
CS 115 Lecture 5
Math library; building a project

Neil Moore

Department of Computer Science
University of Kentucky

Lexington, Kentucky 40506
neil@cs.uky.edu

15 September 2015



The math library

We’ve seen already how to do everything a five-function calculator can do.
What about more advanced math?

That’s available in Python too.

But it’s not built-in like + and float are.

Instead it’s in a library.
I A collection of pre-written code intended to be re-used.

F Functions
F Constants
F Types (“classes”)

I The math library comes with Python.
I graphics (chapter 3) is a third-party library.

The Python math library has:
I Functions for trig, logarithms, and more.
I Constants for π and e.
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Using libraries in Python

To use a library, you import it:
import math

I Put this at the very top of the program.
I After headers comments, before “def main():”

Then your program can use the functions in the library.
I Their names are library.something
I So math.log (function), math.pi (constant)
I Call functions with parenthesized arguments afterwards

F Just like input and print

I Each function has its own rules about what arguments it accepts.
I If the function returns a value, use it as an expression:

height = math.log(size, 2)
I If it does not, use it as an entire statement:

random.seed()

Only import the libraries you need!
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Save yourself typing

You can instead import particular functions or constants:
from math import sin, cos, tan

I List the names you are importing, comma-separated.
I Then you can use them without the “math.”

y = sin(angle) * radius

I Saves typing if you’re calling a few functions many times.

One last way:
from math import *

I Imports everything in the library.
I And you don’t have to use “math.”

num = e ** pi
I Sounds great, right? There’s a catch. . .

F What if Python 3.5 adds a new math function?
F And you already had a variable with that name. . .
F Your code could break!

I Professional Python programmers avoid from lib import *,
but we’ll use it occasionally in labs and homework.
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What’s in the math library

Trigonometry: sin, cos, tan, cosh, . . .
angle = math.atan(y/x)

circumference = math.pi * diameter

Natural log, and other bases:
doubling time = math.log(2) / rate

pH = -log(activity, 10)

e and ex :
balance = principal * math.e ** (rate * time)

balance = principal * math.exp(rate * time)

More: sqrt, factorial, . . .
https://docs.python.org/3/library/math.html
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Rounding

One more numeric function, not in the math library: round

Two arguments: the float to round, and an integer number of digits.

Returns a float rounded to that many digits after the decimal.
print(round(math.pi, 2)) → 3.14

print(round(math.e, 0)) → 3.0

print(round(12, -1)) → 10

Note that 0.5 doesn’t always round up!
I Rounds it to the even number—more fair when taking averages.

Doesn’t change the argument!
I If you want to do that, use an assignment:

area = round(area, 2)
I But don’t do that if you’re not done calculating!

F More precise to save rounding until the very end.
F Keep the original and round only in the output.
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A complete program

Let’s go through the whole process of making a (simple) program, from
start to finish.

The steps are:

Specification (the “assignment”: usually given to you)

Test plan.

Design (pseudocode, algorithm).

Writing code.

Testing.
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Specification

We are given the specification:

Write a program that asks the user for a temperature in Fahrenheit
and converts it to Celsius. The input does not have to be a whole
number of degrees. The program should print:

x degrees F is y C.
Use the formula:

c = 5
9(f − 32)

Round the output to tenths of a degree.
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Test plan

What kind of inputs to test?

Normal inputs: both integers and floats.

Are there any boundary cases?
I Not really.
I Still, we might test 0, negative numbers, . . .

Other special cases?
I If the input has more than one digit after the decimal point.

Any error cases?
I Non-numeric input.
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Test plan

Description Input Expected output
Normal, integer 32 32.0 F is 0.0 C.
Normal, float 98.6 98.6 F is 37.0 C.
Normal, float answer 57.5 57.5 F is 14.2 C.
Normal, zero 0.0 0.0 F is -17.8 C.
Normal, negative -40 -40.0 F is -40.0 C.
Special, many digits 0.33333 0.3 F is -17.6 C.
Error, non-numeric zero Terminates with error message.
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Design

For the design, we start with the purpose, inputs (preconditions), and
outputs (postconditions).

Purpose: Convert a temperature from Fahrenheit to Celsius.

Preconditions: User enters a temperature in Fahrenheit.

Postconditions: Program prints the message “x F is y C.”, rounded
to one digit after the decimal point.
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Pseudocode

So how will we accomplish this?

1 Get the Fahrenheit temperature from the user.

2 Convert to Celsius using the formula C = 5
9(F − 32).

3 Round the Fahrenheit temperature to one decimal.

4 Round the Celsius temperature to one decimal.

5 Output the answer message.

Note: none of the above steps were Python code!

Pseudocode in your design should be written so that it could be
implemented in any programming language, not just Python.
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Pseudocode to comments.

Make each step into a comment.

# Purpose: Convert a temperature from Fahrenheit to Celsius.

# Preconditions: User enters a temperature in Fahrenheit.

# Postconditions: Program prints the message "x F is y C.",

# rounded to one digit after the decimal point.

# 1. Get the Fahrenheit temperature from the user.

# 2. Convert to Celsius using the formula C = 5/9 (F-32)

# 3. Round the Fahrenheit temperature to one decimal.

# 4. Round the Celsius temperature to one decimal.

# 5. Output the answer message.
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Writing the code

Put the steps inside a def main():, and call it at the end.

# Purpose: Convert a temperature from Fahrenheit to Celsius.

# Preconditions: User enters a temperature in Fahrenheit.

# Postconditions: Program prints the message "x F is y C.",

# rounded to one digit after the decimal point.

def main():

# 1. Get the Fahrenheit temperature from the user.

# 2. Convert to Celsius using the formula C = 5/9 (F-32)

# 3. Round the Fahrenheit temperature to one decimal.

# 4. Round the Celsius temperature to one decimal.

# 5. Output the answer message.

main()
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Writing the code

And write code for each line of the design.

def main():

# 1. Get the Fahrenheit temperature from the user.

fahr = float(input("Enter a temp in Fahrenheit: "))

# 2. Convert to Celsius using the formula C = 5/9 (F-32)

celsius = (5/9) * (fahr - 32)

# 3. Round the Fahrenheit temperature to one decimal.

fahr round = round(fahr, 1)

# 4. Round the Celsius temperature to one decimal.

cels round = round(celsius, 1)

# 5. Output the answer message.

print(fahr round, "F is", cels round, "C.")

main()
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Testing

Now run the program once for each test case.

Give the input and verify that the output matches.

If not, there is a bug:
I Maybe in your program. . .
I Maybe in your test case!

After you fix a bug, repeat all the tests.
I Regression testing.
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The end

Next time:

The graphics library.
I Not in the textbook!

Conditions: deciding which code to run.
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