
CS 115 Lecture 8
Selection: the if statement

Neil Moore

Department of Computer Science
University of Kentucky

Lexington, Kentucky 40506
neil@cs.uky.edu

24 September 2015



Selection

Sometime we want to execute code only sometimes.

Run this code in a certain situation.
I How to express “in a certain situation” in code?

Run this code if this expression is true.
I So we’d need true-false expressions.
I We mentioned a true-false type in the second week of class.
I bool (Booleans)

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 2 / 19



Selection

Sometime we want to execute code only sometimes.

Run this code in a certain situation.
I How to express “in a certain situation” in code?

Run this code if this expression is true.
I So we’d need true-false expressions.
I We mentioned a true-false type in the second week of class.

I bool (Booleans)

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 2 / 19



Selection

Sometime we want to execute code only sometimes.

Run this code in a certain situation.
I How to express “in a certain situation” in code?

Run this code if this expression is true.
I So we’d need true-false expressions.
I We mentioned a true-false type in the second week of class.
I bool (Booleans)

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 2 / 19



The boolean type

The type bool in Python represents a value that is either true or false.

Two literals (constant values): True and False
I Case-sensitive as always!

Can have boolean variables:
is finished = False

I Sometimes called flags (more on this when we get to loops)

. . . and boolean expressions:
is smallest = number < minimum

can run = have file and is valid

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 3 / 19



The boolean type

The type bool in Python represents a value that is either true or false.

Two literals (constant values): True and False
I Case-sensitive as always!

Can have boolean variables:
is finished = False

I Sometimes called flags (more on this when we get to loops)

. . . and boolean expressions:
is smallest = number < minimum

can run = have file and is valid

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 3 / 19



The boolean type

The type bool in Python represents a value that is either true or false.

Two literals (constant values): True and False
I Case-sensitive as always!

Can have boolean variables:
is finished = False

I Sometimes called flags (more on this when we get to loops)

. . . and boolean expressions:
is smallest = number < minimum

can run = have file and is valid

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 3 / 19



The boolean type

The type bool in Python represents a value that is either true or false.

Two literals (constant values): True and False
I Case-sensitive as always!

Can have boolean variables:
is finished = False

I Sometimes called flags (more on this when we get to loops)

. . . and boolean expressions:
is smallest = number < minimum

can run = have file and is valid

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 3 / 19



Naming boolean variables

This isn’t a hard-and-fast rule, but try to name boolean variables as a
sentence or sentence fragment:

Is this item selected? – is selected

Is the user a new user? – user is new (or is user new)

Does the program have an input file? – have input file

Does the user want the answer in meters? – want meters

Why is selected and not just selected?

Ambiguous: it could also mean “which item was selected?”

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 4 / 19



Naming boolean variables

This isn’t a hard-and-fast rule, but try to name boolean variables as a
sentence or sentence fragment:

Is this item selected? – is selected

Is the user a new user? – user is new (or is user new)

Does the program have an input file? – have input file

Does the user want the answer in meters? – want meters

Why is selected and not just selected?

Ambiguous: it could also mean “which item was selected?”

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 4 / 19



Naming boolean variables

This isn’t a hard-and-fast rule, but try to name boolean variables as a
sentence or sentence fragment:

Is this item selected? – is selected

Is the user a new user? – user is new (or is user new)

Does the program have an input file? – have input file

Does the user want the answer in meters? – want meters

Why is selected and not just selected?

Ambiguous: it could also mean “which item was selected?”

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 4 / 19



Naming boolean variables

This isn’t a hard-and-fast rule, but try to name boolean variables as a
sentence or sentence fragment:

Is this item selected? – is selected

Is the user a new user? – user is new (or is user new)

Does the program have an input file? – have input file

Does the user want the answer in meters? – want meters

Why is selected and not just selected?

Ambiguous: it could also mean “which item was selected?”

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 4 / 19



Naming boolean variables

This isn’t a hard-and-fast rule, but try to name boolean variables as a
sentence or sentence fragment:

Is this item selected? – is selected

Is the user a new user? – user is new (or is user new)

Does the program have an input file? – have input file

Does the user want the answer in meters? – want meters

Why is selected and not just selected?

Ambiguous: it could also mean “which item was selected?”

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 4 / 19



Naming boolean variables

This isn’t a hard-and-fast rule, but try to name boolean variables as a
sentence or sentence fragment:

Is this item selected? – is selected

Is the user a new user? – user is new (or is user new)

Does the program have an input file? – have input file

Does the user want the answer in meters? – want meters

Why is selected and not just selected?

Ambiguous: it could also mean “which item was selected?”

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 4 / 19



Naming boolean variables

This isn’t a hard-and-fast rule, but try to name boolean variables as a
sentence or sentence fragment:

Is this item selected? – is selected

Is the user a new user? – user is new (or is user new)

Does the program have an input file? – have input file

Does the user want the answer in meters? – want meters

Why is selected and not just selected?

Ambiguous: it could also mean “which item was selected?”

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 4 / 19



Type-casting to bool

Most types can be type-cast to bool.

Usually the meaning is something like “is there anything there?”

Numbers: 0 (or 0.0) is false, nonzero is true.
I Be careful with floats: 0.3 - 3 * 0.1 is not exactly zero!

Strings: the empty string "" is false, anything else is true.

All graphics shapes are true.
I Even Point(0, 0)!

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 5 / 19



Type-casting to bool

Most types can be type-cast to bool.

Usually the meaning is something like “is there anything there?”

Numbers: 0 (or 0.0) is false, nonzero is true.
I Be careful with floats: 0.3 - 3 * 0.1 is not exactly zero!

Strings: the empty string "" is false, anything else is true.

All graphics shapes are true.
I Even Point(0, 0)!

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 5 / 19



Type-casting to bool

Most types can be type-cast to bool.

Usually the meaning is something like “is there anything there?”

Numbers: 0 (or 0.0) is false, nonzero is true.
I Be careful with floats: 0.3 - 3 * 0.1 is not exactly zero!

Strings: the empty string "" is false, anything else is true.

All graphics shapes are true.
I Even Point(0, 0)!

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 5 / 19



Type-casting to bool

Most types can be type-cast to bool.

Usually the meaning is something like “is there anything there?”

Numbers: 0 (or 0.0) is false, nonzero is true.
I Be careful with floats: 0.3 - 3 * 0.1 is not exactly zero!

Strings: the empty string "" is false, anything else is true.

All graphics shapes are true.
I Even Point(0, 0)!

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 5 / 19



Type-casting to bool

Most types can be type-cast to bool.

Usually the meaning is something like “is there anything there?”

Numbers: 0 (or 0.0) is false, nonzero is true.
I Be careful with floats: 0.3 - 3 * 0.1 is not exactly zero!

Strings: the empty string "" is false, anything else is true.

All graphics shapes are true.
I Even Point(0, 0)!

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 5 / 19



Equality and inequality

Other than literal True and False, the simplest boolean expressions
compare the values of two expressions.

Less than, greater than, . . .

Even simpler: “is equal to” and “is not equal to”.

I The equal sign is already taken (for assignment).
I So equality testing uses ==

logged in = password == "hunter1"
F No spaces between the =!

I It’s kind of hard to type 6=, so Python uses != for “is not equal to”:
need plural = quantity != 1

did fail = actual != expected

== compares values, is asks “are they aliases”.

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 6 / 19



Equality and inequality

Other than literal True and False, the simplest boolean expressions
compare the values of two expressions.

Less than, greater than, . . .

Even simpler: “is equal to” and “is not equal to”.
I The equal sign is already taken

(for assignment).
I So equality testing uses ==

logged in = password == "hunter1"
F No spaces between the =!

I It’s kind of hard to type 6=, so Python uses != for “is not equal to”:
need plural = quantity != 1

did fail = actual != expected

== compares values, is asks “are they aliases”.

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 6 / 19



Equality and inequality

Other than literal True and False, the simplest boolean expressions
compare the values of two expressions.

Less than, greater than, . . .

Even simpler: “is equal to” and “is not equal to”.
I The equal sign is already taken (for assignment).
I So equality testing uses ==

logged in = password == "hunter1"
F No spaces between the =!

I It’s kind of hard to type 6=, so Python uses != for “is not equal to”:
need plural = quantity != 1

did fail = actual != expected

== compares values, is asks “are they aliases”.

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 6 / 19



Equality and inequality

Other than literal True and False, the simplest boolean expressions
compare the values of two expressions.

Less than, greater than, . . .

Even simpler: “is equal to” and “is not equal to”.
I The equal sign is already taken (for assignment).
I So equality testing uses ==

logged in = password == "hunter1"
F No spaces between the =!

I It’s kind of hard to type 6=, so Python uses != for “is not equal to”:
need plural = quantity != 1

did fail = actual != expected

== compares values, is asks “are they aliases”.

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 6 / 19



Equality and inequality

Other than literal True and False, the simplest boolean expressions
compare the values of two expressions.

Less than, greater than, . . .

Even simpler: “is equal to” and “is not equal to”.
I The equal sign is already taken (for assignment).
I So equality testing uses ==

logged in = password == "hunter1"
F No spaces between the =!

I It’s kind of hard to type 6=, so Python uses != for “is not equal to”:
need plural = quantity != 1

did fail = actual != expected

== compares values, is asks “are they aliases”.

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 6 / 19



Equality and inequality

Other than literal True and False, the simplest boolean expressions
compare the values of two expressions.

Less than, greater than, . . .

Even simpler: “is equal to” and “is not equal to”.
I The equal sign is already taken (for assignment).
I So equality testing uses ==

logged in = password == "hunter1"
F No spaces between the =!

I It’s kind of hard to type 6=, so Python uses != for “is not equal to”:
need plural = quantity != 1

did fail = actual != expected

== compares values, is asks “are they aliases”.

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 6 / 19



Equality and inequality

Other than literal True and False, the simplest boolean expressions
compare the values of two expressions.

Less than, greater than, . . .

Even simpler: “is equal to” and “is not equal to”.
I The equal sign is already taken (for assignment).
I So equality testing uses ==

logged in = password == "hunter1"
F No spaces between the =!

I It’s kind of hard to type 6=, so Python uses != for “is not equal to”:
need plural = quantity != 1

did fail = actual != expected

== compares values, is asks “are they aliases”.

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 6 / 19



Comparison

Besides equality and inequality, Python has four more comparison, or
relational, operators:

Less than and greater than:
score < 60

damage > hit points

Less than or equal to (less-equals), greater-equals:
students <= seats

score > 60

The “opposite” of < is >=: a < b is false if a >= b is true.

Precedence: lower than arithmetic, higher than assignment.
need alert = points + bonus < possible * 0.60

is the same as:
need alert = ((points + bonus) < (possible * 0.60))

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 7 / 19



Comparison

Besides equality and inequality, Python has four more comparison, or
relational, operators:

Less than and greater than:
score < 60

damage > hit points

Less than or equal to (less-equals), greater-equals:
students <= seats

score > 60

The “opposite” of < is >=: a < b is false if a >= b is true.

Precedence: lower than arithmetic, higher than assignment.
need alert = points + bonus < possible * 0.60

is the same as:
need alert = ((points + bonus) < (possible * 0.60))

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 7 / 19



Comparison

Besides equality and inequality, Python has four more comparison, or
relational, operators:

Less than and greater than:
score < 60

damage > hit points

Less than or equal to (less-equals), greater-equals:
students <= seats

score > 60

The “opposite” of < is >=: a < b is false if a >= b is true.

Precedence: lower than arithmetic, higher than assignment.
need alert = points + bonus < possible * 0.60

is the same as:
need alert = ((points + bonus) < (possible * 0.60))

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 7 / 19



Comparison

Besides equality and inequality, Python has four more comparison, or
relational, operators:

Less than and greater than:
score < 60

damage > hit points

Less than or equal to (less-equals), greater-equals:
students <= seats

score > 60

The “opposite” of < is >=: a < b is false if a >= b is true.

Precedence: lower than arithmetic, higher than assignment.

need alert = points + bonus < possible * 0.60

is the same as:
need alert = ((points + bonus) < (possible * 0.60))

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 7 / 19



Comparison

Besides equality and inequality, Python has four more comparison, or
relational, operators:

Less than and greater than:
score < 60

damage > hit points

Less than or equal to (less-equals), greater-equals:
students <= seats

score > 60

The “opposite” of < is >=: a < b is false if a >= b is true.

Precedence: lower than arithmetic, higher than assignment.
need alert = points + bonus < possible * 0.60

is the same as:
need alert = ((points + bonus) < (possible * 0.60))

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 7 / 19



Comparison

Besides equality and inequality, Python has four more comparison, or
relational, operators:

Less than and greater than:
score < 60

damage > hit points

Less than or equal to (less-equals), greater-equals:
students <= seats

score > 60

The “opposite” of < is >=: a < b is false if a >= b is true.

Precedence: lower than arithmetic, higher than assignment.
need alert = points + bonus < possible * 0.60

is the same as:
need alert = ((points + bonus) < (possible * 0.60))

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 7 / 19



Comparison

Besides equality and inequality, Python has four more comparison, or
relational, operators:

Less than and greater than:
score < 60

damage > hit points

Less than or equal to (less-equals), greater-equals:
students <= seats

score > 60

The “opposite” of < is >=: a < b is false if a >= b is true.

Precedence: lower than arithmetic, higher than assignment.
need alert = points + bonus < possible * 0.60

is the same as:
need alert = ((points + bonus) < (possible * 0.60))

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 7 / 19



Comparison

Besides equality and inequality, Python has four more comparison, or
relational, operators:

Less than and greater than:
score < 60

damage > hit points

Less than or equal to (less-equals), greater-equals:
students <= seats

score > 60

The “opposite” of < is >=: a < b is false if a >= b is true.

Precedence: lower than arithmetic, higher than assignment.
need alert = points + bonus < possible * 0.60

is the same as:
need alert = ((points + bonus) < (possible * 0.60))

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 7 / 19



Comparison

Besides equality and inequality, Python has four more comparison, or
relational, operators:

Less than and greater than:
score < 60

damage > hit points

Less than or equal to (less-equals), greater-equals:
students <= seats

score > 60

The “opposite” of < is >=: a < b is false if a >= b is true.

Precedence: lower than arithmetic, higher than assignment.
need alert = points + bonus < possible * 0.60

is the same as:
need alert = ((points + bonus) < (possible * 0.60))

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 7 / 19



Comparison

Besides equality and inequality, Python has four more comparison, or
relational, operators:

Less than and greater than:
score < 60

damage > hit points

Less than or equal to (less-equals), greater-equals:
students <= seats

score > 60

The “opposite” of < is >=: a < b is false if a >= b is true.

Precedence: lower than arithmetic, higher than assignment.
need alert = points + bonus < possible * 0.60

is the same as:
need alert = ((points + bonus) < (possible * 0.60))

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 7 / 19



Relational operators and types

What type do the relational operators return (i.e. the result)?

I bool

What types can be compared with relational operators?
I Numbers: ints and floats.
I str – what does it mean to compare two strings?

F “ASCIIbetical order”
F Like alphabetical order, but considers all characters.
F Characters are compared by their Unicode value.

’blu-ray’ < ’blue’ because ’-’ comes before ’e’
F Uppercase Z comes before lowercase a!

Relational operators cannot mix strings and numbers!

I 3 < "Hello"

→ TypeError: unorderable types: int() < str()
I It’s okay to mix ints and floats, though.

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 8 / 19



Relational operators and types

What type do the relational operators return (i.e. the result)?
I bool

What types can be compared with relational operators?

I Numbers: ints and floats.
I str – what does it mean to compare two strings?

F “ASCIIbetical order”
F Like alphabetical order, but considers all characters.
F Characters are compared by their Unicode value.

’blu-ray’ < ’blue’ because ’-’ comes before ’e’
F Uppercase Z comes before lowercase a!

Relational operators cannot mix strings and numbers!

I 3 < "Hello"

→ TypeError: unorderable types: int() < str()
I It’s okay to mix ints and floats, though.

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 8 / 19



Relational operators and types

What type do the relational operators return (i.e. the result)?
I bool

What types can be compared with relational operators?
I Numbers: ints and floats.

I str – what does it mean to compare two strings?
F “ASCIIbetical order”
F Like alphabetical order, but considers all characters.
F Characters are compared by their Unicode value.

’blu-ray’ < ’blue’ because ’-’ comes before ’e’
F Uppercase Z comes before lowercase a!

Relational operators cannot mix strings and numbers!

I 3 < "Hello"

→ TypeError: unorderable types: int() < str()
I It’s okay to mix ints and floats, though.

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 8 / 19



Relational operators and types

What type do the relational operators return (i.e. the result)?
I bool

What types can be compared with relational operators?
I Numbers: ints and floats.
I str – what does it mean to compare two strings?

F “ASCIIbetical order”
F Like alphabetical order, but considers all characters.
F Characters are compared by their Unicode value.

’blu-ray’ < ’blue’ because ’-’ comes before ’e’
F Uppercase Z comes before lowercase a!

Relational operators cannot mix strings and numbers!

I 3 < "Hello"

→ TypeError: unorderable types: int() < str()
I It’s okay to mix ints and floats, though.

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 8 / 19



Relational operators and types

What type do the relational operators return (i.e. the result)?
I bool

What types can be compared with relational operators?
I Numbers: ints and floats.
I str – what does it mean to compare two strings?

F “ASCIIbetical order”
F Like alphabetical order, but considers all characters.
F Characters are compared by their Unicode value.

’blu-ray’ < ’blue’ because ’-’ comes before ’e’

F Uppercase Z comes before lowercase a!

Relational operators cannot mix strings and numbers!

I 3 < "Hello"

→ TypeError: unorderable types: int() < str()
I It’s okay to mix ints and floats, though.

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 8 / 19



Relational operators and types

What type do the relational operators return (i.e. the result)?
I bool

What types can be compared with relational operators?
I Numbers: ints and floats.
I str – what does it mean to compare two strings?

F “ASCIIbetical order”
F Like alphabetical order, but considers all characters.
F Characters are compared by their Unicode value.

’blu-ray’ < ’blue’ because ’-’ comes before ’e’
F Uppercase Z comes before lowercase a!

Relational operators cannot mix strings and numbers!

I 3 < "Hello"

→ TypeError: unorderable types: int() < str()
I It’s okay to mix ints and floats, though.

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 8 / 19



Relational operators and types

What type do the relational operators return (i.e. the result)?
I bool

What types can be compared with relational operators?
I Numbers: ints and floats.
I str – what does it mean to compare two strings?

F “ASCIIbetical order”
F Like alphabetical order, but considers all characters.
F Characters are compared by their Unicode value.

’blu-ray’ < ’blue’ because ’-’ comes before ’e’
F Uppercase Z comes before lowercase a!

Relational operators cannot mix strings and numbers!

I 3 < "Hello"

→ TypeError: unorderable types: int() < str()
I It’s okay to mix ints and floats, though.

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 8 / 19



Relational operators and types

What type do the relational operators return (i.e. the result)?
I bool

What types can be compared with relational operators?
I Numbers: ints and floats.
I str – what does it mean to compare two strings?

F “ASCIIbetical order”
F Like alphabetical order, but considers all characters.
F Characters are compared by their Unicode value.

’blu-ray’ < ’blue’ because ’-’ comes before ’e’
F Uppercase Z comes before lowercase a!

Relational operators cannot mix strings and numbers!

I 3 < "Hello"

→ TypeError: unorderable types: int() < str()
I It’s okay to mix ints and floats, though.

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 8 / 19



Relational operators and types

What type do the relational operators return (i.e. the result)?
I bool

What types can be compared with relational operators?
I Numbers: ints and floats.
I str – what does it mean to compare two strings?

F “ASCIIbetical order”
F Like alphabetical order, but considers all characters.
F Characters are compared by their Unicode value.

’blu-ray’ < ’blue’ because ’-’ comes before ’e’
F Uppercase Z comes before lowercase a!

Relational operators cannot mix strings and numbers!

I 3 < "Hello"

→ TypeError: unorderable types: int() < str()
I It’s okay to mix ints and floats, though.

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 8 / 19



The if statement

Now that we can write some boolean expressions, how do we use those to
control whether or not certain code executes?

Use an if statement.

Syntax:
if expression :

body

The expression should evaluate to True or False.

The body is an indented block of code.

Semantics: Evaluates the expression.
Runs the body if it was true.
Goes on to the line after the body either way.

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 9 / 19



The if statement

Now that we can write some boolean expressions, how do we use those to
control whether or not certain code executes?

Use an if statement.

Syntax:
if expression :

body

The expression should evaluate to True or False.

The body is an indented block of code.

Semantics: Evaluates the expression.
Runs the body if it was true.
Goes on to the line after the body either way.

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 9 / 19



The if statement

Now that we can write some boolean expressions, how do we use those to
control whether or not certain code executes?

Use an if statement.

Syntax:
if expression :

body

The expression should evaluate to True or False.

The body is an indented block of code.

Semantics: Evaluates the expression.
Runs the body if it was true.
Goes on to the line after the body either way.

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 9 / 19



The if statement

Now that we can write some boolean expressions, how do we use those to
control whether or not certain code executes?

Use an if statement.

Syntax:
if expression :

body

The expression should evaluate to True or False.

The body is an indented block of code.

Semantics: Evaluates the expression.
Runs the body if it was true.
Goes on to the line after the body either way.

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 9 / 19



The if statement

Now that we can write some boolean expressions, how do we use those to
control whether or not certain code executes?

Use an if statement.

Syntax:
if expression :

body

The expression should evaluate to True or False.

The body is an indented block of code.

Semantics: Evaluates the expression.
Runs the body if it was true.
Goes on to the line after the body either way.

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 9 / 19



Flowchart for if

before
the if

expression? body

after the if

True

False

before the if

if expression:

body

after the if

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 10 / 19



Flowchart for if

before
the if

expression? body

after the if

True

False

before the if

if expression:

body

after the if

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 10 / 19



Flowchart for if

before
the if

expression? body

after the if

True

False

before the if

if expression:

body

after the if

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 10 / 19



Flowchart for if

before
the if

expression? body

after the if

True

False

before the if

if expression:

body

after the if

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 10 / 19



Flowchart for if

before
the if

expression? body

after the if

True

False

before the if

if expression:

body

after the if

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 10 / 19



Flowchart for if

before
the if

expression? body

after the if

True

False

before the if

if expression:

body

after the if

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 10 / 19



Flowchart for if

before
the if

expression? body

after the if

True

False

before the if

if expression:

body

after the if

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 10 / 19



Flowchart for if

before
the if

expression? body

after the if

True

False

before the if

if expression:

body

after the if

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 10 / 19



Flowchart for if

before
the if

expression? body

after the if

True

False

before the if

if expression:

body

after the if

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 10 / 19



Alternatives: else

Commonly we want to either do this or do that (but not both).

In Python we can use an else block. Syntax:
if expression :

if-body

else:
else-body

I Both bodies are indented blocks.
I No expression after “else”!
I Can’t have an else without an if!

Semantics:
I Evaluates the expression.
I If the expression is true, runs the if-body.
I Otherwise (it was false), runs the else-body.
I Either way, goes on to the line after the else-body.

Only use else if there is something to do in the false case.
I It’s okay not to have one!

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 11 / 19



Alternatives: else

Commonly we want to either do this or do that (but not both).

In Python we can use an else block. Syntax:
if expression :

if-body

else:
else-body

I Both bodies are indented blocks.
I No expression after “else”!
I Can’t have an else without an if!

Semantics:
I Evaluates the expression.
I If the expression is true, runs the if-body.
I Otherwise (it was false), runs the else-body.
I Either way, goes on to the line after the else-body.

Only use else if there is something to do in the false case.
I It’s okay not to have one!

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 11 / 19



Alternatives: else

Commonly we want to either do this or do that (but not both).

In Python we can use an else block. Syntax:
if expression :

if-body

else:
else-body

I Both bodies are indented blocks.
I No expression after “else”!
I Can’t have an else without an if!

Semantics:
I Evaluates the expression.
I If the expression is true, runs the if-body.
I Otherwise (it was false), runs the else-body.
I Either way, goes on to the line after the else-body.

Only use else if there is something to do in the false case.
I It’s okay not to have one!

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 11 / 19



Alternatives: else

Commonly we want to either do this or do that (but not both).

In Python we can use an else block. Syntax:
if expression :

if-body

else:
else-body

I Both bodies are indented blocks.
I No expression after “else”!
I Can’t have an else without an if!

Semantics:
I Evaluates the expression.
I If the expression is true, runs the if-body.
I Otherwise (it was false), runs the else-body.
I Either way, goes on to the line after the else-body.

Only use else if there is something to do in the false case.
I It’s okay not to have one!

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 11 / 19



Alternatives: else

Commonly we want to either do this or do that (but not both).

In Python we can use an else block. Syntax:
if expression :

if-body

else:
else-body

I Both bodies are indented blocks.
I No expression after “else”!
I Can’t have an else without an if!

Semantics:
I Evaluates the expression.
I If the expression is true, runs the if-body.
I Otherwise (it was false), runs the else-body.
I Either way, goes on to the line after the else-body.

Only use else if there is something to do in the false case.
I It’s okay not to have one!

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 11 / 19



Alternatives: else

Commonly we want to either do this or do that (but not both).

In Python we can use an else block. Syntax:
if expression :

if-body

else:
else-body

I Both bodies are indented blocks.
I No expression after “else”!
I Can’t have an else without an if!

Semantics:
I Evaluates the expression.
I If the expression is true, runs the if-body.
I Otherwise (it was false), runs the else-body.
I Either way, goes on to the line after the else-body.

Only use else if there is something to do in the false case.
I It’s okay not to have one!

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 11 / 19



Flowchart for if-else

before
the if

expression? if-bodyelse-body

after the if

True

False

before the if

if expression:

if-body

else:

else-body

after the if

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 12 / 19



Flowchart for if-else

before
the if

expression? if-bodyelse-body

after the if

True

False

before the if

if expression:

if-body

else:

else-body

after the if

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 12 / 19



Flowchart for if-else

before
the if

expression? if-bodyelse-body

after the if

True

False

before the if

if expression:

if-body

else:

else-body

after the if

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 12 / 19



Flowchart for if-else

before
the if

expression? if-bodyelse-body

after the if

True

False

before the if

if expression:

if-body

else:

else-body

after the if

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 12 / 19



Flowchart for if-else

before
the if

expression? if-bodyelse-body

after the if

True

False

before the if

if expression:

if-body

else:

else-body

after the if

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 12 / 19



Flowchart for if-else

before
the if

expression? if-bodyelse-body

after the if

True

False

before the if

if expression:

if-body

else:

else-body

after the if

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 12 / 19



Flowchart for if-else

before
the if

expression? if-bodyelse-body

after the if

True

False

before the if

if expression:

if-body

else:

else-body

after the if

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 12 / 19



Flowchart for if-else

before
the if

expression? if-bodyelse-body

after the if

True

False

before the if

if expression:

if-body

else:

else-body

after the if

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 12 / 19



Flowchart for if-else

before
the if

expression? if-bodyelse-body

after the if

True

False

before the if

if expression:

if-body

else:

else-body

after the if

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 12 / 19



Flowchart for if-else

before
the if

expression? if-bodyelse-body

after the if

True

False

before the if

if expression:

if-body

else:

else-body

after the if

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 12 / 19



Many alternatives

Sometimes there are more than two alternatives.

Converting a numeric score into a letter grade:
I If the score is greater than or equal to 90, print A.
I Otherwise, if score >= 80, print B.
I Otherwise, if score >= 70, print C.
I And so on. . .

We want to run exactly one piece of code.
I Even though 95 >= 70, we don’t want 95 to print C too!
I First, check if score >= 90.
I If that was false, check if score >= 80.
I If that was false too, check if score >= 70. . .

The order matters!
I What would happen if we swapped the order of B and C?
I Then we’d never report a B!

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 13 / 19



Many alternatives

Sometimes there are more than two alternatives.

Converting a numeric score into a letter grade:
I If the score is greater than or equal to 90, print A.
I Otherwise, if score >= 80, print B.
I Otherwise, if score >= 70, print C.
I And so on. . .

We want to run exactly one piece of code.
I Even though 95 >= 70, we don’t want 95 to print C too!

I First, check if score >= 90.
I If that was false, check if score >= 80.
I If that was false too, check if score >= 70. . .

The order matters!
I What would happen if we swapped the order of B and C?
I Then we’d never report a B!

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 13 / 19



Many alternatives

Sometimes there are more than two alternatives.

Converting a numeric score into a letter grade:
I If the score is greater than or equal to 90, print A.
I Otherwise, if score >= 80, print B.
I Otherwise, if score >= 70, print C.
I And so on. . .

We want to run exactly one piece of code.
I Even though 95 >= 70, we don’t want 95 to print C too!
I First, check if score >= 90.

I If that was false, check if score >= 80.
I If that was false too, check if score >= 70. . .

The order matters!
I What would happen if we swapped the order of B and C?
I Then we’d never report a B!

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 13 / 19



Many alternatives

Sometimes there are more than two alternatives.

Converting a numeric score into a letter grade:
I If the score is greater than or equal to 90, print A.
I Otherwise, if score >= 80, print B.
I Otherwise, if score >= 70, print C.
I And so on. . .

We want to run exactly one piece of code.
I Even though 95 >= 70, we don’t want 95 to print C too!
I First, check if score >= 90.
I If that was false, check if score >= 80.

I If that was false too, check if score >= 70. . .

The order matters!
I What would happen if we swapped the order of B and C?
I Then we’d never report a B!

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 13 / 19



Many alternatives

Sometimes there are more than two alternatives.

Converting a numeric score into a letter grade:
I If the score is greater than or equal to 90, print A.
I Otherwise, if score >= 80, print B.
I Otherwise, if score >= 70, print C.
I And so on. . .

We want to run exactly one piece of code.
I Even though 95 >= 70, we don’t want 95 to print C too!
I First, check if score >= 90.
I If that was false, check if score >= 80.
I If that was false too, check if score >= 70. . .

The order matters!
I What would happen if we swapped the order of B and C?
I Then we’d never report a B!

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 13 / 19



Many alternatives

Sometimes there are more than two alternatives.

Converting a numeric score into a letter grade:
I If the score is greater than or equal to 90, print A.
I Otherwise, if score >= 80, print B.
I Otherwise, if score >= 70, print C.
I And so on. . .

We want to run exactly one piece of code.
I Even though 95 >= 70, we don’t want 95 to print C too!
I First, check if score >= 90.
I If that was false, check if score >= 80.
I If that was false too, check if score >= 70. . .

The order matters!
I What would happen if we swapped the order of B and C?

I Then we’d never report a B!

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 13 / 19



Many alternatives

Sometimes there are more than two alternatives.

Converting a numeric score into a letter grade:
I If the score is greater than or equal to 90, print A.
I Otherwise, if score >= 80, print B.
I Otherwise, if score >= 70, print C.
I And so on. . .

We want to run exactly one piece of code.
I Even though 95 >= 70, we don’t want 95 to print C too!
I First, check if score >= 90.
I If that was false, check if score >= 80.
I If that was false too, check if score >= 70. . .

The order matters!
I What would happen if we swapped the order of B and C?
I Then we’d never report a B!

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 13 / 19



Many alternatives

Sometimes there are more than two alternatives.

Converting a numeric score into a letter grade:
I If the score is greater than or equal to 90, print A.
I Otherwise, if score >= 80, print B.
I Otherwise, if score >= 70, print C.
I And so on. . .

We want to run exactly one piece of code.
I Even though 95 >= 70, we don’t want 95 to print C too!
I First, check if score >= 90.
I If that was false, check if score >= 80.
I If that was false too, check if score >= 70. . .

The order matters!
I What would happen if we swapped the order of B and C?
I Then we’d never report a B!

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 13 / 19



Chained alternatives: elif

Syntax:
if expression 1 :

body 1

elif expr 2 :

body 2

elif expr 3 :

body 3

. . .

Each elif is followed by an expression.
I And a colon.

Each body is an indented block.

Can have an else block at the very end.
I Not required!

Semantics:
I Evaluates expression 1.
I If expression 1 was true, runs body 1 (and that’s all)
I If expression 1 was false, evaluates expression 2.
I If expression 2 was true, runs body 2 (and that’s all)
I If expression 2 was false, evaluates expression 3. . .
I After running at most one body, goes on to the next line.

Only runs one body, or none (the first true expression)

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 14 / 19



Chained alternatives: elif

Syntax:
if expression 1 :

body 1

elif expr 2 :

body 2

elif expr 3 :

body 3

. . .

Each elif is followed by an expression.
I And a colon.

Each body is an indented block.

Can have an else block at the very end.
I Not required!

Semantics:
I Evaluates expression 1.
I If expression 1 was true, runs body 1 (and that’s all)
I If expression 1 was false, evaluates expression 2.
I If expression 2 was true, runs body 2 (and that’s all)
I If expression 2 was false, evaluates expression 3. . .
I After running at most one body, goes on to the next line.

Only runs one body, or none (the first true expression)

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 14 / 19



Chained alternatives: elif

Syntax:
if expression 1 :

body 1

elif expr 2 :

body 2

elif expr 3 :

body 3

. . .

Each elif is followed by an expression.
I And a colon.

Each body is an indented block.

Can have an else block at the very end.
I Not required!

Semantics:
I Evaluates expression 1.
I If expression 1 was true, runs body 1 (and that’s all)
I If expression 1 was false, evaluates expression 2.
I If expression 2 was true, runs body 2 (and that’s all)
I If expression 2 was false, evaluates expression 3. . .
I After running at most one body, goes on to the next line.

Only runs one body, or none (the first true expression)

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 14 / 19



Chained alternatives: elif

Syntax:
if expression 1 :

body 1

elif expr 2 :

body 2

elif expr 3 :

body 3

. . .

Each elif is followed by an expression.
I And a colon.

Each body is an indented block.

Can have an else block at the very end.
I Not required!

Semantics:
I Evaluates expression 1.
I If expression 1 was true, runs body 1 (and that’s all)

I If expression 1 was false, evaluates expression 2.
I If expression 2 was true, runs body 2 (and that’s all)
I If expression 2 was false, evaluates expression 3. . .
I After running at most one body, goes on to the next line.

Only runs one body, or none (the first true expression)

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 14 / 19



Chained alternatives: elif

Syntax:
if expression 1 :

body 1

elif expr 2 :

body 2

elif expr 3 :

body 3

. . .

Each elif is followed by an expression.
I And a colon.

Each body is an indented block.

Can have an else block at the very end.
I Not required!

Semantics:
I Evaluates expression 1.
I If expression 1 was true, runs body 1 (and that’s all)
I If expression 1 was false, evaluates expression 2.
I If expression 2 was true, runs body 2 (and that’s all)

I If expression 2 was false, evaluates expression 3. . .
I After running at most one body, goes on to the next line.

Only runs one body, or none (the first true expression)

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 14 / 19



Chained alternatives: elif

Syntax:
if expression 1 :

body 1

elif expr 2 :

body 2

elif expr 3 :

body 3

. . .

Each elif is followed by an expression.
I And a colon.

Each body is an indented block.

Can have an else block at the very end.
I Not required!

Semantics:
I Evaluates expression 1.
I If expression 1 was true, runs body 1 (and that’s all)
I If expression 1 was false, evaluates expression 2.
I If expression 2 was true, runs body 2 (and that’s all)
I If expression 2 was false, evaluates expression 3. . .

I After running at most one body, goes on to the next line.

Only runs one body, or none (the first true expression)

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 14 / 19



Chained alternatives: elif

Syntax:
if expression 1 :

body 1

elif expr 2 :

body 2

elif expr 3 :

body 3

. . .

Each elif is followed by an expression.
I And a colon.

Each body is an indented block.

Can have an else block at the very end.
I Not required!

Semantics:
I Evaluates expression 1.
I If expression 1 was true, runs body 1 (and that’s all)
I If expression 1 was false, evaluates expression 2.
I If expression 2 was true, runs body 2 (and that’s all)
I If expression 2 was false, evaluates expression 3. . .
I After running at most one body, goes on to the next line.

Only runs one body, or none (the first true expression)

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 14 / 19



Chained alternatives: elif

Syntax:
if expression 1 :

body 1

elif expr 2 :

body 2

elif expr 3 :

body 3

. . .

Each elif is followed by an expression.
I And a colon.

Each body is an indented block.

Can have an else block at the very end.
I Not required!

Semantics:
I Evaluates expression 1.
I If expression 1 was true, runs body 1 (and that’s all)
I If expression 1 was false, evaluates expression 2.
I If expression 2 was true, runs body 2 (and that’s all)
I If expression 2 was false, evaluates expression 3. . .
I After running at most one body, goes on to the next line.

Only runs one body, or none (the first true expression)

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 14 / 19



Chained alternatives: elif

Syntax:
if expression 1 :

body 1

elif expr 2 :

body 2

elif expr 3 :

body 3

. . .

Each elif is followed by an expression.
I And a colon.

Each body is an indented block.

Can have an else block at the very end.
I Not required!

Semantics:
I Evaluates expression 1.
I If expression 1 was true, runs body 1 (and that’s all)
I If expression 1 was false, evaluates expression 2.
I If expression 2 was true, runs body 2 (and that’s all)
I If expression 2 was false, evaluates expression 3. . .
I After running at most one body, goes on to the next line.

Only runs one body, or none (the first true expression)

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 14 / 19



Flowchart for if-elif

expr 1? body 1

expr 2? body 2

expr 3? body 3

after

False

False

False

True

True

True

if expr1:

body1

elif expr2:

body2

elif expr3:

body3

after

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 15 / 19



Flowchart for if-elif

expr 1? body 1

expr 2? body 2

expr 3? body 3

after

False

False

False

True

True

True

if expr1:

body1

elif expr2:

body2

elif expr3:

body3

after

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 15 / 19



Flowchart for if-elif

expr 1? body 1

expr 2? body 2

expr 3? body 3

after

False

False

False

True

True

True

if expr1:

body1

elif expr2:

body2

elif expr3:

body3

after

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 15 / 19



Flowchart for if-elif

expr 1? body 1

expr 2? body 2

expr 3? body 3

after

False

False

False

True

True

True

if expr1:

body1

elif expr2:

body2

elif expr3:

body3

after

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 15 / 19



Flowchart for if-elif

expr 1? body 1

expr 2? body 2

expr 3? body 3

after

False

False

False

True

True

True

if expr1:

body1

elif expr2:

body2

elif expr3:

body3

after

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 15 / 19



Flowchart for if-elif

expr 1? body 1

expr 2? body 2

expr 3? body 3

after

False

False

False

True

True

True

if expr1:

body1

elif expr2:

body2

elif expr3:

body3

after

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 15 / 19



Flowchart for if-elif

expr 1? body 1

expr 2? body 2

expr 3? body 3

after

False

False

False

True

True

True

if expr1:

body1

elif expr2:

body2

elif expr3:

body3

after

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 15 / 19



Flowchart for if-elif

expr 1? body 1

expr 2? body 2

expr 3? body 3

after

False

False

False

True

True

True

if expr1:

body1

elif expr2:

body2

elif expr3:

body3

after

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 15 / 19



Flowchart for if-elif

expr 1? body 1

expr 2? body 2

expr 3? body 3

after

False

False

False

True

True

True

if expr1:

body1

elif expr2:

body2

elif expr3:

body3

after

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 15 / 19



Flowchart for if-elif

expr 1? body 1

expr 2? body 2

expr 3? body 3

after

False

False

False

True

True

True

if expr1:

body1

elif expr2:

body2

elif expr3:

body3

after

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 15 / 19



Flowchart for if-elif

expr 1? body 1

expr 2? body 2

expr 3? body 3

after

False

False

False

True

True

True

if expr1:

body1

elif expr2:

body2

elif expr3:

body3

after

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 15 / 19



Flowchart for if-elif

expr 1? body 1

expr 2? body 2

expr 3? body 3

after

False

False

False

True

True

True

if expr1:

body1

elif expr2:

body2

elif expr3:

body3

after

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 15 / 19



Flowchart for if-elif

expr 1? body 1

expr 2? body 2

expr 3? body 3

after

False

False

False

True

True

True

if expr1:

body1

elif expr2:

body2

elif expr3:

body3

after

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 15 / 19



Flowchart for if-elif

expr 1? body 1

expr 2? body 2

expr 3? body 3

after

False

False

False

True

True

True

if expr1:

body1

elif expr2:

body2

elif expr3:

body3

after

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 15 / 19



Open and closed selection

If there is an else, the selection is closed
I Meaning exactly one of the bodies will run.

Otherwise, it is open: zero or one bodies will run.

If the last elif is supposed to cover all the remaining cases,
prefer else instead:

if score >= 90:

grade = ’A’:

elif score >= 80:

grade = ’B’:

elif score >= 70:

grade = ’C’:

elif score >= 60:

grade = ’D’:

elif score < 60:

grade = ’E’:

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 16 / 19



Open and closed selection

If there is an else, the selection is closed
I Meaning exactly one of the bodies will run.

Otherwise, it is open: zero or one bodies will run.

If the last elif is supposed to cover all the remaining cases,
prefer else instead:

if score >= 90:

grade = ’A’:

elif score >= 80:

grade = ’B’:

elif score >= 70:

grade = ’C’:

elif score >= 60:

grade = ’D’:

elif score < 60:

grade = ’E’:

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 16 / 19



Open and closed selection

If there is an else, the selection is closed
I Meaning exactly one of the bodies will run.

Otherwise, it is open: zero or one bodies will run.

If the last elif is supposed to cover all the remaining cases,
prefer else instead:

if score >= 90:

grade = ’A’:

elif score >= 80:

grade = ’B’:

elif score >= 70:

grade = ’C’:

elif score >= 60:

grade = ’D’:

elif score < 60:

grade = ’E’:

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 16 / 19



Open and closed selection

If there is an else, the selection is closed
I Meaning exactly one of the bodies will run.

Otherwise, it is open: zero or one bodies will run.

If the last elif is supposed to cover all the remaining cases,
prefer else instead:

if score >= 90:

grade = ’A’:

elif score >= 80:

grade = ’B’:

elif score >= 70:

grade = ’C’:

elif score >= 60:

grade = ’D’:

else:

grade = ’E’:

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 16 / 19



When and how to use elif

divisible.py divisible-better.py divisible-best.py

If you want more than one body to execute, you don’t want elif.

Instead, use a sequence of separate ifs.

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 17 / 19

divisible.py
divisible-better.py
divisible-best.py


When and how to use elif

divisible.py divisible-better.py divisible-best.py

If you want more than one body to execute, you don’t want elif.

Instead, use a sequence of separate ifs.

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 17 / 19

divisible.py
divisible-better.py
divisible-best.py


When and how to use elif

divisible.py divisible-better.py divisible-best.py

If you want more than one body to execute, you don’t want elif.

Instead, use a sequence of separate ifs.

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 17 / 19

divisible.py
divisible-better.py
divisible-best.py


Testing ifs

When testing programs with if statements, be sure to consider
and test all the possible outcomes.

If your tests never execute a particular line,
you don’t know if it works!

For every if or if-else you should have two cases:
I One where it is true.
I One where it is false—even if there is no else.

For a chained if-elif, test:
I Expression 1 is true.
I Expression 1 is false, 2 is true.
I Expressions 1 and 2 are false, 3 is true.
I . . .
I All the expressions are false.
I If plus N elifs: N + 2 test cases!

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 18 / 19



Testing ifs

When testing programs with if statements, be sure to consider
and test all the possible outcomes.

If your tests never execute a particular line,
you don’t know if it works!

For every if or if-else you should have two cases:
I One where it is true.
I One where it is false

—even if there is no else.

For a chained if-elif, test:
I Expression 1 is true.
I Expression 1 is false, 2 is true.
I Expressions 1 and 2 are false, 3 is true.
I . . .
I All the expressions are false.
I If plus N elifs: N + 2 test cases!

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 18 / 19



Testing ifs

When testing programs with if statements, be sure to consider
and test all the possible outcomes.

If your tests never execute a particular line,
you don’t know if it works!

For every if or if-else you should have two cases:
I One where it is true.
I One where it is false—even if there is no else.

For a chained if-elif, test:
I Expression 1 is true.
I Expression 1 is false, 2 is true.
I Expressions 1 and 2 are false, 3 is true.
I . . .
I All the expressions are false.
I If plus N elifs: N + 2 test cases!

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 18 / 19



Testing ifs

When testing programs with if statements, be sure to consider
and test all the possible outcomes.

If your tests never execute a particular line,
you don’t know if it works!

For every if or if-else you should have two cases:
I One where it is true.
I One where it is false—even if there is no else.

For a chained if-elif, test:
I Expression 1 is true.
I Expression 1 is false, 2 is true.
I Expressions 1 and 2 are false, 3 is true.
I . . .
I All the expressions are false.

I If plus N elifs: N + 2 test cases!

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 18 / 19



Testing ifs

When testing programs with if statements, be sure to consider
and test all the possible outcomes.

If your tests never execute a particular line,
you don’t know if it works!

For every if or if-else you should have two cases:
I One where it is true.
I One where it is false—even if there is no else.

For a chained if-elif, test:
I Expression 1 is true.
I Expression 1 is false, 2 is true.
I Expressions 1 and 2 are false, 3 is true.
I . . .
I All the expressions are false.
I If plus N elifs: N + 2 test cases!

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 18 / 19



Testing ifs

When testing programs with if statements, be sure to consider
and test all the possible outcomes.

If your tests never execute a particular line,
you don’t know if it works!

For every if or if-else you should have two cases:
I One where it is true.
I One where it is false—even if there is no else.

For a chained if-elif, test:
I Expression 1 is true.
I Expression 1 is false, 2 is true.
I Expressions 1 and 2 are false, 3 is true.
I . . .
I All the expressions are false.
I If plus N elifs: N + 2 test cases!

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 18 / 19



More testing

It helps to consider combinations of separate if statements, too.

I Especially when they use the same variable(s):
if user != "hunter":

is valid = False

if password != "hedges":

is valid = False

We might have four test cases for these two ifs:
I User name right, password right.
I User name right, password wrong.
I User name wrong, password right.
I User name wrong, password wrong.

Finally, when testing comparisons, check the boundary cases:
I What if the score is exactly 60.0?
I What if the score is 59.9?

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 19 / 19



More testing

It helps to consider combinations of separate if statements, too.
I Especially when they use the same variable(s):

if user != "hunter":

is valid = False

if password != "hedges":

is valid = False

We might have four test cases for these two ifs:
I User name right, password right.
I User name right, password wrong.
I User name wrong, password right.
I User name wrong, password wrong.

Finally, when testing comparisons, check the boundary cases:
I What if the score is exactly 60.0?
I What if the score is 59.9?

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 19 / 19



More testing

It helps to consider combinations of separate if statements, too.
I Especially when they use the same variable(s):

if user != "hunter":

is valid = False

if password != "hedges":

is valid = False

We might have four test cases for these two ifs:
I User name right, password right.
I User name right, password wrong.
I User name wrong, password right.
I User name wrong, password wrong.

Finally, when testing comparisons, check the boundary cases:
I What if the score is exactly 60.0?
I What if the score is 59.9?

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 19 / 19



More testing

It helps to consider combinations of separate if statements, too.
I Especially when they use the same variable(s):

if user != "hunter":

is valid = False

if password != "hedges":

is valid = False

We might have four test cases for these two ifs:
I User name right, password right.
I User name right, password wrong.
I User name wrong, password right.
I User name wrong, password wrong.

Finally, when testing comparisons, check the boundary cases:
I What if the score is exactly 60.0?
I What if the score is 59.9?

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 19 / 19



More testing

It helps to consider combinations of separate if statements, too.
I Especially when they use the same variable(s):

if user != "hunter":

is valid = False

if password != "hedges":

is valid = False

We might have four test cases for these two ifs:
I User name right, password right.
I User name right, password wrong.
I User name wrong, password right.
I User name wrong, password wrong.

Finally, when testing comparisons, check the boundary cases:
I What if the score is exactly 60.0?
I What if the score is 59.9?

Neil Moore (UK CS) CS 115 Lecture 8 Fall 2015 19 / 19


