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Augmented assignment

Often you want to perform an operation on a variable and store the result
in the same variable:

num_students = num_students + 1

price = price * 0.9 # 10 percent discount
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Python provides a shorthand for this, augmented assignment:
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@ Combines assignment with an arithmetic operator.

@ The precedence is the same as assignment (=).
» Evaluate the right hand side first.
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Comparing strings

The relational operators <, >=, etc. work with strings, too.
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Comparing strings

The relational operators <, >=, etc. work with strings, too.

@ Uses a form of “lexicographic” (alphabetical, dictionary) order.

» Compare corresponding characters in order.
» The first difference tells us the answer.
» ’comparison’ < ’compiler’

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 3/18


https://en.wikipedia.org/wiki/ASCII#ASCII_printable_code_chart

Comparing strings

The relational operators <, >=, etc. work with strings, too.

@ Uses a form of “lexicographic” (alphabetical, dictionary) order.

» Compare corresponding characters in order.
» The first difference tells us the answer.
» ’comparison’ < ’compiler’

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 3/18


https://en.wikipedia.org/wiki/ASCII#ASCII_printable_code_chart

Comparing strings

The relational operators <, >=, etc. work with strings, too.

@ Uses a form of “lexicographic” (alphabetical, dictionary) order.

» Compare corresponding characters in order.
» The first difference tells us the answer.
» ’comparison’ < ’compiler’

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 3/18


https://en.wikipedia.org/wiki/ASCII#ASCII_printable_code_chart

Comparing strings

The relational operators <, >=, etc. work with strings, too.

@ Uses a form of “lexicographic” (alphabetical, dictionary) order.

» Compare corresponding characters in order.
» The first difference tells us the answer.
» ’comparison’ < ’compiler’

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 3/18


https://en.wikipedia.org/wiki/ASCII#ASCII_printable_code_chart

Comparing strings

The relational operators <, >=, etc. work with strings, too.

@ Uses a form of “lexicographic” (alphabetical, dictionary) order.

» Compare corresponding characters in order.
» The first difference tells us the answer.
» ’comparison’ < ’compiler’

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 3/18


https://en.wikipedia.org/wiki/ASCII#ASCII_printable_code_chart

Comparing strings

The relational operators <, >=, etc. work with strings, too.

@ Uses a form of “lexicographic” (alphabetical, dictionary) order.

» Compare corresponding characters in order.
» The first difference tells us the answer.
» ’comparison’ < ’compiler’

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 3/18


https://en.wikipedia.org/wiki/ASCII#ASCII_printable_code_chart

Comparing strings

The relational operators <, >=, etc. work with strings, too.

@ Uses a form of “lexicographic” (alphabetical, dictionary) order.

» Compare corresponding characters in order.
» The first difference tells us the answer.

» ’comparison’ < ’compiler’
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Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015

3/18


https://en.wikipedia.org/wiki/ASCII#ASCII_printable_code_chart

Comparing strings

The relational operators <, >=, etc. work with strings, too.

@ Uses a form of “lexicographic” (alphabetical, dictionary) order.
» Compare corresponding characters in order.
» The first difference tells us the answer.
» ’comparison’ < ’compiler’
> Prefix comes “first”: *pick’ < ’pickle’
e Compares the numeric code (Unicode) for each character.
Mostly alphabetic for basic English characters.
Uppercase before lowercase! *Z’ < ’a’
Digits come before letters. A2’ < 2AA°
Space comes before digits and letters. *good day’ < ’goodbye’
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@ Can't compare a string to a number, only to other strings!
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Chaining comparisons

@ In Python, comparisons can be chained together:
if 0 < x < y <= 100:
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@ In Python, comparisons can be chained together:

if 0 < x <y <= 100:
@ Means: 0 < x and x < y and y < 100.
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Chaining comparisons

@ In Python, comparisons can be chained together:
if 0 < x <y <= 100:

@ Means: 0 < x and x < y and y < 100.

@ This notation is common in mathematics.

» But not in most programming languages!
» Python is rather unique in allowing it.
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Boolean logic

There are three logical operators that let us combine boolean

expressions. They have lower precedence than the relational operators.

@ not A: True if A is false, false if A is true.

» A can be any boolean expression:
if not is_finished:
do_more_work ()
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Boolean logic

There are three logical operators that let us combine boolean
expressions. They have lower precedence than the relational operators.
@ not A: True if A is false, false if A is true.

» A can be any boolean expression:
if not is_finished:
do_more_work ()

@ A and B: True if both A and B are true.
in_range = size >= 0 and size <= 100
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» A can be any boolean expression:
if not is_finished:
do_more_work ()

@ A and B: True if both A and B are true.
in_range = size >= 0 and size <= 100
@ A or B: True if either A or B is true.
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if snow_inches > 6 or temperature < O:
print("Class is cancelled")
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Complex boolean expressions

@ not has highest precedence (still lower than comparison).
@ and has the next highest.
@ or has the lowest.
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Complex boolean expressions

not has highest precedence (still lower than comparison).
and has the next highest.

or has the lowest.

Sonot A or B and C or D means:
(((not A) or (B and C)) or D)
People often forget the order of and and or

> It's not a bad idea to always use parentheses when combining them.
not A or (B and C) or D
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Truth tables

The truth table is a tool for making sense of complex boolean expressions.
T F
F T

@ One row for each possible combination of values
> If there is one input, two rows (T, F).
» Two inputs, four rows (TT, TF, FT, FF).
» 3inputs, 8 rows (TTT, TTF, TFT, TFF, FTT, FTF, FFT, FFF).

B

T T T
T F| T
F T T
F F| F
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B

T T T
T F| T
F T T
F F| F
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» Two inputs, four rows (TT, TF, FT, FF).
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@ A column for each boolean expression.

» Inputs: Boolean variables, comparisons (relational expressions).
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A more complicated example

not (not A or not B)

not A not B not A or not B answer
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A more complicated example

not (not A or not B)

not A not B not A or not B answer
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A more complicated example

not (not A or not B)

A B not A not B not A or not B answer
T T B B B T
T F| F T T F
F T T F T F
F F T T T F

De Morgan’s laws:
@ not (not A or not B) = A and B
@ not (not A and not B) = A or B
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Be careful!

It is easy to accidentally write an expression that is always true, or always
false.

o Tautology and contradiction.
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o Tautology and contradiction.

@ An example:
if size >= 10 or size < 50:
print("in range")
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Be careful!

It is easy to accidentally write an expression that is always true, or always

false.
o Tautology and contradiction.

@ An example:
if size >= 10 or size < 50:
print("in range")
» What happens when size is 1007 207 27?7
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o Tautology and contradiction.
@ An example:
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print("in range")
» What happens when size is 1007 207 27?7

> or is true if either comparison is true.
» But they can’t ever both be false!
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if size < 10 and size > 100:
print("out of range")

» The comparisons can't ever both be true!
» A contradiction—will never print the message.
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Be careful!

@ Don't trust the English language!
» Make a truth table if you are unsure.
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Be careful!

@ Don't trust the English language!
» Make a truth table if you are unsure.
@ "l want to run this if size < 10 and if size > 100"

> In logic, that's an or, not an and:
“Run this if size < 10 or size > 100"
> (The example from last slide)
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o “If xisequalto4 or5..."
» Wrong: if x == 4 or 5:
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Python modules

We've already seen a couple of modules or libraries in Python:
@ math

@ graphics
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Python modules

We've already seen a couple of modules or libraries in Python:
@ math

graphics

°
@ A collection of pre-written code intended to be re-used.
@ Python comes with a couple hundred modules.

°

And there are thousands mode third-party modules.
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Python modules

We've already seen a couple of modules or libraries in Python:
@ math
graphics

A collection of pre-written code intended to be re-used.

°

°

@ Python comes with a couple hundred modules.

@ And there are thousands mode third-party modules.
°

Let's look at one more: random
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Randomness

The random module provides functions for generating random numbers.
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The random module provides functions for generating random numbers.
o Computers are deterministic:
» The same instructions and the same data = the same results.
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Randomness

The random module provides functions for generating random numbers.
o Computers are deterministic:

» The same instructions and the same data = the same results.
» Usually this is what we want.
» When might we want the program to do a different thing every time?

* Games.
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Randomness

The random module provides functions for generating random numbers.
o Computers are deterministic:

» The same instructions and the same data = the same results.
» Usually this is what we want.
» When might we want the program to do a different thing every time?

* Games.
* Simulations: traffic, weather, galaxies colliding, . ..
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Randomness

The random module provides functions for generating random numbers.
o Computers are deterministic:

» The same instructions and the same data = the same results.

» Usually this is what we want.
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Psseudorandom numbers
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@ Approximately uniform.
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» RNGs will repeat eventually: want this to take a long time.
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Using Python's random number library

Python's random number generator is in the random library.

@ import random or from random import *
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Random choice

Python can also choose randomly from a list of alternatives:

sacrifice = choice(["time", "money", "quality"])
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