)

Selection (conditionals: if)

Iteration (loops: for and while)

Subprograms (functions: def)

We’ve seen sequence and selection already, so now let’s look at
iteration in more detail.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 10 / 31

Control structures summary

Sequence (one statement after the other: easy to forget) X

Selection (conditionals: if) X

Iteration (loops: for and while)

Subprograms (functions: def)

We’ve seen sequence and selection already, so now let’s look at
iteration in more detail.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 10 / 31

Control structures summary

Sequence (one statement after the other: easy to forget)

Selection (conditionals: if)

Iteration (loops: for and while)

Subprograms (functions: def)

We’ve seen sequence and selection already, so now let’s look at
iteration in more detail.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 10 / 31

Repeating yourself

What if we wanted to draw a tic-tac-toe board with 4 × 4 lines?

We could write code to draw a vertical line. . .

. . . and code to draw a horizontal line. . .

We need to do that four times each.
I With different coordinates each time.

Do we have to copy-and-paste each one 4 times?
I Of course not!
I Loops allow you to execute code multiple times.

. . . with a variable that is different each time.

Two kinds of loop: definite and indefinite.
I Definite loops know in advance how many times to run.
I Indefinite loops run until some condition is satisfied.
I Today we’ll see how to write definite loops in Python.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 11 / 31

Repeating yourself

What if we wanted to draw a tic-tac-toe board with 4 × 4 lines?

We could write code to draw a vertical line. . .

. . . and code to draw a horizontal line. . .

We need to do that four times each.
I With different coordinates each time.

Do we have to copy-and-paste each one 4 times?

I Of course not!
I Loops allow you to execute code multiple times.

. . . with a variable that is different each time.

Two kinds of loop: definite and indefinite.
I Definite loops know in advance how many times to run.
I Indefinite loops run until some condition is satisfied.
I Today we’ll see how to write definite loops in Python.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 11 / 31

Repeating yourself

What if we wanted to draw a tic-tac-toe board with 4 × 4 lines?

We could write code to draw a vertical line. . .

. . . and code to draw a horizontal line. . .

We need to do that four times each.
I With different coordinates each time.

Do we have to copy-and-paste each one 4 times?
I Of course not!
I Loops allow you to execute code multiple times.

. . . with a variable that is different each time.

Two kinds of loop: definite and indefinite.
I Definite loops know in advance how many times to run.
I Indefinite loops run until some condition is satisfied.
I Today we’ll see how to write definite loops in Python.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 11 / 31

Repeating yourself

What if we wanted to draw a tic-tac-toe board with 4 × 4 lines?

We could write code to draw a vertical line. . .

. . . and code to draw a horizontal line. . .

We need to do that four times each.
I With different coordinates each time.

Do we have to copy-and-paste each one 4 times?
I Of course not!
I Loops allow you to execute code multiple times.

. . . with a variable that is different each time.

Two kinds of loop: definite and indefinite.
I Definite loops know in advance how many times to run.
I Indefinite loops run until some condition is satisfied.

I Today we’ll see how to write definite loops in Python.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 11 / 31

Repeating yourself

What if we wanted to draw a tic-tac-toe board with 4 × 4 lines?

We could write code to draw a vertical line. . .

. . . and code to draw a horizontal line. . .

We need to do that four times each.
I With different coordinates each time.

Do we have to copy-and-paste each one 4 times?
I Of course not!
I Loops allow you to execute code multiple times.

. . . with a variable that is different each time.

Two kinds of loop: definite and indefinite.
I Definite loops know in advance how many times to run.
I Indefinite loops run until some condition is satisfied.
I Today we’ll see how to write definite loops in Python.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 11 / 31

Repeating yourself

What if we wanted to draw a tic-tac-toe board with 4 × 4 lines?

We could write code to draw a vertical line. . .

. . . and code to draw a horizontal line. . .

We need to do that four times each.
I With different coordinates each time.

Do we have to copy-and-paste each one 4 times?
I Of course not!
I Loops allow you to execute code multiple times.

. . . with a variable that is different each time.

Two kinds of loop: definite and indefinite.
I Definite loops know in advance how many times to run.
I Indefinite loops run until some condition is satisfied.
I Today we’ll see how to write definite loops in Python.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 11 / 31

The for loop

Syntax: for var in sequence :
I Followed by a block (collection of indented lines) called the body.

F The body must be indented past the “for”!

I var is an identifier (variable name).

Semantics: Execute the body once for each item in the sequence.
I Each time, the variable var will have the value of that item.
I Each run of the body is called an iteration.

A very simple for loop:
for color in (’red’, ’green’, ’blue’):

print(color, ’is a primary color.’)

We’re giving a tuple, but a list in square brackets would work too.

When executed it does:
Iteration 1: print(’red’, ’is a primary color.’)

Iteration 2: print(’green’, ’is a primary color.’)

Iteration 3: print(’blue’, ’is a primary color.’)

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 12 / 31

The for loop

Syntax: for var in sequence :
I Followed by a block (collection of indented lines) called the body.

F The body must be indented past the “for”!

I var is an identifier (variable name).

Semantics: Execute the body once for each item in the sequence.
I Each time, the variable var will have the value of that item.
I Each run of the body is called an iteration.

A very simple for loop:
for color in (’red’, ’green’, ’blue’):

print(color, ’is a primary color.’)

We’re giving a tuple, but a list in square brackets would work too.

When executed it does:
Iteration 1: print(’red’, ’is a primary color.’)

Iteration 2: print(’green’, ’is a primary color.’)

Iteration 3: print(’blue’, ’is a primary color.’)

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 12 / 31

The for loop

Syntax: for var in sequence :
I Followed by a block (collection of indented lines) called the body.

F The body must be indented past the “for”!

I var is an identifier (variable name).

Semantics: Execute the body once for each item in the sequence.
I Each time, the variable var will have the value of that item.
I Each run of the body is called an iteration.

A very simple for loop:
for color in (’red’, ’green’, ’blue’):

print(color, ’is a primary color.’)

We’re giving a tuple, but a list in square brackets would work too.

When executed it does:
Iteration 1: print(’red’, ’is a primary color.’)

Iteration 2: print(’green’, ’is a primary color.’)

Iteration 3: print(’blue’, ’is a primary color.’)

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 12 / 31

The for loop

Syntax: for var in sequence :
I Followed by a block (collection of indented lines) called the body.

F The body must be indented past the “for”!

I var is an identifier (variable name).

Semantics: Execute the body once for each item in the sequence.
I Each time, the variable var will have the value of that item.
I Each run of the body is called an iteration.

A very simple for loop:
for color in (’red’, ’green’, ’blue’):

print(color, ’is a primary color.’)

We’re giving a tuple, but a list in square brackets would work too.

When executed it does:
Iteration 1: print(’red’, ’is a primary color.’)

Iteration 2: print(’green’, ’is a primary color.’)

Iteration 3: print(’blue’, ’is a primary color.’)

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 12 / 31

The for loop

Syntax: for var in sequence :
I Followed by a block (collection of indented lines) called the body.

F The body must be indented past the “for”!

I var is an identifier (variable name).

Semantics: Execute the body once for each item in the sequence.
I Each time, the variable var will have the value of that item.
I Each run of the body is called an iteration.

A very simple for loop:
for color in (’red’, ’green’, ’blue’):

print(color, ’is a primary color.’)

We’re giving a tuple, but a list in square brackets would work too.

When executed it does:
Iteration 1: print(’red’, ’is a primary color.’)

Iteration 2: print(’green’, ’is a primary color.’)

Iteration 3: print(’blue’, ’is a primary color.’)

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 12 / 31

The for loop

Syntax: for var in sequence :
I Followed by a block (collection of indented lines) called the body.

F The body must be indented past the “for”!

I var is an identifier (variable name).

Semantics: Execute the body once for each item in the sequence.
I Each time, the variable var will have the value of that item.
I Each run of the body is called an iteration.

A very simple for loop:
for color in (’red’, ’green’, ’blue’):

print(color, ’is a primary color.’)

We’re giving a tuple, but a list in square brackets would work too.

When executed it does:
Iteration 1: print(’red’, ’is a primary color.’)

Iteration 2: print(’green’, ’is a primary color.’)

Iteration 3: print(’blue’, ’is a primary color.’)

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 12 / 31

The for loop

Syntax: for var in sequence :
I Followed by a block (collection of indented lines) called the body.

F The body must be indented past the “for”!

I var is an identifier (variable name).

Semantics: Execute the body once for each item in the sequence.
I Each time, the variable var will have the value of that item.
I Each run of the body is called an iteration.

A very simple for loop:
for color in (’red’, ’green’, ’blue’):

print(color, ’is a primary color.’)

We’re giving a tuple, but a list in square brackets would work too.

When executed it does:
Iteration 1: print(’red’, ’is a primary color.’)

Iteration 2: print(’green’, ’is a primary color.’)

Iteration 3: print(’blue’, ’is a primary color.’)

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 12 / 31

The for loop

Syntax: for var in sequence :
I Followed by a block (collection of indented lines) called the body.

F The body must be indented past the “for”!

I var is an identifier (variable name).

Semantics: Execute the body once for each item in the sequence.
I Each time, the variable var will have the value of that item.
I Each run of the body is called an iteration.

A very simple for loop:
for color in (’red’, ’green’, ’blue’):

print(color, ’is a primary color.’)

We’re giving a tuple, but a list in square brackets would work too.

When executed it does:
Iteration 1: print(’red’, ’is a primary color.’)

Iteration 2: print(’green’, ’is a primary color.’)

Iteration 3: print(’blue’, ’is a primary color.’)

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 12 / 31

Other kinds of sequences

Strings can also be used as sequences. Each iteration of the loop operates
on a single character:

name = input("What is your name? ")

for char in name:

print(char)

Prints this:
M

o

o

r

e

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 13 / 31

Other kinds of sequences

Strings can also be used as sequences. Each iteration of the loop operates
on a single character:

name = input("What is your name? ")

for char in name:

print(char)

Prints this:
M

o

o

r

e

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 13 / 31

Other kinds of sequences

Strings can also be used as sequences. Each iteration of the loop operates
on a single character:

name = input("What is your name? ")

for char in name:

print(char)

Prints this:
M

o

o

r

e

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 13 / 31

Numeric ranges

One of the most common, and most useful, kinds of sequence for a for

loop is a numeric range.

In Python, you create numeric ranges with the
range function. There are three ways to call range:

range(3): counts from 0 up to 2.
I Computer scientists usually count from zero, not one.
I Goes up to but not including the number.

(just like randrange!)
for i in range(3):

print(i, "squared is", i**2)

Prints:
0 squared is 0

1 squared is 1

2 squared is 4
I Notice the loop ran 3 times (0, 1, 2).

F Don’t make a fencepost error!

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 14 / 31

Numeric ranges

One of the most common, and most useful, kinds of sequence for a for

loop is a numeric range. In Python, you create numeric ranges with the
range function. There are three ways to call range:

range(3): counts from 0 up to 2.
I Computer scientists usually count from zero, not one.
I Goes up to but not including the number.

(just like randrange!)
for i in range(3):

print(i, "squared is", i**2)

Prints:
0 squared is 0

1 squared is 1

2 squared is 4
I Notice the loop ran 3 times (0, 1, 2).

F Don’t make a fencepost error!

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 14 / 31

Numeric ranges

One of the most common, and most useful, kinds of sequence for a for

loop is a numeric range. In Python, you create numeric ranges with the
range function. There are three ways to call range:

range(3): counts from 0 up to 2.
I Computer scientists usually count from zero, not one.

I Goes up to but not including the number.
(just like randrange!)
for i in range(3):

print(i, "squared is", i**2)

Prints:
0 squared is 0

1 squared is 1

2 squared is 4
I Notice the loop ran 3 times (0, 1, 2).

F Don’t make a fencepost error!

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 14 / 31

Numeric ranges

One of the most common, and most useful, kinds of sequence for a for

loop is a numeric range. In Python, you create numeric ranges with the
range function. There are three ways to call range:

range(3): counts from 0 up to 2.
I Computer scientists usually count from zero, not one.
I Goes up to but not including the number.

(just like randrange!)

for i in range(3):

print(i, "squared is", i**2)

Prints:
0 squared is 0

1 squared is 1

2 squared is 4
I Notice the loop ran 3 times (0, 1, 2).

F Don’t make a fencepost error!

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 14 / 31

Numeric ranges

One of the most common, and most useful, kinds of sequence for a for

loop is a numeric range. In Python, you create numeric ranges with the
range function. There are three ways to call range:

range(3): counts from 0 up to 2.
I Computer scientists usually count from zero, not one.
I Goes up to but not including the number.

(just like randrange!)
for i in range(3):

print(i, "squared is", i**2)

Prints:
0 squared is 0

1 squared is 1

2 squared is 4
I Notice the loop ran 3 times (0, 1, 2).

F Don’t make a fencepost error!

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 14 / 31

Numeric ranges

One of the most common, and most useful, kinds of sequence for a for

loop is a numeric range. In Python, you create numeric ranges with the
range function. There are three ways to call range:

range(3): counts from 0 up to 2.
I Computer scientists usually count from zero, not one.
I Goes up to but not including the number.

(just like randrange!)
for i in range(3):

print(i, "squared is", i**2)

Prints:
0 squared is 0

1 squared is 1

2 squared is 4

I Notice the loop ran 3 times (0, 1, 2).
F Don’t make a fencepost error!

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 14 / 31

Numeric ranges

One of the most common, and most useful, kinds of sequence for a for

loop is a numeric range. In Python, you create numeric ranges with the
range function. There are three ways to call range:

range(3): counts from 0 up to 2.
I Computer scientists usually count from zero, not one.
I Goes up to but not including the number.

(just like randrange!)
for i in range(3):

print(i, "squared is", i**2)

Prints:
0 squared is 0

1 squared is 1

2 squared is 4
I Notice the loop ran 3 times (0, 1, 2).

F Don’t make a fencepost error!

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 14 / 31

Numeric ranges

One of the most common, and most useful, kinds of sequence for a for

loop is a numeric range. In Python, you create numeric ranges with the
range function. There are three ways to call range:

range(3): counts from 0 up to 2.
I Computer scientists usually count from zero, not one.
I Goes up to but not including the number.

(just like randrange!)
for i in range(3):

print(i, "squared is", i**2)

Prints:
0 squared is 0

1 squared is 1

2 squared is 4
I Notice the loop ran 3 times (0, 1, 2).

F Don’t make a fencepost error!

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 14 / 31

More ranges
We can also tell range to start at a different number:

Syntax: range(start, stop)
I Produces a sequence of integers from start to stop.
I Does include the start (inclusive), not the stop (exclusive).

for i in range(3, 6):

print(i)

Prints:
3

4

5
I Runs for (stop - start) iterations.

What if we wrote range(1, 1)?
I Empty sequence: stops before getting to 1.
I The loop wouldn’t run at all! Loops can run for 0 iterations.
I Similarly, range(5, 1) is an empty sequence.

F So this loop will do nothing:
for i in range(1, 5, -1):

print(i)
F The body never executes (is dead code).

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 15 / 31

More ranges
We can also tell range to start at a different number:

Syntax: range(start, stop)
I Produces a sequence of integers from start to stop.
I Does include the start (inclusive), not the stop (exclusive).

for i in range(3, 6):

print(i)

Prints:
3

4

5
I Runs for (stop - start) iterations.

What if we wrote range(1, 1)?
I Empty sequence: stops before getting to 1.
I The loop wouldn’t run at all! Loops can run for 0 iterations.
I Similarly, range(5, 1) is an empty sequence.

F So this loop will do nothing:
for i in range(1, 5, -1):

print(i)
F The body never executes (is dead code).

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 15 / 31

More ranges
We can also tell range to start at a different number:

Syntax: range(start, stop)
I Produces a sequence of integers from start to stop.
I Does include the start (inclusive), not the stop (exclusive).

for i in range(3, 6):

print(i)

Prints:
3

4

5

I Runs for (stop - start) iterations.

What if we wrote range(1, 1)?
I Empty sequence: stops before getting to 1.
I The loop wouldn’t run at all! Loops can run for 0 iterations.
I Similarly, range(5, 1) is an empty sequence.

F So this loop will do nothing:
for i in range(1, 5, -1):

print(i)
F The body never executes (is dead code).

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 15 / 31

More ranges
We can also tell range to start at a different number:

Syntax: range(start, stop)
I Produces a sequence of integers from start to stop.
I Does include the start (inclusive), not the stop (exclusive).

for i in range(3, 6):

print(i)

Prints:
3

4

5
I Runs for (stop - start) iterations.

What if we wrote range(1, 1)?
I Empty sequence: stops before getting to 1.
I The loop wouldn’t run at all! Loops can run for 0 iterations.
I Similarly, range(5, 1) is an empty sequence.

F So this loop will do nothing:
for i in range(1, 5, -1):

print(i)
F The body never executes (is dead code).

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 15 / 31

More ranges
We can also tell range to start at a different number:

Syntax: range(start, stop)
I Produces a sequence of integers from start to stop.
I Does include the start (inclusive), not the stop (exclusive).

for i in range(3, 6):

print(i)

Prints:
3

4

5
I Runs for (stop - start) iterations.

What if we wrote range(1, 1)?

I Empty sequence: stops before getting to 1.
I The loop wouldn’t run at all! Loops can run for 0 iterations.
I Similarly, range(5, 1) is an empty sequence.

F So this loop will do nothing:
for i in range(1, 5, -1):

print(i)
F The body never executes (is dead code).

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 15 / 31

More ranges
We can also tell range to start at a different number:

Syntax: range(start, stop)
I Produces a sequence of integers from start to stop.
I Does include the start (inclusive), not the stop (exclusive).

for i in range(3, 6):

print(i)

Prints:
3

4

5
I Runs for (stop - start) iterations.

What if we wrote range(1, 1)?
I Empty sequence: stops before getting to 1.
I The loop wouldn’t run at all! Loops can run for 0 iterations.

I Similarly, range(5, 1) is an empty sequence.
F So this loop will do nothing:

for i in range(1, 5, -1):

print(i)
F The body never executes (is dead code).

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 15 / 31

More ranges
We can also tell range to start at a different number:

Syntax: range(start, stop)
I Produces a sequence of integers from start to stop.
I Does include the start (inclusive), not the stop (exclusive).

for i in range(3, 6):

print(i)

Prints:
3

4

5
I Runs for (stop - start) iterations.

What if we wrote range(1, 1)?
I Empty sequence: stops before getting to 1.
I The loop wouldn’t run at all! Loops can run for 0 iterations.
I Similarly, range(5, 1) is an empty sequence.

F So this loop will do nothing:
for i in range(1, 5, -1):

print(i)
F The body never executes (is dead code).

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 15 / 31

More ranges
We can also tell range to start at a different number:

Syntax: range(start, stop)
I Produces a sequence of integers from start to stop.
I Does include the start (inclusive), not the stop (exclusive).

for i in range(3, 6):

print(i)

Prints:
3

4

5
I Runs for (stop - start) iterations.

What if we wrote range(1, 1)?
I Empty sequence: stops before getting to 1.
I The loop wouldn’t run at all! Loops can run for 0 iterations.
I Similarly, range(5, 1) is an empty sequence.

F So this loop will do nothing:
for i in range(1, 5, -1):

print(i)
F The body never executes (is dead code).

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 15 / 31

Counting with steps

Finally, we can tell range to count by steps, only considering every nth
number:

Syntax: range(start, stop, step)
I Instead of adding 1 in each iteration, adds step.
I The first number is still start.
I The next number is start + step, then start + 2*step, . . .
I What will this do?

for i in range(10, 25, 5):

print(i)

I Prints:
10

15

20
I Does not include 25: stop is still exclusive.

What about range(10, 2)?
I Two arguments are start and stop, not step.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 16 / 31

Counting with steps

Finally, we can tell range to count by steps, only considering every nth
number:

Syntax: range(start, stop, step)
I Instead of adding 1 in each iteration, adds step.
I The first number is still start.
I The next number is start + step, then start + 2*step, . . .
I What will this do?

for i in range(10, 25, 5):

print(i)
I Prints:

10

15

20
I Does not include 25: stop is still exclusive.

What about range(10, 2)?
I Two arguments are start and stop, not step.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 16 / 31

Counting with steps

Finally, we can tell range to count by steps, only considering every nth
number:

Syntax: range(start, stop, step)
I Instead of adding 1 in each iteration, adds step.
I The first number is still start.
I The next number is start + step, then start + 2*step, . . .
I What will this do?

for i in range(10, 25, 5):

print(i)
I Prints:

10

15

20
I Does not include 25: stop is still exclusive.

What about range(10, 2)?
I Two arguments are start and stop, not step.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 16 / 31

Counting with steps

Finally, we can tell range to count by steps, only considering every nth
number:

Syntax: range(start, stop, step)
I Instead of adding 1 in each iteration, adds step.
I The first number is still start.
I The next number is start + step, then start + 2*step, . . .
I What will this do?

for i in range(10, 25, 5):

print(i)
I Prints:

10

15

20

I Does not include 25: stop is still exclusive.

What about range(10, 2)?
I Two arguments are start and stop, not step.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 16 / 31

Counting with steps

Finally, we can tell range to count by steps, only considering every nth
number:

Syntax: range(start, stop, step)
I Instead of adding 1 in each iteration, adds step.
I The first number is still start.
I The next number is start + step, then start + 2*step, . . .
I What will this do?

for i in range(10, 25, 5):

print(i)
I Prints:

10

15

20
I Does not include 25: stop is still exclusive.

What about range(10, 2)?
I Two arguments are start and stop, not step.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 16 / 31

Counting with steps

Finally, we can tell range to count by steps, only considering every nth
number:

Syntax: range(start, stop, step)
I Instead of adding 1 in each iteration, adds step.
I The first number is still start.
I The next number is start + step, then start + 2*step, . . .
I What will this do?

for i in range(10, 25, 5):

print(i)
I Prints:

10

15

20
I Does not include 25: stop is still exclusive.

What about range(10, 2)?

I Two arguments are start and stop, not step.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 16 / 31

Counting with steps

Finally, we can tell range to count by steps, only considering every nth
number:

Syntax: range(start, stop, step)
I Instead of adding 1 in each iteration, adds step.
I The first number is still start.
I The next number is start + step, then start + 2*step, . . .
I What will this do?

for i in range(10, 25, 5):

print(i)
I Prints:

10

15

20
I Does not include 25: stop is still exclusive.

What about range(10, 2)?
I Two arguments are start and stop, not step.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 16 / 31

Counting with steps

Finally, we can tell range to count by steps, only considering every nth
number:

Syntax: range(start, stop, step)
I Instead of adding 1 in each iteration, adds step.
I The first number is still start.
I The next number is start + step, then start + 2*step, . . .
I What will this do?

for i in range(10, 25, 5):

print(i)
I Prints:

10

15

20
I Does not include 25: stop is still exclusive.

What about range(10, 2)?
I Two arguments are start and stop, not step.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 16 / 31

Counting backwards

You can count down by providing a negative step.

for i in range(3, 0, -1):

print("Counting down:", i)

print("Lift off!")

Prints:
Counting down: 3

Counting down: 2

Counting down: 1

Lift off!

The stop is still exclusive.

range(1, 5, -1) is an empty sequence.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 17 / 31

Counting backwards

You can count down by providing a negative step.

for i in range(3, 0, -1):

print("Counting down:", i)

print("Lift off!")

Prints:
Counting down: 3

Counting down: 2

Counting down: 1

Lift off!

The stop is still exclusive.

range(1, 5, -1) is an empty sequence.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 17 / 31

Counting backwards

You can count down by providing a negative step.

for i in range(3, 0, -1):

print("Counting down:", i)

print("Lift off!")

Prints:
Counting down: 3

Counting down: 2

Counting down: 1

Lift off!

The stop is still exclusive.

range(1, 5, -1) is an empty sequence.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 17 / 31

Counting backwards

You can count down by providing a negative step.

for i in range(3, 0, -1):

print("Counting down:", i)

print("Lift off!")

Prints:
Counting down: 3

Counting down: 2

Counting down: 1

Lift off!

The stop is still exclusive.

range(1, 5, -1) is an empty sequence.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 17 / 31

Counting backwards

You can count down by providing a negative step.

for i in range(3, 0, -1):

print("Counting down:", i)

print("Lift off!")

Prints:
Counting down: 3

Counting down: 2

Counting down: 1

Lift off!

The stop is still exclusive.

range(1, 5, -1) is an empty sequence.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 17 / 31

Counting backwards

You can count down by providing a negative step.

for i in range(3, 0, -1):

print("Counting down:", i)

print("Lift off!")

Prints:
Counting down: 3

Counting down: 2

Counting down: 1

Lift off!

The stop is still exclusive.

range(1, 5, -1) is an empty sequence.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 17 / 31

Counting backwards

You can count down by providing a negative step.

for i in range(3, 0, -1):

print("Counting down:", i)

print("Lift off!")

Prints:
Counting down: 3

Counting down: 2

Counting down: 1

Lift off!

The stop is still exclusive.

range(1, 5, -1) is an empty sequence.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 17 / 31

Counting backwards

You can count down by providing a negative step.

for i in range(3, 0, -1):

print("Counting down:", i)

print("Lift off!")

Prints:
Counting down: 3

Counting down: 2

Counting down: 1

Lift off!

The stop is still exclusive.

range(1, 5, -1) is an empty sequence.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 17 / 31

Tic-tac-toe grid

Now we can make that tic-tac-toe grid.

We’ll have one loop to draw the vertical lines.

And another to draw the horizontal lines.

grid.py

A neat “display hack” (simple code to make an intricate picture)
using for loops and if:
moire.py

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 18 / 31

grid.py
moire.py

Tic-tac-toe grid

Now we can make that tic-tac-toe grid.

We’ll have one loop to draw the vertical lines.

And another to draw the horizontal lines.

grid.py

A neat “display hack” (simple code to make an intricate picture)
using for loops and if:
moire.py

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 18 / 31

grid.py
moire.py

Tic-tac-toe grid

Now we can make that tic-tac-toe grid.

We’ll have one loop to draw the vertical lines.

And another to draw the horizontal lines.

grid.py

A neat “display hack” (simple code to make an intricate picture)
using for loops and if:
moire.py

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 18 / 31

grid.py
moire.py

Averages

Suppose we have a collections of measurements in a list, and we want to
find their average: add them all up and divide by the number of
measurements.

temperatures = [67.0, 69.2, 55.3, 71.2, 65.4]

We can get the length with len(temperatures)

For the sum, we need some kind of loop.
for temp in temperatures:

We’d need to add the next number in each iteration.

We need a variable to keep track of the sum.
I We call such a variable an accumulator.

Accumulators aren’t new syntax.
I Just a new way of using assignment.
I A logical concept, used in most programming languages.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 19 / 31

Averages

Suppose we have a collections of measurements in a list, and we want to
find their average: add them all up and divide by the number of
measurements.

temperatures = [67.0, 69.2, 55.3, 71.2, 65.4]

We can get the length with len(temperatures)

For the sum, we need some kind of loop.
for temp in temperatures:

We’d need to add the next number in each iteration.

We need a variable to keep track of the sum.
I We call such a variable an accumulator.

Accumulators aren’t new syntax.
I Just a new way of using assignment.
I A logical concept, used in most programming languages.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 19 / 31

Averages

Suppose we have a collections of measurements in a list, and we want to
find their average: add them all up and divide by the number of
measurements.

temperatures = [67.0, 69.2, 55.3, 71.2, 65.4]

We can get the length with len(temperatures)

For the sum, we need some kind of loop.
for temp in temperatures:

We’d need to add the next number in each iteration.

We need a variable to keep track of the sum.
I We call such a variable an accumulator.

Accumulators aren’t new syntax.
I Just a new way of using assignment.
I A logical concept, used in most programming languages.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 19 / 31

Averages

Suppose we have a collections of measurements in a list, and we want to
find their average: add them all up and divide by the number of
measurements.

temperatures = [67.0, 69.2, 55.3, 71.2, 65.4]

We can get the length with len(temperatures)

For the sum, we need some kind of loop.
for temp in temperatures:

We’d need to add the next number in each iteration.

We need a variable to keep track of the sum.
I We call such a variable an accumulator.

Accumulators aren’t new syntax.
I Just a new way of using assignment.
I A logical concept, used in most programming languages.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 19 / 31

Averages

Suppose we have a collections of measurements in a list, and we want to
find their average: add them all up and divide by the number of
measurements.

temperatures = [67.0, 69.2, 55.3, 71.2, 65.4]

We can get the length with len(temperatures)

For the sum, we need some kind of loop.
for temp in temperatures:

We’d need to add the next number in each iteration.

We need a variable to keep track of the sum.
I We call such a variable an accumulator.

Accumulators aren’t new syntax.
I Just a new way of using assignment.
I A logical concept, used in most programming languages.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 19 / 31

Averages

Suppose we have a collections of measurements in a list, and we want to
find their average: add them all up and divide by the number of
measurements.

temperatures = [67.0, 69.2, 55.3, 71.2, 65.4]

We can get the length with len(temperatures)

For the sum, we need some kind of loop.
for temp in temperatures:

We’d need to add the next number in each iteration.

We need a variable to keep track of the sum.
I We call such a variable an accumulator.

Accumulators aren’t new syntax.
I Just a new way of using assignment.
I A logical concept, used in most programming languages.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 19 / 31

Accumulators

The general idea of accumulators:

Make an accumulator variable to hold the “total”.
I Like the display on a calculator.

Before the loop, initialize it to a known value.
I Clear the calculator first!
I If we are calculating a sum, start at 0.

total = 0
F 0 is the identity for addition: Adding 0 to a number doesn’t change it.

Inside the loop, use assignment to update the accumulator.

for temp in temperatures:

total = total + temp
I Or use augmented assignment:

total += temp

What if we didn’t initialize total first?
I NameError: name ’total’ is not defined

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 20 / 31

Accumulators

The general idea of accumulators:

Make an accumulator variable to hold the “total”.
I Like the display on a calculator.

Before the loop, initialize it to a known value.
I Clear the calculator first!
I If we are calculating a sum, start at 0.

total = 0

F 0 is the identity for addition: Adding 0 to a number doesn’t change it.

Inside the loop, use assignment to update the accumulator.

for temp in temperatures:

total = total + temp
I Or use augmented assignment:

total += temp

What if we didn’t initialize total first?
I NameError: name ’total’ is not defined

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 20 / 31

Accumulators

The general idea of accumulators:

Make an accumulator variable to hold the “total”.
I Like the display on a calculator.

Before the loop, initialize it to a known value.
I Clear the calculator first!
I If we are calculating a sum, start at 0.

total = 0
F 0 is the identity for addition: Adding 0 to a number doesn’t change it.

Inside the loop, use assignment to update the accumulator.

for temp in temperatures:

total = total + temp
I Or use augmented assignment:

total += temp

What if we didn’t initialize total first?
I NameError: name ’total’ is not defined

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 20 / 31

Accumulators

The general idea of accumulators:

Make an accumulator variable to hold the “total”.
I Like the display on a calculator.

Before the loop, initialize it to a known value.
I Clear the calculator first!
I If we are calculating a sum, start at 0.

total = 0
F 0 is the identity for addition: Adding 0 to a number doesn’t change it.

Inside the loop, use assignment to update the accumulator.

for temp in temperatures:

total = total + temp

I Or use augmented assignment:
total += temp

What if we didn’t initialize total first?
I NameError: name ’total’ is not defined

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 20 / 31

Accumulators

The general idea of accumulators:

Make an accumulator variable to hold the “total”.
I Like the display on a calculator.

Before the loop, initialize it to a known value.
I Clear the calculator first!
I If we are calculating a sum, start at 0.

total = 0
F 0 is the identity for addition: Adding 0 to a number doesn’t change it.

Inside the loop, use assignment to update the accumulator.

for temp in temperatures:

total = total + temp
I Or use augmented assignment:

total += temp

What if we didn’t initialize total first?
I NameError: name ’total’ is not defined

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 20 / 31

Accumulators

The general idea of accumulators:

Make an accumulator variable to hold the “total”.
I Like the display on a calculator.

Before the loop, initialize it to a known value.
I Clear the calculator first!
I If we are calculating a sum, start at 0.

total = 0
F 0 is the identity for addition: Adding 0 to a number doesn’t change it.

Inside the loop, use assignment to update the accumulator.

for temp in temperatures:

total = total + temp
I Or use augmented assignment:

total += temp

What if we didn’t initialize total first?

I NameError: name ’total’ is not defined

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 20 / 31

Accumulators

The general idea of accumulators:

Make an accumulator variable to hold the “total”.
I Like the display on a calculator.

Before the loop, initialize it to a known value.
I Clear the calculator first!
I If we are calculating a sum, start at 0.

total = 0
F 0 is the identity for addition: Adding 0 to a number doesn’t change it.

Inside the loop, use assignment to update the accumulator.

for temp in temperatures:

total = total + temp
I Or use augmented assignment:

total += temp

What if we didn’t initialize total first?
I NameError: name ’total’ is not defined

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 20 / 31

Accumulators

The general idea of accumulators:

Make an accumulator variable to hold the “total”.
I Like the display on a calculator.

Before the loop, initialize it to a known value.
I Clear the calculator first!
I If we are calculating a sum, start at 0.

total = 0
F 0 is the identity for addition: Adding 0 to a number doesn’t change it.

Inside the loop, use assignment to update the accumulator.

for temp in temperatures:

total = total + temp
I Or use augmented assignment:

total += temp

What if we didn’t initialize total first?
I NameError: name ’total’ is not defined

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 20 / 31

Accumulators

Accumulators can be used for more than just addition.

Choose the initial value carefully so it doesn’t change the result.

Factorial: 1, 2 = (1 × 2), 6 = (1 × 2 × 3), . . .
I Inside the loop we will multiply the accumulator.
I If we started with 0, we’d never get anything but 0.
I The multiplicative identity is 1: use that.

factorial = 1

for i in range(1, max + 1):

factorial *= i

Counting: how many times does something happen?
I Just like sum: initialize with 0.
I Instead of adding i , just add 1.

numodd = 0

for i in range(1, 100, 2):

numodd += 1
I We call an accumulator like this a counter.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 21 / 31

Accumulators

Accumulators can be used for more than just addition.

Choose the initial value carefully so it doesn’t change the result.

Factorial: 1, 2 = (1 × 2), 6 = (1 × 2 × 3), . . .
I Inside the loop we will multiply the accumulator.
I If we started with 0, we’d never get anything but 0.

I The multiplicative identity is 1: use that.
factorial = 1

for i in range(1, max + 1):

factorial *= i

Counting: how many times does something happen?
I Just like sum: initialize with 0.
I Instead of adding i , just add 1.

numodd = 0

for i in range(1, 100, 2):

numodd += 1
I We call an accumulator like this a counter.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 21 / 31

Accumulators

Accumulators can be used for more than just addition.

Choose the initial value carefully so it doesn’t change the result.

Factorial: 1, 2 = (1 × 2), 6 = (1 × 2 × 3), . . .
I Inside the loop we will multiply the accumulator.
I If we started with 0, we’d never get anything but 0.
I The multiplicative identity is 1: use that.

factorial = 1

for i in range(1, max + 1):

factorial *= i

Counting: how many times does something happen?
I Just like sum: initialize with 0.
I Instead of adding i , just add 1.

numodd = 0

for i in range(1, 100, 2):

numodd += 1
I We call an accumulator like this a counter.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 21 / 31

Accumulators

Accumulators can be used for more than just addition.

Choose the initial value carefully so it doesn’t change the result.

Factorial: 1, 2 = (1 × 2), 6 = (1 × 2 × 3), . . .
I Inside the loop we will multiply the accumulator.
I If we started with 0, we’d never get anything but 0.
I The multiplicative identity is 1: use that.

factorial = 1

for i in range(1, max + 1):

factorial *= i

Counting: how many times does something happen?
I Just like sum: initialize with 0.
I Instead of adding i , just add 1.

numodd = 0

for i in range(1, 100, 2):

numodd += 1

I We call an accumulator like this a counter.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 21 / 31

Accumulators

Accumulators can be used for more than just addition.

Choose the initial value carefully so it doesn’t change the result.

Factorial: 1, 2 = (1 × 2), 6 = (1 × 2 × 3), . . .
I Inside the loop we will multiply the accumulator.
I If we started with 0, we’d never get anything but 0.
I The multiplicative identity is 1: use that.

factorial = 1

for i in range(1, max + 1):

factorial *= i

Counting: how many times does something happen?
I Just like sum: initialize with 0.
I Instead of adding i , just add 1.

numodd = 0

for i in range(1, 100, 2):

numodd += 1
I We call an accumulator like this a counter.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 21 / 31

Accumulators

Accumulators can be used for more than just addition.

Choose the initial value carefully so it doesn’t change the result.

Factorial: 1, 2 = (1 × 2), 6 = (1 × 2 × 3), . . .
I Inside the loop we will multiply the accumulator.
I If we started with 0, we’d never get anything but 0.
I The multiplicative identity is 1: use that.

factorial = 1

for i in range(1, max + 1):

factorial *= i

Counting: how many times does something happen?
I Just like sum: initialize with 0.
I Instead of adding i , just add 1.

numodd = 0

for i in range(1, 100, 2):

numodd += 1
I We call an accumulator like this a counter.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 21 / 31

More accumulators

Reversing a string.
I Our accumulator will be a string.
I We’ll loop over the characters of the input string.

I Concatenate each new character to the beginning of the accumulator.
F What is the identity for concatenation?
F (What can you concatenate with without changing the answer?)
F The empty string!

instr = input("Enter a string: ")

reversed = ""

for char in instr:

reversed = char + reversed

print(instr, "backwards is", reversed)

reverse.py

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 22 / 31

reverse.py

More accumulators

Reversing a string.
I Our accumulator will be a string.
I We’ll loop over the characters of the input string.
I Concatenate each new character to the beginning of the accumulator.

F What is the identity for concatenation?
F (What can you concatenate with without changing the answer?)

F The empty string!

instr = input("Enter a string: ")

reversed = ""

for char in instr:

reversed = char + reversed

print(instr, "backwards is", reversed)

reverse.py

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 22 / 31

reverse.py

More accumulators

Reversing a string.
I Our accumulator will be a string.
I We’ll loop over the characters of the input string.
I Concatenate each new character to the beginning of the accumulator.

F What is the identity for concatenation?
F (What can you concatenate with without changing the answer?)
F The empty string!

instr = input("Enter a string: ")

reversed = ""

for char in instr:

reversed = char + reversed

print(instr, "backwards is", reversed)

reverse.py

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 22 / 31

reverse.py

More accumulators

Reversing a string.
I Our accumulator will be a string.
I We’ll loop over the characters of the input string.
I Concatenate each new character to the beginning of the accumulator.

F What is the identity for concatenation?
F (What can you concatenate with without changing the answer?)
F The empty string!

instr = input("Enter a string: ")

reversed = ""

for char in instr:

reversed = char + reversed

print(instr, "backwards is", reversed)

reverse.py

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 22 / 31

reverse.py

More accumulators

Reversing a string.
I Our accumulator will be a string.
I We’ll loop over the characters of the input string.
I Concatenate each new character to the beginning of the accumulator.

F What is the identity for concatenation?
F (What can you concatenate with without changing the answer?)
F The empty string!

instr = input("Enter a string: ")

reversed = ""

for char in instr:

reversed = char + reversed

print(instr, "backwards is", reversed)

reverse.py

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 22 / 31

reverse.py

More accumulators

Reversing a string.
I Our accumulator will be a string.
I We’ll loop over the characters of the input string.
I Concatenate each new character to the beginning of the accumulator.

F What is the identity for concatenation?
F (What can you concatenate with without changing the answer?)
F The empty string!

instr = input("Enter a string: ")

reversed = ""

for char in instr:

reversed = char + reversed

print(instr, "backwards is", reversed)

reverse.py

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 22 / 31

reverse.py

More accumulators

Reversing a string.
I Our accumulator will be a string.
I We’ll loop over the characters of the input string.
I Concatenate each new character to the beginning of the accumulator.

F What is the identity for concatenation?
F (What can you concatenate with without changing the answer?)
F The empty string!

instr = input("Enter a string: ")

reversed = ""

for char in instr:

reversed = char + reversed

print(instr, "backwards is", reversed)

reverse.py

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 22 / 31

reverse.py

More accumulators

Reversing a string.
I Our accumulator will be a string.
I We’ll loop over the characters of the input string.
I Concatenate each new character to the beginning of the accumulator.

F What is the identity for concatenation?
F (What can you concatenate with without changing the answer?)
F The empty string!

instr = input("Enter a string: ")

reversed = ""

for char in instr:

reversed = char + reversed

print(instr, "backwards is", reversed)

reverse.py

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 22 / 31

reverse.py

Previous-current loop

Sometimes a loop needs two items from the sequence at once.

Drawing lines, computing distances.

Or to see if user input has changed.

We can save the “previous” item in a variable.
1 Initialize prev
2 Loop:

1 curr = the new item.
2 Do something with prev and curr.
3 prev = curr

In the first iteration, prev is the initial value.

On following iterations, prev is the value from the preceding iteration.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 23 / 31

Previous-current loop

Sometimes a loop needs two items from the sequence at once.

Drawing lines, computing distances.

Or to see if user input has changed.

We can save the “previous” item in a variable.
1 Initialize prev

2 Loop:

1 curr = the new item.
2 Do something with prev and curr.
3 prev = curr

In the first iteration, prev is the initial value.

On following iterations, prev is the value from the preceding iteration.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 23 / 31

Previous-current loop

Sometimes a loop needs two items from the sequence at once.

Drawing lines, computing distances.

Or to see if user input has changed.

We can save the “previous” item in a variable.
1 Initialize prev
2 Loop:

1 curr = the new item.

2 Do something with prev and curr.
3 prev = curr

In the first iteration, prev is the initial value.

On following iterations, prev is the value from the preceding iteration.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 23 / 31

Previous-current loop

Sometimes a loop needs two items from the sequence at once.

Drawing lines, computing distances.

Or to see if user input has changed.

We can save the “previous” item in a variable.
1 Initialize prev
2 Loop:

1 curr = the new item.
2 Do something with prev and curr.

3 prev = curr

In the first iteration, prev is the initial value.

On following iterations, prev is the value from the preceding iteration.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 23 / 31

Previous-current loop

Sometimes a loop needs two items from the sequence at once.

Drawing lines, computing distances.

Or to see if user input has changed.

We can save the “previous” item in a variable.
1 Initialize prev
2 Loop:

1 curr = the new item.
2 Do something with prev and curr.
3 prev = curr

In the first iteration, prev is the initial value.

On following iterations, prev is the value from the preceding iteration.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 23 / 31

Previous-current loop

Sometimes a loop needs two items from the sequence at once.

Drawing lines, computing distances.

Or to see if user input has changed.

We can save the “previous” item in a variable.
1 Initialize prev
2 Loop:

1 curr = the new item.
2 Do something with prev and curr.
3 prev = curr

In the first iteration, prev is the initial value.

On following iterations, prev is the value from the preceding iteration.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 23 / 31

Previous-current loop

Sometimes a loop needs two items from the sequence at once.

Drawing lines, computing distances.

Or to see if user input has changed.

We can save the “previous” item in a variable.
1 Initialize prev
2 Loop:

1 curr = the new item.
2 Do something with prev and curr.
3 prev = curr

In the first iteration, prev is the initial value.

On following iterations, prev is the value from the preceding iteration.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 23 / 31

Previous-current loop

Sometimes a loop needs two items from the sequence at once.

Drawing lines, computing distances.

Or to see if user input has changed.

We can save the “previous” item in a variable.
1 Initialize prev
2 Loop:

1 curr = the new item.
2 Do something with prev and curr.
3 prev = curr

In the first iteration, prev is the initial value.

On following iterations, prev is the value from the preceding iteration.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 23 / 31

Tracing code

Code with loops, several values, etc. can get complicated.

It’s good to know what it will do before running it.

I Trial and error is good for practice and experimentation.
I Not so good for making working, bug-free code.

We’ll learn several debugging techniques in class.
I One of the simplest and most useful is tracing.

F Also known as a “desk check”.

I Run though code line-by-line, simulating its behavior.
I Keep track of the variables and output.
I Pretend you are the interpreter

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 24 / 31

Tracing code

Code with loops, several values, etc. can get complicated.

It’s good to know what it will do before running it.
I Trial and error is good for practice and experimentation.

I Not so good for making working, bug-free code.

We’ll learn several debugging techniques in class.
I One of the simplest and most useful is tracing.

F Also known as a “desk check”.

I Run though code line-by-line, simulating its behavior.
I Keep track of the variables and output.
I Pretend you are the interpreter

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 24 / 31

Tracing code

Code with loops, several values, etc. can get complicated.

It’s good to know what it will do before running it.
I Trial and error is good for practice and experimentation.
I Not so good for making working, bug-free code.

We’ll learn several debugging techniques in class.
I One of the simplest and most useful is tracing.

F Also known as a “desk check”.

I Run though code line-by-line, simulating its behavior.
I Keep track of the variables and output.
I Pretend you are the interpreter

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 24 / 31

Tracing code

Code with loops, several values, etc. can get complicated.

It’s good to know what it will do before running it.
I Trial and error is good for practice and experimentation.
I Not so good for making working, bug-free code.

We’ll learn several debugging techniques in class.
I One of the simplest and most useful is tracing.

F Also known as a “desk check”.

I Run though code line-by-line, simulating its behavior.
I Keep track of the variables and output.
I Pretend you are the interpreter

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 24 / 31

Tracing code

Code with loops, several values, etc. can get complicated.

It’s good to know what it will do before running it.
I Trial and error is good for practice and experimentation.
I Not so good for making working, bug-free code.

We’ll learn several debugging techniques in class.
I One of the simplest and most useful is tracing.

F Also known as a “desk check”.

I Run though code line-by-line, simulating its behavior.
I Keep track of the variables and output.

I Pretend you are the interpreter

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 24 / 31

Tracing code

Code with loops, several values, etc. can get complicated.

It’s good to know what it will do before running it.
I Trial and error is good for practice and experimentation.
I Not so good for making working, bug-free code.

We’ll learn several debugging techniques in class.
I One of the simplest and most useful is tracing.

F Also known as a “desk check”.

I Run though code line-by-line, simulating its behavior.
I Keep track of the variables and output.
I Pretend you are the interpreter

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 24 / 31

Tracing code

Code with loops, several values, etc. can get complicated.

It’s good to know what it will do before running it.
I Trial and error is good for practice and experimentation.
I Not so good for making working, bug-free code.

We’ll learn several debugging techniques in class.
I One of the simplest and most useful is tracing.

F Also known as a “desk check”.

I Run though code line-by-line, simulating its behavior.
I Keep track of the variables and output.
I Pretend you are the interpreter

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 24 / 31

Tracing a previous-current loop
1: prev = get mouse

2: for i in range(2):

3: curr = get mouse

4: draw line from prev to curr

5: prev = curr

Line i prev curr output

1 – (50, 50) –
2 0 (50, 50) –
3 0 (50, 50) (400, 50)
4 0 (50, 50) (400, 50) One line
5 0 (400, 50) (400, 50)
2 1 (400, 50) (400, 50)
3 1 (400, 50) (200, 300)
4 1 (400, 50) (200, 300) Another line
5 1 (200, 300) (200, 300)

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 25 / 31

Tracing a previous-current loop
1: prev = get mouse

2: for i in range(2):

3: curr = get mouse

4: draw line from prev to curr

5: prev = curr

Line i prev curr output

1 – (50, 50) –

2 0 (50, 50) –
3 0 (50, 50) (400, 50)
4 0 (50, 50) (400, 50) One line
5 0 (400, 50) (400, 50)
2 1 (400, 50) (400, 50)
3 1 (400, 50) (200, 300)
4 1 (400, 50) (200, 300) Another line
5 1 (200, 300) (200, 300)

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 25 / 31

Tracing a previous-current loop
1: prev = get mouse

2: for i in range(2):

3: curr = get mouse

4: draw line from prev to curr

5: prev = curr

Line i prev curr output

1 – (50, 50) –
2 0 (50, 50) –

3 0 (50, 50) (400, 50)
4 0 (50, 50) (400, 50) One line
5 0 (400, 50) (400, 50)
2 1 (400, 50) (400, 50)
3 1 (400, 50) (200, 300)
4 1 (400, 50) (200, 300) Another line
5 1 (200, 300) (200, 300)

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 25 / 31

Tracing a previous-current loop
1: prev = get mouse

2: for i in range(2):

3: curr = get mouse

4: draw line from prev to curr

5: prev = curr

Line i prev curr output

1 – (50, 50) –
2 0 (50, 50) –
3 0 (50, 50) (400, 50)

4 0 (50, 50) (400, 50) One line
5 0 (400, 50) (400, 50)
2 1 (400, 50) (400, 50)
3 1 (400, 50) (200, 300)
4 1 (400, 50) (200, 300) Another line
5 1 (200, 300) (200, 300)

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 25 / 31

Tracing a previous-current loop
1: prev = get mouse

2: for i in range(2):

3: curr = get mouse

4: draw line from prev to curr

5: prev = curr

Line i prev curr output

1 – (50, 50) –
2 0 (50, 50) –
3 0 (50, 50) (400, 50)
4 0 (50, 50) (400, 50) One line

5 0 (400, 50) (400, 50)
2 1 (400, 50) (400, 50)
3 1 (400, 50) (200, 300)
4 1 (400, 50) (200, 300) Another line
5 1 (200, 300) (200, 300)

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 25 / 31

Tracing a previous-current loop
1: prev = get mouse

2: for i in range(2):

3: curr = get mouse

4: draw line from prev to curr

5: prev = curr

Line i prev curr output

1 – (50, 50) –
2 0 (50, 50) –
3 0 (50, 50) (400, 50)
4 0 (50, 50) (400, 50) One line
5 0 (400, 50) (400, 50)

2 1 (400, 50) (400, 50)
3 1 (400, 50) (200, 300)
4 1 (400, 50) (200, 300) Another line
5 1 (200, 300) (200, 300)

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 25 / 31

Tracing a previous-current loop
1: prev = get mouse

2: for i in range(2):

3: curr = get mouse

4: draw line from prev to curr

5: prev = curr

Line i prev curr output

1 – (50, 50) –
2 0 (50, 50) –
3 0 (50, 50) (400, 50)
4 0 (50, 50) (400, 50) One line
5 0 (400, 50) (400, 50)
2 1 (400, 50) (400, 50)

3 1 (400, 50) (200, 300)
4 1 (400, 50) (200, 300) Another line
5 1 (200, 300) (200, 300)

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 25 / 31

Tracing a previous-current loop
1: prev = get mouse

2: for i in range(2):

3: curr = get mouse

4: draw line from prev to curr

5: prev = curr

Line i prev curr output

1 – (50, 50) –
2 0 (50, 50) –
3 0 (50, 50) (400, 50)
4 0 (50, 50) (400, 50) One line
5 0 (400, 50) (400, 50)
2 1 (400, 50) (400, 50)
3 1 (400, 50) (200, 300)

4 1 (400, 50) (200, 300) Another line
5 1 (200, 300) (200, 300)

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 25 / 31

Tracing a previous-current loop
1: prev = get mouse

2: for i in range(2):

3: curr = get mouse

4: draw line from prev to curr

5: prev = curr

Line i prev curr output

1 – (50, 50) –
2 0 (50, 50) –
3 0 (50, 50) (400, 50)
4 0 (50, 50) (400, 50) One line
5 0 (400, 50) (400, 50)
2 1 (400, 50) (400, 50)
3 1 (400, 50) (200, 300)
4 1 (400, 50) (200, 300) Another line

5 1 (200, 300) (200, 300)

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 25 / 31

Tracing a previous-current loop
1: prev = get mouse

2: for i in range(2):

3: curr = get mouse

4: draw line from prev to curr

5: prev = curr

Line i prev curr output

1 – (50, 50) –
2 0 (50, 50) –
3 0 (50, 50) (400, 50)
4 0 (50, 50) (400, 50) One line
5 0 (400, 50) (400, 50)
2 1 (400, 50) (400, 50)
3 1 (400, 50) (200, 300)
4 1 (400, 50) (200, 300) Another line
5 1 (200, 300) (200, 300)

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 25 / 31

Tracing a previous-current loop
1: prev = get mouse

2: for i in range(2):

3: curr = get mouse

4: draw line from prev to curr

5: prev = curr

Line i prev curr output

1 – (50, 50) –
2 0 (50, 50) –
3 0 (50, 50) (400, 50)
4 0 (50, 50) (400, 50) One line
5 0 (400, 50) (400, 50)
2 1 (400, 50) (400, 50)
3 1 (400, 50) (200, 300)
4 1 (400, 50) (200, 300) Another line
5 1 (200, 300) (200, 300)

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 25 / 31

Tracing a previous-current loop
1: prev = get mouse

2: for i in range(2):

3: curr = get mouse

4: draw line from prev to curr

5: prev = curr

Line i prev curr output

1 – (50, 50) –
2 0 (50, 50) –
3 0 (50, 50) (400, 50)
4 0 (50, 50) (400, 50) One line
5 0 (400, 50) (400, 50)
2 1 (400, 50) (400, 50)
3 1 (400, 50) (200, 300)
4 1 (400, 50) (200, 300) Another line
5 1 (200, 300) (200, 300)

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 25 / 31

Drawing program

Let’s write a program that lets the user click on a sequence of points to
draw a path.

What do we need to draw a line?
I Two points.
I The previous point, and the new one.

We’ll have a loop where the user clicks on points.
I Draw a line from the previous point to the new one.
I No line for the first point.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 26 / 31

Drawing program

Let’s write a program that lets the user click on a sequence of points to
draw a path.

What do we need to draw a line?

I Two points.
I The previous point, and the new one.

We’ll have a loop where the user clicks on points.
I Draw a line from the previous point to the new one.
I No line for the first point.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 26 / 31

Drawing program

Let’s write a program that lets the user click on a sequence of points to
draw a path.

What do we need to draw a line?
I Two points.
I The previous point, and the new one.

We’ll have a loop where the user clicks on points.
I Draw a line from the previous point to the new one.
I No line for the first point.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 26 / 31

Drawing program

Let’s write a program that lets the user click on a sequence of points to
draw a path.

What do we need to draw a line?
I Two points.
I The previous point, and the new one.

We’ll have a loop where the user clicks on points.
I Draw a line from the previous point to the new one.
I No line for the first point.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 26 / 31

Drawing program

Let’s write a program that lets the user click on a sequence of points to
draw a path.

What do we need to draw a line?
I Two points.
I The previous point, and the new one.

We’ll have a loop where the user clicks on points.
I Draw a line from the previous point to the new one.
I No line for the first point.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 26 / 31

Flag variables

A flag is another word for a boolean variable.

Often used with a loop, like an accumulator.
I Set the flag to True or False before the loop.
I Inside the loop, maybe set it to the opposite.
I After the loop, check the flag’s value.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 27 / 31

Flag variables

A flag is another word for a boolean variable.

Often used with a loop, like an accumulator.
I Set the flag to True or False before the loop.
I Inside the loop, maybe set it to the opposite.
I After the loop, check the flag’s value.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 27 / 31

Common patterns: any

As an example of a flag variable, let’s check whether any of a
sequence of numbers is negative.

We’ll start with a flag.
any neg = False # None so far...

for number in 0, 5, 12, -1, 2:

if number < 0:

any neg = True # Found one!

if any neg: # Or if any neg == True:

print("Some number was negative")

To check “some” or “any”:
I Initialize the flag to False.
I Set it to True if you find something.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 28 / 31

Common patterns: any

As an example of a flag variable, let’s check whether any of a
sequence of numbers is negative.

We’ll start with a flag.
any neg = False # None so far...

for number in 0, 5, 12, -1, 2:

if number < 0:

any neg = True # Found one!

if any neg: # Or if any neg == True:

print("Some number was negative")

To check “some” or “any”:
I Initialize the flag to False.
I Set it to True if you find something.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 28 / 31

Common patterns: any

As an example of a flag variable, let’s check whether any of a
sequence of numbers is negative.

We’ll start with a flag.
any neg = False # None so far...

for number in 0, 5, 12, -1, 2:

if number < 0:

any neg = True # Found one!

if any neg: # Or if any neg == True:

print("Some number was negative")

To check “some” or “any”:
I Initialize the flag to False.
I Set it to True if you find something.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 28 / 31

Common patterns: any

As an example of a flag variable, let’s check whether any of a
sequence of numbers is negative.

We’ll start with a flag.
any neg = False # None so far...

for number in 0, 5, 12, -1, 2:

if number < 0:

any neg = True # Found one!

if any neg: # Or if any neg == True:

print("Some number was negative")

To check “some” or “any”:
I Initialize the flag to False.
I Set it to True if you find something.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 28 / 31

Common patterns: any

As an example of a flag variable, let’s check whether any of a
sequence of numbers is negative.

We’ll start with a flag.
any neg = False # None so far...

for number in 0, 5, 12, -1, 2:

if number < 0:

any neg = True # Found one!

if any neg: # Or if any neg == True:

print("Some number was negative")

To check “some” or “any”:
I Initialize the flag to False.
I Set it to True if you find something.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 28 / 31

Common patterns: any

As an example of a flag variable, let’s check whether any of a
sequence of numbers is negative.

We’ll start with a flag.
any neg = False # None so far...

for number in 0, 5, 12, -1, 2:

if number < 0:

any neg = True # Found one!

if any neg: # Or if any neg == True:

print("Some number was negative")

To check “some” or “any”:
I Initialize the flag to False.
I Set it to True if you find something.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 28 / 31

Common patterns: any

As an example of a flag variable, let’s check whether any of a
sequence of numbers is negative.

We’ll start with a flag.
any neg = False # None so far...

for number in 0, 5, 12, -1, 2:

if number < 0:

any neg = True # Found one!

if any neg: # Or if any neg == True:

print("Some number was negative")

To check “some” or “any”:
I Initialize the flag to False.
I Set it to True if you find something.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 28 / 31

Common patterns: all

Checking if something is true for all inputs is the opposite of “any”:
I Initialize the flag to True.
I Set it to False if you find an exception.

all even = True # No exception yet

for number in 8, 12, 2, 1:

if number % 2 != 0: # if not even

all even = False

if all even:

print("Every number was even.")

Remember, you must initialize the flag before the loop!

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 29 / 31

Common patterns: all

Checking if something is true for all inputs is the opposite of “any”:
I Initialize the flag to True.
I Set it to False if you find an exception.

all even = True # No exception yet

for number in 8, 12, 2, 1:

if number % 2 != 0: # if not even

all even = False

if all even:

print("Every number was even.")

Remember, you must initialize the flag before the loop!

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 29 / 31

Common patterns: all

Checking if something is true for all inputs is the opposite of “any”:
I Initialize the flag to True.
I Set it to False if you find an exception.

all even = True # No exception yet

for number in 8, 12, 2, 1:

if number % 2 != 0: # if not even

all even = False

if all even:

print("Every number was even.")

Remember, you must initialize the flag before the loop!

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 29 / 31

Adding some features

Let’s add two features to our program:
1 We’ll ask the user for the number of points.

I Using an Entry object.

2 We’ll count and display the total length of the lines.
I Using an accumulator in the loop.
I And a Text object to display the length.
I Distance formula: dist =

√
(x2 − x1)2 + (y2 − y1)2

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 30 / 31

Adding some features

Let’s add two features to our program:
1 We’ll ask the user for the number of points.

I Using an Entry object.

2 We’ll count and display the total length of the lines.
I Using an accumulator in the loop.
I And a Text object to display the length.
I Distance formula: dist =

√
(x2 − x1)2 + (y2 − y1)2

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 30 / 31

Adding some features

Let’s add two features to our program:
1 We’ll ask the user for the number of points.

I Using an Entry object.

2 We’ll count and display the total length of the lines.

I Using an accumulator in the loop.
I And a Text object to display the length.
I Distance formula: dist =

√
(x2 − x1)2 + (y2 − y1)2

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 30 / 31

Adding some features

Let’s add two features to our program:
1 We’ll ask the user for the number of points.

I Using an Entry object.

2 We’ll count and display the total length of the lines.
I Using an accumulator in the loop.
I And a Text object to display the length.

I Distance formula: dist =
√

(x2 − x1)2 + (y2 − y1)2

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 30 / 31

Adding some features

Let’s add two features to our program:
1 We’ll ask the user for the number of points.

I Using an Entry object.

2 We’ll count and display the total length of the lines.
I Using an accumulator in the loop.
I And a Text object to display the length.
I Distance formula: dist =

√
(x2 − x1)2 + (y2 − y1)2

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 30 / 31

Adding some features

Let’s add two features to our program:
1 We’ll ask the user for the number of points.

I Using an Entry object.

2 We’ll count and display the total length of the lines.
I Using an accumulator in the loop.
I And a Text object to display the length.
I Distance formula: dist =

√
(x2 − x1)2 + (y2 − y1)2

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 30 / 31

Testing loops

How to test a loop?

Verify that it runs the correct number of times.

What if the number of iterations is controlled by the user?
I For example, our drawing program.
I What situations might cause an error?

F The code might fail when the loop doesn’t run.
F Or it might fail on the first iteration.
F Or it might only fail with multiple iterations.

I So you need three test cases:
1 The loop doesn’t run at all.
2 The loop runs once.
3 The loop runs several times.

The three most important numbers in CS: 0, 1, many.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 31 / 31

Testing loops

How to test a loop?

Verify that it runs the correct number of times.

What if the number of iterations is controlled by the user?
I For example, our drawing program.

I What situations might cause an error?
F The code might fail when the loop doesn’t run.
F Or it might fail on the first iteration.
F Or it might only fail with multiple iterations.

I So you need three test cases:
1 The loop doesn’t run at all.
2 The loop runs once.
3 The loop runs several times.

The three most important numbers in CS: 0, 1, many.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 31 / 31

Testing loops

How to test a loop?

Verify that it runs the correct number of times.

What if the number of iterations is controlled by the user?
I For example, our drawing program.
I What situations might cause an error?

F The code might fail when the loop doesn’t run.

F Or it might fail on the first iteration.
F Or it might only fail with multiple iterations.

I So you need three test cases:
1 The loop doesn’t run at all.
2 The loop runs once.
3 The loop runs several times.

The three most important numbers in CS: 0, 1, many.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 31 / 31

Testing loops

How to test a loop?

Verify that it runs the correct number of times.

What if the number of iterations is controlled by the user?
I For example, our drawing program.
I What situations might cause an error?

F The code might fail when the loop doesn’t run.
F Or it might fail on the first iteration.

F Or it might only fail with multiple iterations.

I So you need three test cases:
1 The loop doesn’t run at all.
2 The loop runs once.
3 The loop runs several times.

The three most important numbers in CS: 0, 1, many.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 31 / 31

Testing loops

How to test a loop?

Verify that it runs the correct number of times.

What if the number of iterations is controlled by the user?
I For example, our drawing program.
I What situations might cause an error?

F The code might fail when the loop doesn’t run.
F Or it might fail on the first iteration.
F Or it might only fail with multiple iterations.

I So you need three test cases:
1 The loop doesn’t run at all.
2 The loop runs once.
3 The loop runs several times.

The three most important numbers in CS: 0, 1, many.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 31 / 31

Testing loops

How to test a loop?

Verify that it runs the correct number of times.

What if the number of iterations is controlled by the user?
I For example, our drawing program.
I What situations might cause an error?

F The code might fail when the loop doesn’t run.
F Or it might fail on the first iteration.
F Or it might only fail with multiple iterations.

I So you need three test cases:
1 The loop doesn’t run at all.
2 The loop runs once.
3 The loop runs several times.

The three most important numbers in CS: 0, 1, many.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 31 / 31

Testing loops

How to test a loop?

Verify that it runs the correct number of times.

What if the number of iterations is controlled by the user?
I For example, our drawing program.
I What situations might cause an error?

F The code might fail when the loop doesn’t run.
F Or it might fail on the first iteration.
F Or it might only fail with multiple iterations.

I So you need three test cases:
1 The loop doesn’t run at all.
2 The loop runs once.
3 The loop runs several times.

The three most important numbers in CS

: 0, 1, many.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 31 / 31

Testing loops

How to test a loop?

Verify that it runs the correct number of times.

What if the number of iterations is controlled by the user?
I For example, our drawing program.
I What situations might cause an error?

F The code might fail when the loop doesn’t run.
F Or it might fail on the first iteration.
F Or it might only fail with multiple iterations.

I So you need three test cases:
1 The loop doesn’t run at all.
2 The loop runs once.
3 The loop runs several times.

The three most important numbers in CS: 0

, 1, many.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 31 / 31

Testing loops

How to test a loop?

Verify that it runs the correct number of times.

What if the number of iterations is controlled by the user?
I For example, our drawing program.
I What situations might cause an error?

F The code might fail when the loop doesn’t run.
F Or it might fail on the first iteration.
F Or it might only fail with multiple iterations.

I So you need three test cases:
1 The loop doesn’t run at all.
2 The loop runs once.
3 The loop runs several times.

The three most important numbers in CS: 0, 1

, many.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 31 / 31

Testing loops

How to test a loop?

Verify that it runs the correct number of times.

What if the number of iterations is controlled by the user?
I For example, our drawing program.
I What situations might cause an error?

F The code might fail when the loop doesn’t run.
F Or it might fail on the first iteration.
F Or it might only fail with multiple iterations.

I So you need three test cases:
1 The loop doesn’t run at all.
2 The loop runs once.
3 The loop runs several times.

The three most important numbers in CS: 0, 1, many.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 31 / 31

Testing loops

How to test a loop?

Verify that it runs the correct number of times.

What if the number of iterations is controlled by the user?
I For example, our drawing program.
I What situations might cause an error?

F The code might fail when the loop doesn’t run.
F Or it might fail on the first iteration.
F Or it might only fail with multiple iterations.

I So you need three test cases:
1 The loop doesn’t run at all.
2 The loop runs once.
3 The loop runs several times.

The three most important numbers in CS: 0, 1, many.

Neil Moore (UK CS) CS 115 Lecture 10 Fall 2015 31 / 31

