
CS 115 Lecture 7
More graphics

Neil Moore

Department of Computer Science
University of Kentucky

Lexington, Kentucky 40506
neil@cs.uky.edu

22 September 2015



FAQs: chapters 1–3

A few miscellaneous points we have gotten several questions about:

IDE versus interpreter.

Precedence of * and /.

“Types” (AKA “data types”).

Division and floating-point.

Concatenating empty strings.

Any other questions?

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 2 / 9



FAQs: chapters 1–3

A few miscellaneous points we have gotten several questions about:

IDE versus interpreter.

Precedence of * and /.

“Types” (AKA “data types”).

Division and floating-point.

Concatenating empty strings.

Any other questions?

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 2 / 9



FAQs: chapters 1–3

A few miscellaneous points we have gotten several questions about:

IDE versus interpreter.

Precedence of * and /.

“Types” (AKA “data types”).

Division and floating-point.

Concatenating empty strings.

Any other questions?

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 2 / 9



FAQs: chapters 1–3

A few miscellaneous points we have gotten several questions about:

IDE versus interpreter.

Precedence of * and /.

“Types” (AKA “data types”).

Division and floating-point.

Concatenating empty strings.

Any other questions?

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 2 / 9



FAQs: chapters 1–3

A few miscellaneous points we have gotten several questions about:

IDE versus interpreter.

Precedence of * and /.

“Types” (AKA “data types”).

Division and floating-point.

Concatenating empty strings.

Any other questions?

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 2 / 9



FAQs: chapters 1–3

A few miscellaneous points we have gotten several questions about:

IDE versus interpreter.

Precedence of * and /.

“Types” (AKA “data types”).

Division and floating-point.

Concatenating empty strings.

Any other questions?

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 2 / 9



FAQs: chapters 1–3

A few miscellaneous points we have gotten several questions about:

IDE versus interpreter.

Precedence of * and /.

“Types” (AKA “data types”).

Division and floating-point.

Concatenating empty strings.

Any other questions?

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 2 / 9



Drawing text

You can draw text in the graphics window.

Need the location (center point) and a string.
txt = Text(Point(250, 250), "Hello")

You can specify the font size before drawing.

txt.setSize(30) # between 5 and 36

Can also make it bold and/or italic:

txt.setStyle(’bold’)

txt.setStyle(’italic’)

txt.setStyle(’bold italic’)

txt.setStyle(’normal’) # default

Supports a few typefaces:

txt.setFace(’courier’)

txt.setFace(’times roman’)

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 3 / 9



Drawing text

You can draw text in the graphics window.

Need the location (center point) and a string.
txt = Text(Point(250, 250), "Hello")

You can specify the font size before drawing.

txt.setSize(30) # between 5 and 36

Can also make it bold and/or italic:

txt.setStyle(’bold’)

txt.setStyle(’italic’)

txt.setStyle(’bold italic’)

txt.setStyle(’normal’) # default

Supports a few typefaces:

txt.setFace(’courier’)

txt.setFace(’times roman’)

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 3 / 9



Drawing text

You can draw text in the graphics window.

Need the location (center point) and a string.
txt = Text(Point(250, 250), "Hello")

You can specify the font size before drawing.

txt.setSize(30) # between 5 and 36

Can also make it bold and/or italic:

txt.setStyle(’bold’)

txt.setStyle(’italic’)

txt.setStyle(’bold italic’)

txt.setStyle(’normal’) # default

Supports a few typefaces:

txt.setFace(’courier’)

txt.setFace(’times roman’)

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 3 / 9



Drawing text

You can draw text in the graphics window.

Need the location (center point) and a string.
txt = Text(Point(250, 250), "Hello")

You can specify the font size before drawing.

txt.setSize(30) # between 5 and 36

Can also make it bold and/or italic:

txt.setStyle(’bold’)

txt.setStyle(’italic’)

txt.setStyle(’bold italic’)

txt.setStyle(’normal’) # default

Supports a few typefaces:

txt.setFace(’courier’)

txt.setFace(’times roman’)

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 3 / 9



Changing coordinates

In the default coordinate system:
I (0, 0) is in the upper left.
I (width, height) is in the lower right.
I Measures coordinates in pixels.

Why might we want to change that?
I To use different window sizes without changing most code.
I Or maybe you want to do graphing: (0, 0) at the bottom.
I Maybe it just makes the math simpler.

win.setCoords(xll, yll, xur, yur)
I Give the x and y coordinates of:

F The lower left corner: xll, yll
F The upper right corner: xur, yur

I All drawing after this will be in this coordinate system.
win.setCoords(0, 0, 1, 1)

F Now Point(0, 1) is the upper right.
F Point(0.5, 0.5) is the center.
F This is why coordinates can be floats, not just ints.

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 4 / 9



Changing coordinates

In the default coordinate system:
I (0, 0) is in the upper left.
I (width, height) is in the lower right.
I Measures coordinates in pixels.

Why might we want to change that?
I To use different window sizes without changing most code.

I Or maybe you want to do graphing: (0, 0) at the bottom.
I Maybe it just makes the math simpler.

win.setCoords(xll, yll, xur, yur)
I Give the x and y coordinates of:

F The lower left corner: xll, yll
F The upper right corner: xur, yur

I All drawing after this will be in this coordinate system.
win.setCoords(0, 0, 1, 1)

F Now Point(0, 1) is the upper right.
F Point(0.5, 0.5) is the center.
F This is why coordinates can be floats, not just ints.

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 4 / 9



Changing coordinates

In the default coordinate system:
I (0, 0) is in the upper left.
I (width, height) is in the lower right.
I Measures coordinates in pixels.

Why might we want to change that?
I To use different window sizes without changing most code.
I Or maybe you want to do graphing: (0, 0) at the bottom.

I Maybe it just makes the math simpler.

win.setCoords(xll, yll, xur, yur)
I Give the x and y coordinates of:

F The lower left corner: xll, yll
F The upper right corner: xur, yur

I All drawing after this will be in this coordinate system.
win.setCoords(0, 0, 1, 1)

F Now Point(0, 1) is the upper right.
F Point(0.5, 0.5) is the center.
F This is why coordinates can be floats, not just ints.

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 4 / 9



Changing coordinates

In the default coordinate system:
I (0, 0) is in the upper left.
I (width, height) is in the lower right.
I Measures coordinates in pixels.

Why might we want to change that?
I To use different window sizes without changing most code.
I Or maybe you want to do graphing: (0, 0) at the bottom.
I Maybe it just makes the math simpler.

win.setCoords(xll, yll, xur, yur)
I Give the x and y coordinates of:

F The lower left corner: xll, yll
F The upper right corner: xur, yur

I All drawing after this will be in this coordinate system.
win.setCoords(0, 0, 1, 1)

F Now Point(0, 1) is the upper right.
F Point(0.5, 0.5) is the center.
F This is why coordinates can be floats, not just ints.

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 4 / 9



Changing coordinates

In the default coordinate system:
I (0, 0) is in the upper left.
I (width, height) is in the lower right.
I Measures coordinates in pixels.

Why might we want to change that?
I To use different window sizes without changing most code.
I Or maybe you want to do graphing: (0, 0) at the bottom.
I Maybe it just makes the math simpler.

win.setCoords(xll, yll, xur, yur)
I Give the x and y coordinates of:

F The lower left corner: xll, yll
F The upper right corner: xur, yur

I All drawing after this will be in this coordinate system.
win.setCoords(0, 0, 1, 1)

F Now Point(0, 1) is the upper right.
F Point(0.5, 0.5) is the center.
F This is why coordinates can be floats, not just ints.

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 4 / 9



Changing coordinates

In the default coordinate system:
I (0, 0) is in the upper left.
I (width, height) is in the lower right.
I Measures coordinates in pixels.

Why might we want to change that?
I To use different window sizes without changing most code.
I Or maybe you want to do graphing: (0, 0) at the bottom.
I Maybe it just makes the math simpler.

win.setCoords(xll, yll, xur, yur)
I Give the x and y coordinates of:

F The lower left corner: xll, yll
F The upper right corner: xur, yur

I All drawing after this will be in this coordinate system.
win.setCoords(0, 0, 1, 1)

F Now Point(0, 1) is the upper right.
F Point(0.5, 0.5) is the center.

F This is why coordinates can be floats, not just ints.

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 4 / 9



Changing coordinates

In the default coordinate system:
I (0, 0) is in the upper left.
I (width, height) is in the lower right.
I Measures coordinates in pixels.

Why might we want to change that?
I To use different window sizes without changing most code.
I Or maybe you want to do graphing: (0, 0) at the bottom.
I Maybe it just makes the math simpler.

win.setCoords(xll, yll, xur, yur)
I Give the x and y coordinates of:

F The lower left corner: xll, yll
F The upper right corner: xur, yur

I All drawing after this will be in this coordinate system.
win.setCoords(0, 0, 1, 1)

F Now Point(0, 1) is the upper right.
F Point(0.5, 0.5) is the center.
F This is why coordinates can be floats, not just ints.

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 4 / 9



Changing coordinates

In the default coordinate system:
I (0, 0) is in the upper left.
I (width, height) is in the lower right.
I Measures coordinates in pixels.

Why might we want to change that?
I To use different window sizes without changing most code.
I Or maybe you want to do graphing: (0, 0) at the bottom.
I Maybe it just makes the math simpler.

win.setCoords(xll, yll, xur, yur)
I Give the x and y coordinates of:

F The lower left corner: xll, yll
F The upper right corner: xur, yur

I All drawing after this will be in this coordinate system.
win.setCoords(0, 0, 1, 1)

F Now Point(0, 1) is the upper right.
F Point(0.5, 0.5) is the center.
F This is why coordinates can be floats, not just ints.

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 4 / 9



Interacting with the user

What if a graphical program needs input from the user?

I input uses standard input (the shell window)
I Making the user switch back and forth is annoying.
I . . . and it doesn’t even work right in WingIDE!

We can make a graphical text-entry box.
entry = Entry(center, width)

I center is a point.
I width is a number of characters (not pixels).

F Just controls the size.
F The user can enter more characters (it scrolls).

Can set the initial text, font size, color. . .
entry.setText("default")

entry.setSize(24) # 24-point

entry.setTextColor("green")

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 5 / 9



Interacting with the user

What if a graphical program needs input from the user?
I input uses standard input (the shell window)
I Making the user switch back and forth is annoying.

I . . . and it doesn’t even work right in WingIDE!

We can make a graphical text-entry box.
entry = Entry(center, width)

I center is a point.
I width is a number of characters (not pixels).

F Just controls the size.
F The user can enter more characters (it scrolls).

Can set the initial text, font size, color. . .
entry.setText("default")

entry.setSize(24) # 24-point

entry.setTextColor("green")

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 5 / 9



Interacting with the user

What if a graphical program needs input from the user?
I input uses standard input (the shell window)
I Making the user switch back and forth is annoying.
I . . . and it doesn’t even work right in WingIDE!

We can make a graphical text-entry box.
entry = Entry(center, width)

I center is a point.
I width is a number of characters (not pixels).

F Just controls the size.
F The user can enter more characters (it scrolls).

Can set the initial text, font size, color. . .
entry.setText("default")

entry.setSize(24) # 24-point

entry.setTextColor("green")

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 5 / 9



Interacting with the user

What if a graphical program needs input from the user?
I input uses standard input (the shell window)
I Making the user switch back and forth is annoying.
I . . . and it doesn’t even work right in WingIDE!

We can make a graphical text-entry box.
entry = Entry(center, width)

I center is a point.
I width is a number of characters (not pixels).

F Just controls the size.
F The user can enter more characters (it scrolls).

Can set the initial text, font size, color. . .
entry.setText("default")

entry.setSize(24) # 24-point

entry.setTextColor("green")

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 5 / 9



Interacting with the user

What if a graphical program needs input from the user?
I input uses standard input (the shell window)
I Making the user switch back and forth is annoying.
I . . . and it doesn’t even work right in WingIDE!

We can make a graphical text-entry box.
entry = Entry(center, width)

I center is a point.
I width is a number of characters (not pixels).

F Just controls the size.
F The user can enter more characters (it scrolls).

Can set the initial text, font size, color. . .
entry.setText("default")

entry.setSize(24) # 24-point

entry.setTextColor("green")

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 5 / 9



Interacting with the user

What if a graphical program needs input from the user?
I input uses standard input (the shell window)
I Making the user switch back and forth is annoying.
I . . . and it doesn’t even work right in WingIDE!

We can make a graphical text-entry box.
entry = Entry(center, width)

I center is a point.
I width is a number of characters (not pixels).

F Just controls the size.
F The user can enter more characters (it scrolls).

Can set the initial text, font size, color. . .
entry.setText("default")

entry.setSize(24) # 24-point

entry.setTextColor("green")

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 5 / 9



Interacting with the user

What if a graphical program needs input from the user?
I input uses standard input (the shell window)
I Making the user switch back and forth is annoying.
I . . . and it doesn’t even work right in WingIDE!

We can make a graphical text-entry box.
entry = Entry(center, width)

I center is a point.
I width is a number of characters (not pixels).

F Just controls the size.
F The user can enter more characters (it scrolls).

Can set the initial text, font size, color. . .
entry.setText("default")

entry.setSize(24) # 24-point

entry.setTextColor("green")

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 5 / 9



Getting user input from an Entry

entry = Entry(center, width)

To get the text the user entered:
in = entry.getText()

Returns a string (like input)
I Type-cast if you need a number:

temperature = float(entry.getText())

Have to give the user time to enter their text.

Wait for a mouse click:
entry.draw(win)

win.getMouse()

in = entry.getText()

Let’s write a program that uses an Entry box: entry.py

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 6 / 9

entry.py


Getting user input from an Entry

entry = Entry(center, width)

To get the text the user entered:
in = entry.getText()

Returns a string (like input)
I Type-cast if you need a number:

temperature = float(entry.getText())

Have to give the user time to enter their text.

Wait for a mouse click:
entry.draw(win)

win.getMouse()

in = entry.getText()

Let’s write a program that uses an Entry box: entry.py

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 6 / 9

entry.py


Getting user input from an Entry

entry = Entry(center, width)

To get the text the user entered:
in = entry.getText()

Returns a string (like input)
I Type-cast if you need a number:

temperature = float(entry.getText())

Have to give the user time to enter their text.

Wait for a mouse click:
entry.draw(win)

win.getMouse()

in = entry.getText()

Let’s write a program that uses an Entry box: entry.py

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 6 / 9

entry.py


Getting user input from an Entry

entry = Entry(center, width)

To get the text the user entered:
in = entry.getText()

Returns a string (like input)
I Type-cast if you need a number:

temperature = float(entry.getText())

Have to give the user time to enter their text.

Wait for a mouse click:
entry.draw(win)

win.getMouse()

in = entry.getText()

Let’s write a program that uses an Entry box: entry.py

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 6 / 9

entry.py


Getting user input from an Entry

entry = Entry(center, width)

To get the text the user entered:
in = entry.getText()

Returns a string (like input)
I Type-cast if you need a number:

temperature = float(entry.getText())

Have to give the user time to enter their text.

Wait for a mouse click:
entry.draw(win)

win.getMouse()

in = entry.getText()

Let’s write a program that uses an Entry box: entry.py

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 6 / 9

entry.py


More about mouse clicks

We’ve seen win.getMouse() to wait for a click.

Wouldn’t it be nice to know where the user clicked?

I We don’t even need a new method to do that!
I getMouse actually returns a Point.

clickpos = win.getMouse()
I Now we can get the x and y coordinates of the point.

click x = clickpos.getX()

click y = clickpos.getY()
I Or we can use the Point directly.

line = Line(Point(0, 0), clickpos)

line.draw(win)

When we called getMouse as a statement, we were just throwing this
position away.

I To wait for a click and get its location: pt = win.getMouse()
I To just wait for a click: win.getMouse()

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 7 / 9



More about mouse clicks

We’ve seen win.getMouse() to wait for a click.

Wouldn’t it be nice to know where the user clicked?
I We don’t even need a new method to do that!
I getMouse actually returns a Point.

clickpos = win.getMouse()

I Now we can get the x and y coordinates of the point.
click x = clickpos.getX()

click y = clickpos.getY()
I Or we can use the Point directly.

line = Line(Point(0, 0), clickpos)

line.draw(win)

When we called getMouse as a statement, we were just throwing this
position away.

I To wait for a click and get its location: pt = win.getMouse()
I To just wait for a click: win.getMouse()

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 7 / 9



More about mouse clicks

We’ve seen win.getMouse() to wait for a click.

Wouldn’t it be nice to know where the user clicked?
I We don’t even need a new method to do that!
I getMouse actually returns a Point.

clickpos = win.getMouse()
I Now we can get the x and y coordinates of the point.

click x = clickpos.getX()

click y = clickpos.getY()

I Or we can use the Point directly.
line = Line(Point(0, 0), clickpos)

line.draw(win)

When we called getMouse as a statement, we were just throwing this
position away.

I To wait for a click and get its location: pt = win.getMouse()
I To just wait for a click: win.getMouse()

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 7 / 9



More about mouse clicks

We’ve seen win.getMouse() to wait for a click.

Wouldn’t it be nice to know where the user clicked?
I We don’t even need a new method to do that!
I getMouse actually returns a Point.

clickpos = win.getMouse()
I Now we can get the x and y coordinates of the point.

click x = clickpos.getX()

click y = clickpos.getY()
I Or we can use the Point directly.

line = Line(Point(0, 0), clickpos)

line.draw(win)

When we called getMouse as a statement, we were just throwing this
position away.

I To wait for a click and get its location: pt = win.getMouse()
I To just wait for a click: win.getMouse()

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 7 / 9



More about mouse clicks

We’ve seen win.getMouse() to wait for a click.

Wouldn’t it be nice to know where the user clicked?
I We don’t even need a new method to do that!
I getMouse actually returns a Point.

clickpos = win.getMouse()
I Now we can get the x and y coordinates of the point.

click x = clickpos.getX()

click y = clickpos.getY()
I Or we can use the Point directly.

line = Line(Point(0, 0), clickpos)

line.draw(win)

When we called getMouse as a statement, we were just throwing this
position away.

I To wait for a click and get its location: pt = win.getMouse()
I To just wait for a click: win.getMouse()

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 7 / 9



More about mouse clicks

We’ve seen win.getMouse() to wait for a click.

Wouldn’t it be nice to know where the user clicked?
I We don’t even need a new method to do that!
I getMouse actually returns a Point.

clickpos = win.getMouse()
I Now we can get the x and y coordinates of the point.

click x = clickpos.getX()

click y = clickpos.getY()
I Or we can use the Point directly.

line = Line(Point(0, 0), clickpos)

line.draw(win)

When we called getMouse as a statement, we were just throwing this
position away.

I To wait for a click and get its location: pt = win.getMouse()
I To just wait for a click: win.getMouse()

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 7 / 9



Aliasing

You must be careful when using assignment with shapes (alias.py).

eye = Circle(Point(200, 250), 50)

eye.draw(win)

eye2 = eye

eye2.move(100, 0)
I This moves the first circle! What happened?
I There is only one circle here, with two different names.

F They have the same identity:
print(id(eye)) →4147736844

print(id(eye2)) →4147736844

I We say that eye2 is an alias for eye.
I You can check for aliasing with the is operator:

print(eye is eye2) →True
F Not the same as asking if they’re equal!
F More on that next time.

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 8 / 9

alias.py


Aliasing

You must be careful when using assignment with shapes (alias.py).

eye = Circle(Point(200, 250), 50)

eye.draw(win)

eye2 = eye

eye2.move(100, 0)
I This moves the first circle! What happened?

I There is only one circle here, with two different names.
F They have the same identity:

print(id(eye)) →4147736844

print(id(eye2)) →4147736844

I We say that eye2 is an alias for eye.
I You can check for aliasing with the is operator:

print(eye is eye2) →True
F Not the same as asking if they’re equal!
F More on that next time.

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 8 / 9

alias.py


Aliasing

You must be careful when using assignment with shapes (alias.py).

eye = Circle(Point(200, 250), 50)

eye.draw(win)

eye2 = eye

eye2.move(100, 0)
I This moves the first circle! What happened?
I There is only one circle here

, with two different names.
F They have the same identity:

print(id(eye)) →4147736844

print(id(eye2)) →4147736844

I We say that eye2 is an alias for eye.
I You can check for aliasing with the is operator:

print(eye is eye2) →True
F Not the same as asking if they’re equal!
F More on that next time.

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 8 / 9

alias.py


Aliasing

You must be careful when using assignment with shapes (alias.py).

eye = Circle(Point(200, 250), 50)

eye.draw(win)

eye2 = eye

eye2.move(100, 0)
I This moves the first circle! What happened?
I There is only one circle here, with two different names.

F They have the same identity:
print(id(eye)) →4147736844

print(id(eye2)) →4147736844

I We say that eye2 is an alias for eye.
I You can check for aliasing with the is operator:

print(eye is eye2) →True
F Not the same as asking if they’re equal!
F More on that next time.

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 8 / 9

alias.py


Aliasing

You must be careful when using assignment with shapes (alias.py).

eye = Circle(Point(200, 250), 50)

eye.draw(win)

eye2 = eye

eye2.move(100, 0)
I This moves the first circle! What happened?
I There is only one circle here, with two different names.

F They have the same identity:
print(id(eye)) →4147736844

print(id(eye2)) →4147736844

I We say that eye2 is an alias for eye.

I You can check for aliasing with the is operator:
print(eye is eye2) →True

F Not the same as asking if they’re equal!
F More on that next time.

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 8 / 9

alias.py


Aliasing

You must be careful when using assignment with shapes (alias.py).

eye = Circle(Point(200, 250), 50)

eye.draw(win)

eye2 = eye

eye2.move(100, 0)
I This moves the first circle! What happened?
I There is only one circle here, with two different names.

F They have the same identity:
print(id(eye)) →4147736844

print(id(eye2)) →4147736844

I We say that eye2 is an alias for eye.
I You can check for aliasing with the is operator:

print(eye is eye2) →True

F Not the same as asking if they’re equal!
F More on that next time.

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 8 / 9

alias.py


Aliasing

You must be careful when using assignment with shapes (alias.py).

eye = Circle(Point(200, 250), 50)

eye.draw(win)

eye2 = eye

eye2.move(100, 0)
I This moves the first circle! What happened?
I There is only one circle here, with two different names.

F They have the same identity:
print(id(eye)) →4147736844

print(id(eye2)) →4147736844

I We say that eye2 is an alias for eye.
I You can check for aliasing with the is operator:

print(eye is eye2) →True
F Not the same as asking if they’re equal!
F More on that next time.

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 8 / 9

alias.py


Aliasing

You must be careful when using assignment with shapes (alias.py).

eye = Circle(Point(200, 250), 50)

eye.draw(win)

eye2 = eye

eye2.move(100, 0)
I This moves the first circle! What happened?
I There is only one circle here, with two different names.

F They have the same identity:
print(id(eye)) →4147736844

print(id(eye2)) →4147736844

I We say that eye2 is an alias for eye.
I You can check for aliasing with the is operator:

print(eye is eye2) →True
F Not the same as asking if they’re equal!
F More on that next time.

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 8 / 9

alias.py


Preventing aliasing

Aliasing happens because assignment doesn’t create new objects.

To avoid aliasing, either:
I Call the constructor every time you want to make a new object.

eye2 = Circle(Point(200, 250), 50)

print(id(eye2)) →4147339756

I Or clone the object (graphics shapes only).

eye2 = eye.clone()

print(id(eye2)) →4148132104

I alias-fixed.py

Aliasing isn’t an problem for integers, strings, etc.
I These objects are immutable.

F The number 42 never changes.
F Immutable object can still be aliased, but since they can’t be modified,

the aliasing doesn’t cause problems.

I More detail in chapter 8 when we talk about lists.

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 9 / 9

alias-fixed.py


Preventing aliasing

Aliasing happens because assignment doesn’t create new objects.

To avoid aliasing, either:
I Call the constructor every time you want to make a new object.

eye2 = Circle(Point(200, 250), 50)

print(id(eye2)) →4147339756

I Or clone the object (graphics shapes only).

eye2 = eye.clone()

print(id(eye2)) →4148132104

I alias-fixed.py

Aliasing isn’t an problem for integers, strings, etc.
I These objects are immutable.

F The number 42 never changes.
F Immutable object can still be aliased, but since they can’t be modified,

the aliasing doesn’t cause problems.

I More detail in chapter 8 when we talk about lists.

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 9 / 9

alias-fixed.py


Preventing aliasing

Aliasing happens because assignment doesn’t create new objects.

To avoid aliasing, either:
I Call the constructor every time you want to make a new object.

eye2 = Circle(Point(200, 250), 50)

print(id(eye2)) →4147339756

I Or clone the object (graphics shapes only).

eye2 = eye.clone()

print(id(eye2)) →4148132104

I alias-fixed.py

Aliasing isn’t an problem for integers, strings, etc.
I These objects are immutable.

F The number 42 never changes.
F Immutable object can still be aliased, but since they can’t be modified,

the aliasing doesn’t cause problems.

I More detail in chapter 8 when we talk about lists.

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 9 / 9

alias-fixed.py


Preventing aliasing

Aliasing happens because assignment doesn’t create new objects.

To avoid aliasing, either:
I Call the constructor every time you want to make a new object.

eye2 = Circle(Point(200, 250), 50)

print(id(eye2)) →4147339756

I Or clone the object (graphics shapes only).

eye2 = eye.clone()

print(id(eye2)) →4148132104

I alias-fixed.py

Aliasing isn’t an problem for integers, strings, etc.
I These objects are immutable.

F The number 42 never changes.
F Immutable object can still be aliased, but since they can’t be modified,

the aliasing doesn’t cause problems.

I More detail in chapter 8 when we talk about lists.

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 9 / 9

alias-fixed.py


Preventing aliasing

Aliasing happens because assignment doesn’t create new objects.

To avoid aliasing, either:
I Call the constructor every time you want to make a new object.

eye2 = Circle(Point(200, 250), 50)

print(id(eye2)) →4147339756

I Or clone the object (graphics shapes only).

eye2 = eye.clone()

print(id(eye2)) →4148132104

I alias-fixed.py

Aliasing isn’t an problem for integers, strings, etc.
I These objects are immutable.

F The number 42 never changes.
F Immutable object can still be aliased, but since they can’t be modified,

the aliasing doesn’t cause problems.

I More detail in chapter 8 when we talk about lists.

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 9 / 9

alias-fixed.py


Preventing aliasing

Aliasing happens because assignment doesn’t create new objects.

To avoid aliasing, either:
I Call the constructor every time you want to make a new object.

eye2 = Circle(Point(200, 250), 50)

print(id(eye2)) →4147339756

I Or clone the object (graphics shapes only).

eye2 = eye.clone()

print(id(eye2)) →4148132104

I alias-fixed.py

Aliasing isn’t an problem for integers, strings, etc.
I These objects are immutable.

F The number 42 never changes.

F Immutable object can still be aliased, but since they can’t be modified,
the aliasing doesn’t cause problems.

I More detail in chapter 8 when we talk about lists.

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 9 / 9

alias-fixed.py


Preventing aliasing

Aliasing happens because assignment doesn’t create new objects.

To avoid aliasing, either:
I Call the constructor every time you want to make a new object.

eye2 = Circle(Point(200, 250), 50)

print(id(eye2)) →4147339756

I Or clone the object (graphics shapes only).

eye2 = eye.clone()

print(id(eye2)) →4148132104

I alias-fixed.py

Aliasing isn’t an problem for integers, strings, etc.
I These objects are immutable.

F The number 42 never changes.
F Immutable object can still be aliased, but since they can’t be modified,

the aliasing doesn’t cause problems.

I More detail in chapter 8 when we talk about lists.

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 9 / 9

alias-fixed.py


Preventing aliasing

Aliasing happens because assignment doesn’t create new objects.

To avoid aliasing, either:
I Call the constructor every time you want to make a new object.

eye2 = Circle(Point(200, 250), 50)

print(id(eye2)) →4147339756

I Or clone the object (graphics shapes only).

eye2 = eye.clone()

print(id(eye2)) →4148132104

I alias-fixed.py

Aliasing isn’t an problem for integers, strings, etc.
I These objects are immutable.

F The number 42 never changes.
F Immutable object can still be aliased, but since they can’t be modified,

the aliasing doesn’t cause problems.

I More detail in chapter 8 when we talk about lists.

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 9 / 9

alias-fixed.py


Preventing aliasing

Aliasing happens because assignment doesn’t create new objects.

To avoid aliasing, either:
I Call the constructor every time you want to make a new object.

eye2 = Circle(Point(200, 250), 50)

print(id(eye2)) →4147339756

I Or clone the object (graphics shapes only).

eye2 = eye.clone()

print(id(eye2)) →4148132104

I alias-fixed.py

Aliasing isn’t an problem for integers, strings, etc.
I These objects are immutable.

F The number 42 never changes.
F Immutable object can still be aliased, but since they can’t be modified,

the aliasing doesn’t cause problems.

I More detail in chapter 8 when we talk about lists.

Neil Moore (UK CS) CS 115 Lecture 7 Fall 2015 9 / 9

alias-fixed.py

