CS 115 Lecture 9

Boolean logic; random numbers

Neil Moore

Department of Computer Science
University of Kentucky
Lexington, Kentucky 40506

neil@cs.uky.edu

29 September 2015
1 October 2015



Augmented assignment

Often you want to perform an operation on a variable and store the result
in the same variable:

num_students = num_students + 1

price = price * 0.9 # 10 percent discount

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 2 /18



Augmented assignment

Often you want to perform an operation on a variable and store the result
in the same variable:

num_students = num_students + 1
price = price * 0.9 # 10 percent discount

change = change % 25 # change after quarters

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 2 /18



Augmented assignment

Often you want to perform an operation on a variable and store the result
in the same variable:

num_students = num_students + 1

price = price * 0.9 # 10 percent discount

change = change % 25 # change after quarters
Python provides a shorthand for this, augmented assignment:

num_students += 1

price *= 0.9

change %= 25

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 2 /18



Augmented assignment

Often you want to perform an operation on a variable and store the result

in the same variable:
num_students = num_students + 1
price = price * 0.9 # 10 percent discount
change = change % 25 # change after quarters

Python provides a shorthand for this, augmented assignment:
num_students += 1
price *= 0.9
change %= 25

@ Combines assignment with an arithmetic operator.

@ The precedence is the same as assignment (=).
» Evaluate the right hand side first.

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015

2/18



Augmented assignment

Often you want to perform an operation on a variable and store the result

in the same variable:
num_students = num_students + 1
price = price * 0.9 # 10 percent discount
change = change % 25 # change after quarters

Python provides a shorthand for this, augmented assignment:
num_students += 1
price *= 0.9
change %= 25

@ Combines assignment with an arithmetic operator.

@ The precedence is the same as assignment (=).

» Evaluate the right hand side first.
» What does this do? product *= i + 1

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015

2/18



Augmented assignment

Often you want to perform an operation on a variable and store the result

in the same variable:

num_students = num_students + 1

price = price * 0.9 # 10 percent discount

change = change % 25 # change after quarters
Python provides a shorthand for this, augmented assignment:

num_students += 1

price *= 0.9

change %= 25

@ Combines assignment with an arithmetic operator.

@ The precedence is the same as assignment (=).

» Evaluate the right hand side first.
» What does this do? product *= i + 1
» Not: product = product * i + 1

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015

2/18



Augmented assignment

Often you want to perform an operation on a variable and store the result

in the same variable:

num_students = num_students + 1

price = price * 0.9 # 10 percent discount

change = change % 25 # change after quarters
Python provides a shorthand for this, augmented assignment:

num_students += 1

price *= 0.9

change %= 25

@ Combines assignment with an arithmetic operator.

@ The precedence is the same as assignment (=).
» Evaluate the right hand side first.
» What does this do? product *= i + 1
» Not: product = product * i + 1
» But: product = product * (i + 1)

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015

2/18



Augmented assignment

Often you want to perform an operation on a variable and store the result

in the same variable:

num_students = num_students + 1

price = price * 0.9 # 10 percent discount

change = change % 25 # change after quarters
Python provides a shorthand for this, augmented assignment:

num_students += 1

price *= 0.9

change %= 25

@ Combines assignment with an arithmetic operator.

@ The precedence is the same as assignment (=).
» Evaluate the right hand side first.
» What does this do? product *= i + 1
» Not: product = product * i + 1
» But: product = product * (i + 1)

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015

2/18



Comparing strings

The relational operators <, >=, etc. work with strings, too.

Neil Moore (UK CS) CS 115 Lecture 9


https://en.wikipedia.org/wiki/ASCII#ASCII_printable_code_chart

Comparing strings

The relational operators <, >=, etc. work with strings, too.

@ Uses a form of “lexicographic” (alphabetical, dictionary) order.

» Compare corresponding characters in order.
» The first difference tells us the answer.
» ’comparison’ < ’compiler’

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 3/18


https://en.wikipedia.org/wiki/ASCII#ASCII_printable_code_chart

Comparing strings

The relational operators <, >=, etc. work with strings, too.

@ Uses a form of “lexicographic” (alphabetical, dictionary) order.

» Compare corresponding characters in order.
» The first difference tells us the answer.
» ’comparison’ < ’compiler’

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 3/18


https://en.wikipedia.org/wiki/ASCII#ASCII_printable_code_chart

Comparing strings

The relational operators <, >=, etc. work with strings, too.

@ Uses a form of “lexicographic” (alphabetical, dictionary) order.

» Compare corresponding characters in order.
» The first difference tells us the answer.
» ’comparison’ < ’compiler’

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 3/18


https://en.wikipedia.org/wiki/ASCII#ASCII_printable_code_chart

Comparing strings

The relational operators <, >=, etc. work with strings, too.

@ Uses a form of “lexicographic” (alphabetical, dictionary) order.

» Compare corresponding characters in order.
» The first difference tells us the answer.
» ’comparison’ < ’compiler’

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 3/18


https://en.wikipedia.org/wiki/ASCII#ASCII_printable_code_chart

Comparing strings

The relational operators <, >=, etc. work with strings, too.

@ Uses a form of “lexicographic” (alphabetical, dictionary) order.

» Compare corresponding characters in order.
» The first difference tells us the answer.
» ’comparison’ < ’compiler’

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 3/18


https://en.wikipedia.org/wiki/ASCII#ASCII_printable_code_chart

Comparing strings

The relational operators <, >=, etc. work with strings, too.

@ Uses a form of “lexicographic” (alphabetical, dictionary) order.

» Compare corresponding characters in order.
» The first difference tells us the answer.
» ’comparison’ < ’compiler’

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 3/18


https://en.wikipedia.org/wiki/ASCII#ASCII_printable_code_chart

Comparing strings

The relational operators <, >=, etc. work with strings, too.

@ Uses a form of “lexicographic” (alphabetical, dictionary) order.

» Compare corresponding characters in order.
» The first difference tells us the answer.

» ’comparison’ < ’compiler’

> Prefix comes “first”: ’pick’ < ’pickle’

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015

3/18


https://en.wikipedia.org/wiki/ASCII#ASCII_printable_code_chart

Comparing strings

The relational operators <, >=, etc. work with strings, too.

@ Uses a form of “lexicographic” (alphabetical, dictionary) order.
» Compare corresponding characters in order.
» The first difference tells us the answer.
» ’comparison’ < ’compiler’
> Prefix comes “first”: *pick’ < ’pickle’
e Compares the numeric code (Unicode) for each character.
Mostly alphabetic for basic English characters.
Uppercase before lowercase! *Z’ < ’a’
Digits come before letters. A2’ < 2AA°
Space comes before digits and letters. *good day’ < ’goodbye’
A G VL R U ° MR G S GERNE G AN G- L G A

vV v vy VvYYy

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 3/18


https://en.wikipedia.org/wiki/ASCII#ASCII_printable_code_chart

Comparing strings

The relational operators <, >=, etc. work with strings, too.

@ Uses a form of “lexicographic” (alphabetical, dictionary) order.
» Compare corresponding characters in order.
» The first difference tells us the answer.
» ’comparison’ < ’compiler’
> Prefix comes “first”: *pick’ < ’pickle’
e Compares the numeric code (Unicode) for each character.
Mostly alphabetic for basic English characters.
» Uppercase before lowercase! °Z’> < ’a’
» Digits come before letters. A2’ < 2AA°
> Space comes before digits and letters. *good day’ < ’goodbye’
| G (LR G G * AR Y S G VAN G- L R GAd
» ASCII is a subset of Unicode with only basic English characters.
https://en.wikipedia.org/wiki/ASCII#ASCII_printable_code_chart

v

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 3/18


https://en.wikipedia.org/wiki/ASCII#ASCII_printable_code_chart

Comparing strings

The relational operators <, >=, etc. work with strings, too.

@ Uses a form of “lexicographic” (alphabetical, dictionary) order.
» Compare corresponding characters in order.
» The first difference tells us the answer.
» ’comparison’ < ’compiler’
> Prefix comes “first”: *pick’ < ’pickle’
e Compares the numeric code (Unicode) for each character.

Mostly alphabetic for basic English characters.

» Uppercase before lowercase! °Z’> < ’a’

» Digits come before letters. A2’ < 2AA°

> Space comes before digits and letters. *good day’ < ’goodbye’
| G (LR G G * AR Y S G VAN G- L R GAd

» ASCII is a subset of Unicode with only basic English characters.
https://en.wikipedia.org/wiki/ASCII#ASCII_printable_code_chart

v

@ Can't compare a string to a number, only to other strings!

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 3/18


https://en.wikipedia.org/wiki/ASCII#ASCII_printable_code_chart

Comparing strings

The relational operators <, >=, etc. work with strings, too.

@ Uses a form of “lexicographic” (alphabetical, dictionary) order.
» Compare corresponding characters in order.
» The first difference tells us the answer.
» ’comparison’ < ’compiler’
> Prefix comes “first”: *pick’ < ’pickle’
e Compares the numeric code (Unicode) for each character.

Mostly alphabetic for basic English characters.

» Uppercase before lowercase! °Z’> < ’a’

» Digits come before letters. A2’ < 2AA°

> Space comes before digits and letters. *good day’ < ’goodbye’
| G (LR G G * AR Y S G VAN G- L R GAd

» ASCII is a subset of Unicode with only basic English characters.
https://en.wikipedia.org/wiki/ASCII#ASCII_printable_code_chart

v

@ Can't compare a string to a number, only to other strings!

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 3/18


https://en.wikipedia.org/wiki/ASCII#ASCII_printable_code_chart

Chaining comparisons

@ In Python, comparisons can be chained together:
if 0 < x < y <= 100:

Neil Moore (UK CS) CS 115 Lecture 9



Chaining comparisons

@ In Python, comparisons can be chained together:

if 0 < x <y <= 100:
@ Means: 0 < x and x < y and y < 100.

Neil Moore (UK CS) CS 115 Lecture 9

Fall 2015

4/18



Chaining comparisons

@ In Python, comparisons can be chained together:
if 0 < x <y <= 100:

@ Means: 0 < x and x < y and y < 100.

@ This notation is common in mathematics.

» But not in most programming languages!
» Python is rather unique in allowing it.

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 4/18



Chaining comparisons

@ In Python, comparisons can be chained together:
if 0 < x <y <= 100:

@ Means: 0 < x and x < y and y < 100.

@ This notation is common in mathematics.

» But not in most programming languages!
» Python is rather unique in allowing it.

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 4/18



Boolean logic

There are three logical operators that let us combine boolean

expressions. They have lower precedence than the relational operators.

@ not A: True if A is false, false if A is true.

» A can be any boolean expression:
if not is_finished:
do_more_work ()

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015

5/18



Boolean logic

There are three logical operators that let us combine boolean
expressions. They have lower precedence than the relational operators.
@ not A: True if A is false, false if A is true.

» A can be any boolean expression:
if not is_finished:
do_more_work ()

@ A and B: True if both A and B are true.
in_range = size >= 0 and size <= 100

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 5/18



Boolean logic

There are three logical operators that let us combine boolean

expressions. They have lower precedence than the relational operators.

@ not A: True if A is false, false if A is true.

» A can be any boolean expression:
if not is_finished:
do_more_work ()

@ A and B: True if both A and B are true.
in_range = size >= 0 and size <= 100
@ A or B: True if either A or B is true.
» Or both!

if snow_inches > 6 or temperature < O:
print("Class is cancelled")

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015

5/18



Boolean logic

There are three logical operators that let us combine boolean

expressions. They have lower precedence than the relational operators.

@ not A: True if A is false, false if A is true.

» A can be any boolean expression:
if not is_finished:
do_more_work ()

@ A and B: True if both A and B are true.
in_range = size >= 0 and size <= 100
@ A or B: True if either A or B is true.
» Or both!

if snow_inches > 6 or temperature < O:
print("Class is cancelled")

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015

5/18



Complex boolean expressions

@ not has highest precedence (still lower than comparison).
@ and has the next highest.
@ or has the lowest.

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 6 /18



Complex boolean expressions

@ not has highest precedence (still lower than comparison).
@ and has the next highest.
@ or has the lowest.

@ Sonot A or B and C or D means:

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 6 /18



Complex boolean expressions

@ not has highest precedence (still lower than comparison).
@ and has the next highest.
@ or has the lowest.

@ Sonot A or B and C or D means:
(((not A) or (B and C)) or D)

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 6 /18



Complex boolean expressions

not has highest precedence (still lower than comparison).
and has the next highest.

or has the lowest.

Sonot A or B and C or D means:
(((not A) or (B and C)) or D)
People often forget the order of and and or

> It's not a bad idea to always use parentheses when combining them.
not A or (B and C) or D

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 6 /18



Complex boolean expressions

not has highest precedence (still lower than comparison).
and has the next highest.

or has the lowest.

Sonot A or B and C or D means:
(((not A) or (B and C)) or D)
People often forget the order of and and or

> It's not a bad idea to always use parentheses when combining them.
not A or (B and C) or D

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 6 /18



Truth tables

The truth table is a tool for making sense of complex boolean expressions.
T F
F T

@ One row for each possible combination of values
> If there is one input, two rows (T, F).
» Two inputs, four rows (TT, TF, FT, FF).
» 3inputs, 8 rows (TTT, TTF, TFT, TFF, FTT, FTF, FFT, FFF).

B

T T T
T F| T
F T T
F F| F

Neil Moore (UK CS) CS 115 Lecture 9




Truth tables

The truth table is a tool for making sense of complex boolean expressions.

B

T T T
T F| T
F T T
F F| F

@ One row for each possible combination of values

> If there is one input, two rows (T, F).

» Two inputs, four rows (TT, TF, FT, FF).

» 3inputs, 8 rows (TTT, TTF, TFT, TFF, FTT, FTF, FFT, FFF).
@ A column for each boolean expression.

» Inputs: Boolean variables, comparisons (relational expressions).

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 7 /18



Truth tables

The truth table is a tool for making sense of complex boolean expressions.

@ One row for each possible combination of values

> If there is one input, two rows (T, F).

» Two inputs, four rows (TT, TF, FT, FF).

» 3inputs, 8 rows (TTT, TTF, TFT, TFF, FTT, FTF, FFT, FFF).
@ A column for each boolean expression.

» Inputs: Boolean variables, comparisons (relational expressions).

» Intermediates: Each not, and, and or.

» Output: The whole expression.

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 7 /18



Truth tables

The truth table is a tool for making sense of complex boolean expressions.

@ One row for each possible combination of values

> If there is one input, two rows (T, F).

» Two inputs, four rows (TT, TF, FT, FF).

» 3inputs, 8 rows (TTT, TTF, TFT, TFF, FTT, FTF, FFT, FFF).
@ A column for each boolean expression.

» Inputs: Boolean variables, comparisons (relational expressions).

» Intermediates: Each not, and, and or.

» Output: The whole expression.

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 7 /18



A more complicated example

not (not A or not B)

not A not B not A or not B answer

Neil Moore (UK CS) CS 115 Lecture 9



A more complicated example

not (not A or not B)

not A not B not A or not B answer

Neil Moore (UK CS) CS 115 Lecture 9



A more complicated example

not (not A or not B)

not A not B not A or not B answer

A
T
T
F
F

o e iy i |
—m 4 m

Neil Moore (UK CS) CS 115 Lecture 9



A more complicated example

not (not A or not B)

not A not B not A or not B answer

A
T
T
F
F

e i B
—m 4 m
=4

Neil Moore (UK CS) CS 115 Lecture 9



A more complicated example

not (not A or not B)

not A not B not A or not B answer

A
T
T
F
F

o e iy i |
o B e i
=4
m ™

Neil Moore (UK CS) CS 115 Lecture 9



A more complicated example

not (not A or not B)

A B not A not B not A or not B answer
T T B B B T
T F| F T T F
F T T F T F
F F T T T F

De Morgan’s laws:
@ not (not A or not B) = A and B
@ not (not A and not B) = A or B

Neil Moore (UK CS) CS 115 Lecture 9



A more complicated example

not (not A or not B)

A B not A not B not A or not B answer
T T B B B T
T F| F T T F
F T T F T F
F F T T T F

De Morgan’s laws:
@ not (not A or not B) = A and B
@ not (not A and not B) = A or B

Neil Moore (UK CS) CS 115 Lecture 9



Be careful!

It is easy to accidentally write an expression that is always true, or always
false.

o Tautology and contradiction.

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 9 /18



Be careful!

It is easy to accidentally write an expression that is always true, or always
false.

o Tautology and contradiction.

@ An example:
if size >= 10 or size < 50:
print("in range")

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 9 /18



Be careful!

It is easy to accidentally write an expression that is always true, or always

false.
o Tautology and contradiction.

@ An example:
if size >= 10 or size < 50:
print("in range")
» What happens when size is 1007 207 27?7

Neil Moore (UK CS) CS 115 Lecture 9

Fall 2015

9/18



Be careful!

It is easy to accidentally write an expression that is always true, or always

false.

o Tautology and contradiction.
@ An example:
if size >= 10 or size < 50:
print("in range")
» What happens when size is 1007 207 27?7

> or is true if either comparison is true.
» But they can’t ever both be false!

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015

9/18



Be careful!

It is easy to accidentally write an expression that is always true, or always

false.

o Tautology and contradiction.

@ An example:

if size >= 10 or size < 50:
print("in range")
What happens when size is 1007 207 27?
or is true if either comparison is true.
But they can’t ever both be false!
So this or is always true (a tautology).

vV vyVvVvyy

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015

9/18



Be careful!

It is easy to accidentally write an expression that is always true, or always
false.

o Tautology and contradiction.

@ An example:

if size >= 10 or size < 50:
print("in range")
What happens when size is 1007 207 27?
or is true if either comparison is true.
But they can’t ever both be false!
So this or is always true (a tautology).

vV vyVvVvyy

if size < 10 and size > 100:
print("out of range")

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 9 /18



Be careful!

It is easy to accidentally write an expression that is always true, or always

false.

o Tautology and contradiction.

@ An example:

if size >= 10 or size < 50:
print("in range")
What happens when size is 1007 207 27
or is true if either comparison is true.
But they can’t ever both be false!
So this or is always true (a tautology).

vV vyVvVvyy

if size < 10 and size > 100:
print("out of range")

» The comparisons can't ever both be true!
» A contradiction—will never print the message.

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015

9/18



Be careful!

It is easy to accidentally write an expression that is always true, or always

false.

o Tautology and contradiction.

@ An example:

if size >= 10 or size < 50:
print("in range")
What happens when size is 1007 207 27
or is true if either comparison is true.
But they can’t ever both be false!
So this or is always true (a tautology).

vV vyVvVvyy

if size < 10 and size > 100:
print("out of range")

» The comparisons can't ever both be true!
» A contradiction—will never print the message.

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015

9/18



Be careful!

@ Don't trust the English language!
» Make a truth table if you are unsure.

Neil Moore (UK CS) CS 115 Lecture 9



Be careful!

@ Don't trust the English language!
» Make a truth table if you are unsure.
@ "l want to run this if size < 10 and if size > 100"

> In logic, that's an or, not an and:
“Run this if size < 10 or size > 100"
> (The example from last slide)

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 10 / 18



Be careful!

@ Don't trust the English language!
» Make a truth table if you are unsure.
@ "l want to run this if size < 10 and if size > 100"

> In logic, that's an or, not an and:
“Run this if size < 10 or size > 100"
> (The example from last slide)

o “If xisequalto4 or5..."
» Wrong: if x == 4 or 5:

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015

10 / 18



Be careful!

@ Don't trust the English language!
» Make a truth table if you are unsure.
@ "l want to run this if size < 10 and if size > 100"
> In logic, that's an or, not an and:
“Run this if size < 10 or size > 100"
> (The example from last slide)
o “If xisequalto4 or5..."
» Wrong: if x == 4 or 5:
» Boolean expressions are like sentences.
* But here “or” joins nouns, not sentences.

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015

10 / 18



Be careful!

@ Don't trust the English language!
» Make a truth table if you are unsure.
@ "l want to run this if size < 10 and if size > 100"
> In logic, that's an or, not an and:
“Run this if size < 10 or size > 100"
> (The example from last slide)
o “If xisequalto4 or5..."
» Wrong: if x == 4 or 5:
» Boolean expressions are like sentences.
* But here “or” joins nouns, not sentences.
> Instead: "“If x is equal to 4 or x is equal to 5"

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 10 / 18



Be careful!

@ Don't trust the English language!
» Make a truth table if you are unsure.
@ "l want to run this if size < 10 and if size > 100"
> In logic, that's an or, not an and:
“Run this if size < 10 or size > 100"
> (The example from last slide)
o “If xisequalto4 or5..."
» Wrong: if x == 4 or 5:
» Boolean expressions are like sentences.
* But here “or” joins nouns, not sentences.

> Instead: "“If x is equal to 4 or x is equal to 5"
if x == 4 or x ==

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 10 / 18



Be careful!

@ Don't trust the English language!
» Make a truth table if you are unsure.
@ "l want to run this if size < 10 and if size > 100"
> In logic, that's an or, not an and:
“Run this if size < 10 or size > 100"
> (The example from last slide)
o “If xisequalto4 or5..."
» Wrong: if x == 4 or 5:
» Boolean expressions are like sentences.
* But here “or” joins nouns, not sentences.

> Instead: "“If x is equal to 4 or x is equal to 5"
if x == 4 or x ==

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 10 / 18



Python modules

We've already seen a couple of modules or libraries in Python:
@ math

@ graphics

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 11 /18



Python modules

We've already seen a couple of modules or libraries in Python:
@ math
@ graphics

@ A collection of pre-written code intended to be re-used.

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 11 /18



Python modules

We've already seen a couple of modules or libraries in Python:
@ math

graphics

°
@ A collection of pre-written code intended to be re-used.
@ Python comes with a couple hundred modules.

°

And there are thousands mode third-party modules.

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 11 /18



Python modules

We've already seen a couple of modules or libraries in Python:
@ math
graphics

A collection of pre-written code intended to be re-used.

°

°

@ Python comes with a couple hundred modules.

@ And there are thousands mode third-party modules.
°

Let's look at one more: random

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 11 /18



Randomness

The random module provides functions for generating random numbers.

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 12 /18



Randomness

The random module provides functions for generating random numbers.
o Computers are deterministic:
» The same instructions and the same data = the same results.

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 12 /18



Randomness

The random module provides functions for generating random numbers.
o Computers are deterministic:

» The same instructions and the same data = the same results.
» Usually this is what we want.

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 12 /18



Randomness

The random module provides functions for generating random numbers.
o Computers are deterministic:

» The same instructions and the same data = the same results.
» Usually this is what we want.
» When might we want the program to do a different thing every time?

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 12 /18



Randomness

The random module provides functions for generating random numbers.
o Computers are deterministic:

» The same instructions and the same data = the same results.
» Usually this is what we want.
» When might we want the program to do a different thing every time?

* Games.

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 12 /18



Randomness

The random module provides functions for generating random numbers.
o Computers are deterministic:

» The same instructions and the same data = the same results.
» Usually this is what we want.
» When might we want the program to do a different thing every time?

* Games.
* Simulations: traffic, weather, galaxies colliding, . ..

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 12 /18



Randomness

The random module provides functions for generating random numbers.
o Computers are deterministic:

» The same instructions and the same data = the same results.

» Usually this is what we want.

» When might we want the program to do a different thing every time?
* Games.
* Simulations: traffic, weather, galaxies colliding, . ..
* Cryptography.

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 12 /18



Randomness

The random module provides functions for generating random numbers.
o Computers are deterministic:

» The same instructions and the same data = the same results.

» Usually this is what we want.
» When might we want the program to do a different thing every time?

* Games.
* Simulations: traffic, weather, galaxies colliding, . ..
* Cryptography.
@ For these kinds of problems we want random numbers.
» But how can we get real randomness in a deterministic machine?

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 12 /18



Randomness

The random module provides functions for generating random numbers.
o Computers are deterministic:
» The same instructions and the same data = the same results.
» Usually this is what we want.
» When might we want the program to do a different thing every time?
* Games.
* Simulations: traffic, weather, galaxies colliding, . ..
* Cryptography.
@ For these kinds of problems we want random numbers.
» But how can we get real randomness in a deterministic machine?
» There are ways, but usually it's not necessary.
» Pseudorandom numbers are usually good enough.

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 12 /18



Randomness

The random module provides functions for generating random numbers.
o Computers are deterministic:
» The same instructions and the same data = the same results.
» Usually this is what we want.
» When might we want the program to do a different thing every time?
* Games.
* Simulations: traffic, weather, galaxies colliding, . ..
* Cryptography.
@ For these kinds of problems we want random numbers.
» But how can we get real randomness in a deterministic machine?
» There are ways, but usually it's not necessary.
» Pseudorandom numbers are usually good enough.

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 12 /18



Randomness

What does “random” mean? Two things:
@ An even distribution of results.

Neil Moore (UK CS) CS 115 Lecture 9



Randomness

What does “random” mean? Two things:
@ An even distribution of results.

> If we're rolling a die, we expect 1 about 1/6 of the time.
» and 2 about 1/6 of the time, 3 about 1/6, ...

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 13 /18



Randomness

What does “random” mean? Two things:
@ An even distribution of results.

> If we're rolling a die, we expect 1 about 1/6 of the time.
» and 2 about 1/6 of the time, 3 about 1/6, ...
» Uniform distribution: each possibility is equally likely

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 13 /18



Randomness

What does “random” mean? Two things:
@ An even distribution of results.

If we're rolling a die, we expect 1 about 1/6 of the time.
and 2 about 1/6 of the time, 3 about 1/6, ...

Uniform distribution: each possibility is equally likely
This doesn’t mean exactly uniform results!

vyvyVvYyy

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015

13 /18



Randomness

What does “random” mean? Two things:
@ An even distribution of results.

If we're rolling a die, we expect 1 about 1/6 of the time.
and 2 about 1/6 of the time, 3 about 1/6, ...

Uniform distribution: each possibility is equally likely
This doesn’t mean exactly uniform results!

vyvyVvYyy

* Roll a die six times: | bet you get some number twice.

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015

13 /18



Randomness

What does “random” mean? Two things:
@ An even distribution of results.

If we're rolling a die, we expect 1 about 1/6 of the time.
and 2 about 1/6 of the time, 3 about 1/6, ...

Uniform distribution: each possibility is equally likely
This doesn’t mean exactly uniform results!

vyvyVvYyy

* Roll a die six times: | bet you get some number twice.
* Over a large number of tests, gets closer to 1/6 each.

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 13 /18



Randomness

What does “random” mean? Two things:
@ An even distribution of results.

If we're rolling a die, we expect 1 about 1/6 of the time.
and 2 about 1/6 of the time, 3 about 1/6, ...

Uniform distribution: each possibility is equally likely
This doesn’t mean exactly uniform results!

vyvyVvYyy

* Roll a die six times: | bet you get some number twice.
* Over a large number of tests, gets closer to 1/6 each.

@ An even distribution isn't enough to be “random”
» What if the die always rolled 1, 2, 3, 4, 5, 6 in that order?

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015

13 /18



Randomness

What does “random” mean? Two things:
@ An even distribution of results.

If we're rolling a die, we expect 1 about 1/6 of the time.
and 2 about 1/6 of the time, 3 about 1/6, ...

Uniform distribution: each possibility is equally likely
This doesn’t mean exactly uniform results!

vyvyVvYyy

* Roll a die six times: | bet you get some number twice.
* Over a large number of tests, gets closer to 1/6 each.

@ An even distribution isn't enough to be “random”

» What if the die always rolled 1, 2, 3, 4, 5, 6 in that order?
» Random numbers should be unpredictable.

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015

13 /18



Randomness

What does “random” mean? Two things:
@ An even distribution of results.

If we're rolling a die, we expect 1 about 1/6 of the time.
and 2 about 1/6 of the time, 3 about 1/6, ...

Uniform distribution: each possibility is equally likely
This doesn’t mean exactly uniform results!

vyvyVvYyy

* Roll a die six times: | bet you get some number twice.
* Over a large number of tests, gets closer to 1/6 each.

@ An even distribution isn't enough to be “random”

» What if the die always rolled 1, 2, 3, 4, 5, 6 in that order?
» Random numbers should be unpredictable.
» Specifically, seeing several numbers shouldn't let us guess the next one.

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 13 /18



Randomness

What does “random” mean? Two things:
@ An even distribution of results.

If we're rolling a die, we expect 1 about 1/6 of the time.
and 2 about 1/6 of the time, 3 about 1/6, ...

Uniform distribution: each possibility is equally likely
This doesn’t mean exactly uniform results!

vyvyVvYyy

* Roll a die six times: | bet you get some number twice.
* Over a large number of tests, gets closer to 1/6 each.

@ An even distribution isn't enough to be “random”

» What if the die always rolled 1, 2, 3, 4, 5, 6 in that order?
» Random numbers should be unpredictable.
» Specifically, seeing several numbers shouldn't let us guess the next one.

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 13 /18



Psseudorandom numbers

Pseudorandom numbers use a deterministic procedure (a random

number generator, RNG) to generate numbers that appear to be
random:

@ Approximately uniform.
e Hard to predict (maybe not impossible).
» RNGs will repeat eventually: want this to take a long time.

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015

14 /18



Psseudorandom numbers

Pseudorandom numbers use a deterministic procedure (a random

number generator, RNG) to generate numbers that appear to be
random:

@ Approximately uniform.
@ Hard to predict (maybe not impossible).

» RNGs will repeat eventually: want this to take a long time.
@ A lot of research has gone (and goes) into RNGs:

» Linear congruential, alternating shift generator, Mersenne twister, ...

Neil Moore (UK CS) CS 115 Lecture 9

Fall 2015 14 / 18



Psseudorandom numbers

Pseudorandom numbers use a deterministic procedure (a random
number generator, RNG) to generate numbers that appear to be
random:

@ Approximately uniform.
@ Hard to predict (maybe not impossible).

» RNGs will repeat eventually: want this to take a long time.
@ A lot of research has gone (and goes) into RNGs:

» Linear congruential, alternating shift generator, Mersenne twister, ...
» The Art of Computer Programming spends half a book on RNGs.

Neil Moore (UK CS) CS 115 Lecture 9

Fall 2015 14 / 18



Psseudorandom numbers

Pseudorandom numbers use a deterministic procedure (a random
number generator, RNG) to generate numbers that appear to be
random:

@ Approximately uniform.
@ Hard to predict (maybe not impossible).

» RNGs will repeat eventually: want this to take a long time.
@ A lot of research has gone (and goes) into RNGs:

» Linear congruential, alternating shift generator, Mersenne twister,

» The Art of Computer Programming spends half a book on RNGs.
» Why so much research?

Neil Moore (UK CS) CS 115 Lecture 9

Fall 2015 14 / 18



Psseudorandom numbers

Pseudorandom numbers use a deterministic procedure (a random
number generator, RNG) to generate numbers that appear to be
random:

@ Approximately uniform.
@ Hard to predict (maybe not impossible).

» RNGs will repeat eventually: want this to take a long time.
@ A lot of research has gone (and goes) into RNGs:

» Linear congruential, alternating shift generator, Mersenne twister, ...
» The Art of Computer Programming spends half a book on RNGs.
» Why so much research? Important for security!
* Cryptography uses random numbers for session keys
(like automatically generated one-time passwords).

Neil Moore (UK CS) CS 115 Lecture 9

Fall 2015 14 / 18



Psseudorandom numbers

Pseudorandom numbers use a deterministic procedure (a random
number generator, RNG) to generate numbers that appear to be
random:

@ Approximately uniform.
@ Hard to predict (maybe not impossible).

» RNGs will repeat eventually: want this to take a long time.
@ A lot of research has gone (and goes) into RNGs:

» Linear congruential, alternating shift generator, Mersenne twister, ...
» The Art of Computer Programming spends half a book on RNGs.
» Why so much research? Important for security!
* Cryptography uses random numbers for session keys
(like automatically generated one-time passwords).

* |f someone could predict the output of the RNG, they could predict the
key and break in or read your datal

Neil Moore (UK CS) CS 115 Lecture 9

Fall 2015 14 / 18



Psseudorandom numbers

Pseudorandom numbers use a deterministic procedure (a random
number generator, RNG) to generate numbers that appear to be
random:

@ Approximately uniform.
@ Hard to predict (maybe not impossible).

» RNGs will repeat eventually: want this to take a long time.
@ A lot of research has gone (and goes) into RNGs:

» Linear congruential, alternating shift generator, Mersenne twister, ...
» The Art of Computer Programming spends half a book on RNGs.
» Why so much research? Important for security!
* Cryptography uses random numbers for session keys
(like automatically generated one-time passwords).

* |f someone could predict the output of the RNG, they could predict the
key and break in or read your datal

Neil Moore (UK CS) CS 115 Lecture 9

Fall 2015 14 / 18



Using Python's random number library

Python's random number generator is in the random library.

@ import random or from random import *

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 15 / 18


https://docs.python.org/3/library/random.html

Using Python's random number library

Python's random number generator is in the random library.
@ import random or from random import *

@ There are several functions in the library.

» https://docs.python.org/3/library/random.html
> (Note the big red warning!)

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 15 / 18


https://docs.python.org/3/library/random.html

Using Python's random number library

Python's random number generator is in the random library.
@ import random or from random import *

@ There are several functions in the library.

» https://docs.python.org/3/library/random.html
> (Note the big red warning!)

@ The simplest function is random:

chance = random()
> Gives a random float in the range [0.0, 1.0):

* Notation: including 0.0, not including 1.0.

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 15 / 18


https://docs.python.org/3/library/random.html

Using Python's random number library

Python's random number generator is in the random library.
@ import random or from random import *
@ There are several functions in the library.

» https://docs.python.org/3/library/random.html
> (Note the big red warning!)

@ The simplest function is random:

chance = random()
> Gives a random float in the range [0.0, 1.0):

* Notation: including 0.0, not including 1.0.

» Useful for probabilities: 1 means “will happen”, 0 means “will not”
if random() < 0.7: # 70% chance

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 15 / 18


https://docs.python.org/3/library/random.html

Using Python's random number library

Python's random number generator is in the random library.

@ import random or from random import *

@ There are several functions in the library.
» https://docs.python.org/3/library/random.html
> (Note the big red warning!)

@ The simplest function is random:

chance = random()
> Gives a random float in the range [0.0, 1.0):

* Notation: including 0.0, not including 1.0.
» Useful for probabilities: 1 means “will happen”, 0 means “will not”
if random() < 0.7: # 70% chance
@ What if we want a random float in a different range?

» Multiply and add:
score = 90.0 * random() + 10.0
Range: [10.0,100.0)

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 15 / 18


https://docs.python.org/3/library/random.html

Using Python's random number library

Python's random number generator is in the random library.

@ import random or from random import *

@ There are several functions in the library.
» https://docs.python.org/3/library/random.html
> (Note the big red warning!)

@ The simplest function is random:

chance = random()
> Gives a random float in the range [0.0, 1.0):

* Notation: including 0.0, not including 1.0.
» Useful for probabilities: 1 means “will happen”, 0 means “will not”
if random() < 0.7: # 70% chance
@ What if we want a random float in a different range?

» Multiply and add:
score = 90.0 * random() + 10.0
Range: [10.0,100.0)

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 15 / 18


https://docs.python.org/3/library/random.html

Random integers

We could multiply, add, and type-cast to get a random integer.
But there's a simpler and better way.

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 16 / 18



Random integers

We could multiply, add, and type-cast to get a random integer.
But there's a simpler and better way.

@ The randrange function.
@ Takes one to three arguments and returns an integer:

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015

16 / 18



Random integers

We could multiply, add, and type-cast to get a random integer.
But there's a simpler and better way.

@ The randrange function.
@ Takes one to three arguments and returns an integer:

» randrange(stop): [0, stop)
Between zero (inclusive) and stop (exclusive!)

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015

16 / 18



Random integers

We could multiply, add, and type-cast to get a random integer.
But there's a simpler and better way.

@ The randrange function.
@ Takes one to three arguments and returns an integer:
» randrange(stop): [0, stop)
Between zero (inclusive) and stop (exclusive!)
» randrange(start, stop): [start,stop)
Between start (inclusive) and stop (exclusive)

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015

16 / 18



Random integers

We could multiply, add, and type-cast to get a random integer.
But there's a simpler and better way.

@ The randrange function.

@ Takes one to three arguments and returns an integer:
» randrange(stop): [0, stop)
Between zero (inclusive) and stop (exclusive!)
» randrange(start, stop): [start,stop)
Between start (inclusive) and stop (exclusive)
» randrange(start, stop, step):
Likewise, but only gives start plus a multiple of step.

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015

16 / 18



Random integers

We could multiply, add, and type-cast to get a random integer.
But there's a simpler and better way.

@ The randrange function.

@ Takes one to three arguments and returns an integer:
» randrange(stop): [0, stop)
Between zero (inclusive) and stop (exclusive!)
» randrange(start, stop): [start,stop)
Between start (inclusive) and stop (exclusive)
» randrange(start, stop, step):
Likewise, but only gives start plus a multiple of step.

@ “Give me a random multiple of 10 between 0 and 100 inclusive.”

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 16 / 18



Random integers

We could multiply, add, and type-cast to get a random integer.
But there's a simpler and better way.

@ The randrange function.

@ Takes one to three arguments and returns an integer:
» randrange(stop): [0, stop)
Between zero (inclusive) and stop (exclusive!)
» randrange(start, stop): [start,stop)
Between start (inclusive) and stop (exclusive)
» randrange(start, stop, step):
Likewise, but only gives start plus a multiple of step.
@ “Give me a random multiple of 10 between 0 and 100 inclusive.”
» score = randrange(0, 101, 10)

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 16 / 18



Random integers

We could multiply, add, and type-cast to get a random integer.
But there's a simpler and better way.

@ The randrange function.

@ Takes one to three arguments and returns an integer:
» randrange(stop): [0, stop)
Between zero (inclusive) and stop (exclusive!)
» randrange(start, stop): [start,stop)
Between start (inclusive) and stop (exclusive)
» randrange(start, stop, step):
Likewise, but only gives start plus a multiple of step.

@ “Give me a random multiple of 10 between 0 and 100 inclusive.”
> score = randrange(O, 101, 10)
» What if we wrote 100 instead?

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 16 / 18



Random integers

We could multiply, add, and type-cast to get a random integer.
But there's a simpler and better way.

@ The randrange function.

@ Takes one to three arguments and returns an integer:
» randrange(stop): [0, stop)
Between zero (inclusive) and stop (exclusive!)
» randrange(start, stop): [start,stop)
Between start (inclusive) and stop (exclusive)
» randrange(start, stop, step):
Likewise, but only gives start plus a multiple of step.

@ “Give me a random multiple of 10 between 0 and 100 inclusive.”
> score = randrange(O, 101, 10)
» What if we wrote 100 instead? Wouldn't be inclusive.

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 16 / 18



Random integers

We could multiply, add, and type-cast to get a random integer.
But there's a simpler and better way.

@ The randrange function.
@ Takes one to three arguments and returns an integer:
» randrange(stop): [0, stop)
Between zero (inclusive) and stop (exclusive!)
» randrange(start, stop): [start,stop)
Between start (inclusive) and stop (exclusive)
» randrange(start, stop, step):
Likewise, but only gives start plus a multiple of step.
@ “Give me a random multiple of 10 between 0 and 100 inclusive.”
» score = randrange(0, 101, 10)
» What if we wrote 100 instead? Wouldn't be inclusive.
@ Related: randint(a, b): [a, b]
> Inclusive on both ends! The same as randrange(a, b + 1)
> Prefer randrange in new code.

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 16 / 18



Random integers

We could multiply, add, and type-cast to get a random integer.
But there's a simpler and better way.

@ The randrange function.
@ Takes one to three arguments and returns an integer:
» randrange(stop): [0, stop)
Between zero (inclusive) and stop (exclusive!)
» randrange(start, stop): [start,stop)
Between start (inclusive) and stop (exclusive)
» randrange(start, stop, step):
Likewise, but only gives start plus a multiple of step.
@ “Give me a random multiple of 10 between 0 and 100 inclusive.”
» score = randrange(0, 101, 10)
» What if we wrote 100 instead? Wouldn't be inclusive.
@ Related: randint(a, b): [a, b]
> Inclusive on both ends! The same as randrange(a, b + 1)
> Prefer randrange in new code.

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 16 / 18



Random choice

Python can also choose randomly from a list of alternatives:

sacrifice = choice(["time", "money", "quality"])

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 17 / 18



Random choice

Python can also choose randomly from a list of alternatives:
sacrifice = choice(["time", "money", "quality"])
@ Must give a list of choices, in square brackets.

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 17 / 18



Random choice

Python can also choose randomly from a list of alternatives:
sacrifice = choice(["time", "money", "quality"])
@ Must give a list of choices, in square brackets.

» Don't forget the brackets!
choice("time", "money", "quality")

— TypeError: choice() takes 2 positional arguments...

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015

17 / 18



Random choice

Python can also choose randomly from a list of alternatives:

sacrifice = choice(["time", "money", "quality"])

@ Must give a list of choices, in square brackets.
» Don't forget the brackets!
choice("time", "money", "quality")
— TypeError: choice() takes 2 positional arguments...

@ Can give a string instead: answer = choice("ABCD")

Returns a random letter from the string.

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 17 / 18



Random choice

Python can also choose randomly from a list of alternatives:

sacrifice = choice(["time", "money", "quality"])

@ Must give a list of choices, in square brackets.
» Don't forget the brackets!
choice("time", "money", "quality")
— TypeError: choice() takes 2 positional arguments...

@ Can give a string instead: answer = choice("ABCD")

Returns a random letter from the string.

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 17 / 18



Seeding the RNG

Sometimes it's useful to be able to repeat the program exactly, with the
same sequence of random numbers.

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 18 / 18



Seeding the RNG

Sometimes it's useful to be able to repeat the program exactly, with the
same sequence of random numbers. Why?

@ Reproducible simulations.
@ Cryptography: client and server might need the same numbers.

@ Testing games (and “tool-assisted speedruns”).

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 18 / 18



Seeding the RNG

Sometimes it's useful to be able to repeat the program exactly, with the
same sequence of random numbers. Why?

@ Reproducible simulations.
@ Cryptography: client and server might need the same numbers.
@ Testing games (and “tool-assisted speedruns”).

@ We can specify the seed for the RNG.

» seed(42) — once at the beginning of the program.
» Now the sequence of numbers will be the same each time.

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 18 / 18



Seeding the RNG

Sometimes it's useful to be able to repeat the program exactly, with the
same sequence of random numbers. Why?

@ Reproducible simulations.
@ Cryptography: client and server might need the same numbers.

@ Testing games (and “tool-assisted speedruns”).
@ We can specify the seed for the RNG.

» seed(42) — once at the beginning of the program.
» Now the sequence of numbers will be the same each time.
> seed(43): completely different sequence.

* Not necessarily larger numbers!

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 18 / 18



Seeding the RNG

Sometimes it's useful to be able to repeat the program exactly, with the
same sequence of random numbers. Why?

@ Reproducible simulations.

@ Cryptography: client and server might need the same numbers.
@ Testing games (and “tool-assisted speedruns”).
o

We can specify the seed for the RNG.

» seed(42) — once at the beginning of the program.
» Now the sequence of numbers will be the same each time.
> seed(43): completely different sequence.

* Not necessarily larger numbers!

What if you never set a seed?

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 18 / 18



Seeding the RNG

Sometimes it's useful to be able to repeat the program exactly, with the
same sequence of random numbers. Why?

@ Reproducible simulations.

@ Cryptography: client and server might need the same numbers.
@ Testing games (and “tool-assisted speedruns”).
o

We can specify the seed for the RNG.

» seed(42) — once at the beginning of the program.
» Now the sequence of numbers will be the same each time.
> seed(43): completely different sequence.

* Not necessarily larger numbers!

What if you never set a seed?

» Python picks one for you, based on the system time.
» On some OSes it can use OS randomness instead.

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 18 / 18



Seeding the RNG

Sometimes it's useful to be able to repeat the program exactly, with the
same sequence of random numbers. Why?

@ Reproducible simulations.

@ Cryptography: client and server might need the same numbers.
@ Testing games (and “tool-assisted speedruns”).
o

We can specify the seed for the RNG.

» seed(42) — once at the beginning of the program.
» Now the sequence of numbers will be the same each time.
> seed(43): completely different sequence.

* Not necessarily larger numbers!

What if you never set a seed?

» Python picks one for you, based on the system time.
» On some OSes it can use OS randomness instead.

Only set the seed once per program!

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 18 / 18



Seeding the RNG

Sometimes it's useful to be able to repeat the program exactly, with the
same sequence of random numbers. Why?

@ Reproducible simulations.

@ Cryptography: client and server might need the same numbers.
@ Testing games (and “tool-assisted speedruns”).
o

We can specify the seed for the RNG.

» seed(42) — once at the beginning of the program.
» Now the sequence of numbers will be the same each time.
> seed(43): completely different sequence.

* Not necessarily larger numbers!

What if you never set a seed?

» Python picks one for you, based on the system time.
» On some OSes it can use OS randomness instead.

Only set the seed once per program!

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 18 / 18



