
CS 115 Lecture 3
A first look at Python

Neil Moore

Department of Computer Science
University of Kentucky

Lexington, Kentucky 40506
neil@cs.uky.edu

3 September 2015

Getting Python and WingIDE

Instructions for installing Python and WingIDE 101 are on the web page:
http://www.cs.uky.edu/~keen/help/installingpython.html

We’ll use WingIDE today.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 2 / 22

http://www.cs.uky.edu/~keen/help/installingpython.html

Changing the font in WingIDE

Use a big font (18 or 20 point) for labs! It’s easier for both us and your
teammates.

Edit → Preferences

Under “User Interface”, select “Fonts”
I May be in a slightly different location on Mac OS.

Next to “Display Font/Size”:
I “Use selected”, then “Change”.
I Select a size and click “OK”.

For “Editor Font/Size” (controls your code’s font):
I Either do the same. . .
I Or select “Match Display Font/Size”
I Many people prefer a monospace font for code.

F Consolas, Lucida Console, Courier New, . . .

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 3 / 22

Changing the font in WingIDE

Use a big font (18 or 20 point) for labs! It’s easier for both us and your
teammates.

Edit → Preferences

Under “User Interface”, select “Fonts”
I May be in a slightly different location on Mac OS.

Next to “Display Font/Size”:
I “Use selected”, then “Change”.
I Select a size and click “OK”.

For “Editor Font/Size” (controls your code’s font):
I Either do the same. . .
I Or select “Match Display Font/Size”
I Many people prefer a monospace font for code.

F Consolas, Lucida Console, Courier New, . . .

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 3 / 22

Changing the font in WingIDE

Use a big font (18 or 20 point) for labs! It’s easier for both us and your
teammates.

Edit → Preferences

Under “User Interface”, select “Fonts”
I May be in a slightly different location on Mac OS.

Next to “Display Font/Size”:
I “Use selected”, then “Change”.
I Select a size and click “OK”.

For “Editor Font/Size” (controls your code’s font):
I Either do the same. . .
I Or select “Match Display Font/Size”

I Many people prefer a monospace font for code.
F Consolas, Lucida Console, Courier New, . . .

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 3 / 22

Changing the font in WingIDE

Use a big font (18 or 20 point) for labs! It’s easier for both us and your
teammates.

Edit → Preferences

Under “User Interface”, select “Fonts”
I May be in a slightly different location on Mac OS.

Next to “Display Font/Size”:
I “Use selected”, then “Change”.
I Select a size and click “OK”.

For “Editor Font/Size” (controls your code’s font):
I Either do the same. . .
I Or select “Match Display Font/Size”
I Many people prefer a monospace font for code.

F Consolas, Lucida Console, Courier New, . . .

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 3 / 22

Changing the font in WingIDE

Use a big font (18 or 20 point) for labs! It’s easier for both us and your
teammates.

Edit → Preferences

Under “User Interface”, select “Fonts”
I May be in a slightly different location on Mac OS.

Next to “Display Font/Size”:
I “Use selected”, then “Change”.
I Select a size and click “OK”.

For “Editor Font/Size” (controls your code’s font):
I Either do the same. . .
I Or select “Match Display Font/Size”
I Many people prefer a monospace font for code.

F Consolas, Lucida Console, Courier New, . . .

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 3 / 22

A first Python program, with bugs

Compute the greatest common divisor (GCD) of two numbers.

def main():

Inputs: two positive integers (whole numbers) a and b.

a = input("Please enter a first number: ")

b = input("Please enter another number: ")

1. Repeat as long as b is not zero:

while b != 0:

1.1. If a > b, then set a <- (a - b)

if a > b:

a = a - b

1.2. Otherwise, set b <- (b - a)

else:

b = b - b

2. Output a as the answer.

print("The GCM of your numbers is", a)

main()

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 4 / 22

Structure of a Python program

def main():
I This is the “main function” where the program does all its work

F (for now)

I More about functions in chapter 5.
I Python doesn’t need a main function, but use one in this class!

F (It’s good practice for later.)

Indentation and blocks.
I Code is arranged in indented blocks.
I The body of main is one block.
I It has several blocks inside.

main()
I Calls the main function.
I Not inside the main function.

F The main() is not indented at all!

I If you forget this line, the program doesn’t do anything!

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 5 / 22

Structure of a Python program

def main():
I This is the “main function” where the program does all its work

F (for now)

I More about functions in chapter 5.
I Python doesn’t need a main function, but use one in this class!

F (It’s good practice for later.)

Indentation and blocks.
I Code is arranged in indented blocks.
I The body of main is one block.
I It has several blocks inside.

main()
I Calls the main function.
I Not inside the main function.

F The main() is not indented at all!

I If you forget this line, the program doesn’t do anything!

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 5 / 22

Structure of a Python program

def main():
I This is the “main function” where the program does all its work

F (for now)

I More about functions in chapter 5.
I Python doesn’t need a main function, but use one in this class!

F (It’s good practice for later.)

Indentation and blocks.
I Code is arranged in indented blocks.
I The body of main is one block.
I It has several blocks inside.

main()
I Calls the main function.
I Not inside the main function.

F The main() is not indented at all!

I If you forget this line, the program doesn’t do anything!

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 5 / 22

Structure of a Python program

def main():
I This is the “main function” where the program does all its work

F (for now)

I More about functions in chapter 5.
I Python doesn’t need a main function, but use one in this class!

F (It’s good practice for later.)

Indentation and blocks.
I Code is arranged in indented blocks.
I The body of main is one block.
I It has several blocks inside.

main()
I Calls the main function.
I Not inside the main function.

F The main() is not indented at all!

I If you forget this line, the program doesn’t do anything!

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 5 / 22

Structure of a Python program

def main():
I This is the “main function” where the program does all its work

F (for now)

I More about functions in chapter 5.
I Python doesn’t need a main function, but use one in this class!

F (It’s good practice for later.)

Indentation and blocks.
I Code is arranged in indented blocks.
I The body of main is one block.
I It has several blocks inside.

main()
I Calls the main function.
I Not inside the main function.

F The main() is not indented at all!

I If you forget this line, the program doesn’t do anything!

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 5 / 22

Documentation and comments

Syntax: Comments in Python start with a # character and extend to
the end of the line.

I A variant of comments starts and ends with three single quotes.
I This version can include multiple lines, paragraphs, pages.

Semantics: Does nothing: ignored by Python entirely.

Why would we want to do that?

Comments are for humans, not the computer.
I Teammates.
I Your boss (or instructor, grader, . . .)

F You can talk to your grader while they are grading it!

I Yourself next week!

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 6 / 22

Documentation and comments

Syntax: Comments in Python start with a # character and extend to
the end of the line.

I A variant of comments starts and ends with three single quotes.
I This version can include multiple lines, paragraphs, pages.

Semantics: Does nothing: ignored by Python entirely.

Why would we want to do that?

Comments are for humans, not the computer.

I Teammates.
I Your boss (or instructor, grader, . . .)

F You can talk to your grader while they are grading it!

I Yourself next week!

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 6 / 22

Documentation and comments

Syntax: Comments in Python start with a # character and extend to
the end of the line.

I A variant of comments starts and ends with three single quotes.
I This version can include multiple lines, paragraphs, pages.

Semantics: Does nothing: ignored by Python entirely.

Why would we want to do that?

Comments are for humans, not the computer.
I Teammates.
I Your boss (or instructor, grader, . . .)

F You can talk to your grader while they are grading it!

I Yourself next week!

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 6 / 22

Documentation and comments

Syntax: Comments in Python start with a # character and extend to
the end of the line.

I A variant of comments starts and ends with three single quotes.
I This version can include multiple lines, paragraphs, pages.

Semantics: Does nothing: ignored by Python entirely.

Why would we want to do that?

Comments are for humans, not the computer.
I Teammates.
I Your boss (or instructor, grader, . . .)

F You can talk to your grader while they are grading it!

I Yourself next week!

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 6 / 22

Documentation and comments

Syntax: Comments in Python start with a # character and extend to
the end of the line.

I A variant of comments starts and ends with three single quotes.
I This version can include multiple lines, paragraphs, pages.

Semantics: Does nothing: ignored by Python entirely.

Why would we want to do that?

Comments are for humans, not the computer.
I Teammates.
I Your boss (or instructor, grader, . . .)

F You can talk to your grader while they are grading it!

I Yourself next week!

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 6 / 22

Where to use comments

Comments don’t usually need to say how you are doing something
or what you are doing.

I That’s what the code is for.

Instead, they should say why

:
BAD: counter = 0 # set variable to zero

GOOD: counter = 0 # initialize number of lines

If the comment is long, put it on a line of its own before the
statement.

I That way you don’t have to scroll horizontally to read it.
F In general, try to keep code lines to < 80 characters.
F Less on team labs, where you should use big fonts.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 7 / 22

Where to use comments

Comments don’t usually need to say how you are doing something
or what you are doing.

I That’s what the code is for.

Instead, they should say why :
BAD: counter = 0 # set variable to zero

GOOD: counter = 0 # initialize number of lines

If the comment is long, put it on a line of its own before the
statement.

I That way you don’t have to scroll horizontally to read it.
F In general, try to keep code lines to < 80 characters.
F Less on team labs, where you should use big fonts.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 7 / 22

Where to use comments

Comments don’t usually need to say how you are doing something
or what you are doing.

I That’s what the code is for.

Instead, they should say why :
BAD: counter = 0 # set variable to zero

GOOD: counter = 0 # initialize number of lines

If the comment is long, put it on a line of its own before the
statement.

I That way you don’t have to scroll horizontally to read it.

F In general, try to keep code lines to < 80 characters.
F Less on team labs, where you should use big fonts.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 7 / 22

Where to use comments

Comments don’t usually need to say how you are doing something
or what you are doing.

I That’s what the code is for.

Instead, they should say why :
BAD: counter = 0 # set variable to zero

GOOD: counter = 0 # initialize number of lines

If the comment is long, put it on a line of its own before the
statement.

I That way you don’t have to scroll horizontally to read it.
F In general, try to keep code lines to < 80 characters.
F Less on team labs, where you should use big fonts.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 7 / 22

Where to use comments

Comments don’t usually need to say how you are doing something
or what you are doing.

I That’s what the code is for.

Instead, they should say why :
BAD: counter = 0 # set variable to zero

GOOD: counter = 0 # initialize number of lines

If the comment is long, put it on a line of its own before the
statement.

I That way you don’t have to scroll horizontally to read it.
F In general, try to keep code lines to < 80 characters.
F Less on team labs, where you should use big fonts.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 7 / 22

Header comments

All your programming assignments should have a header comment at the
top.

See the “Programming Standard” page under “Program
Assignments”.

Doesn’t hurt to have them in lab assignments either!

Name, email, section number

Purpose of program

Date completed

Preconditions: inputs to the program
I And what you assume about the inputs.

Postconditions: outputs of the program.
I And what you guarantee about the outputs.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 8 / 22

Header comments

All your programming assignments should have a header comment at the
top.

See the “Programming Standard” page under “Program
Assignments”.

Doesn’t hurt to have them in lab assignments either!

Name, email, section number

Purpose of program

Date completed

Preconditions: inputs to the program
I And what you assume about the inputs.

Postconditions: outputs of the program.
I And what you guarantee about the outputs.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 8 / 22

Kinds of errors

Back to our program. . . it has several errors right now.

Syntax errors

Semantic errors

Run-time errors

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 9 / 22

Syntax errors

These are the easiest kind to find and fix.

Syntax is the rules that say how to write statements in the language.

I Programming languages are very rigid about syntax rules.
I Misspelling, wrong punctuation, bad grammar, etc.
I Humans can figure out what you meant: not computers.

The interpreter (or compiler) will give you an error message.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 10 / 22

Syntax errors

These are the easiest kind to find and fix.

Syntax is the rules that say how to write statements in the language.
I Programming languages are very rigid about syntax rules.
I Misspelling, wrong punctuation, bad grammar, etc.
I Humans can figure out what you meant: not computers.

The interpreter (or compiler) will give you an error message.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 10 / 22

Syntax errors

These are the easiest kind to find and fix.

Syntax is the rules that say how to write statements in the language.
I Programming languages are very rigid about syntax rules.
I Misspelling, wrong punctuation, bad grammar, etc.
I Humans can figure out what you meant: not computers.

The interpreter (or compiler) will give you an error message.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 10 / 22

Syntax errors

These are the easiest kind to find and fix.

Syntax is the rules that say how to write statements in the language.
I Programming languages are very rigid about syntax rules.
I Misspelling, wrong punctuation, bad grammar, etc.
I Humans can figure out what you meant: not computers.

The interpreter (or compiler) will give you an error message.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 10 / 22

Semantic errors

Also known as logic errors.

Semantics = meaning.
I The program doesn’t do what you wanted it to do.

I Maybe you multiplied instead of dividing.
I . . . or used the wrong variable.

The interpreter won’t detect these for you!

So how do we find them? Testing!
I Test plan: what to test, provided input, expected output.
I Coming up with a good set of test cases is one of the hard parts of

programming.
I The first part of program 1 will be writing a test plan.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 11 / 22

Semantic errors

Also known as logic errors.

Semantics = meaning.
I The program doesn’t do what you wanted it to do.
I Maybe you multiplied instead of dividing.
I . . . or used the wrong variable.

The interpreter won’t detect these for you!

So how do we find them? Testing!
I Test plan: what to test, provided input, expected output.
I Coming up with a good set of test cases is one of the hard parts of

programming.
I The first part of program 1 will be writing a test plan.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 11 / 22

Semantic errors

Also known as logic errors.

Semantics = meaning.
I The program doesn’t do what you wanted it to do.
I Maybe you multiplied instead of dividing.
I . . . or used the wrong variable.

The interpreter won’t detect these for you!

So how do we find them?

Testing!
I Test plan: what to test, provided input, expected output.
I Coming up with a good set of test cases is one of the hard parts of

programming.
I The first part of program 1 will be writing a test plan.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 11 / 22

Semantic errors

Also known as logic errors.

Semantics = meaning.
I The program doesn’t do what you wanted it to do.
I Maybe you multiplied instead of dividing.
I . . . or used the wrong variable.

The interpreter won’t detect these for you!

So how do we find them? Testing!
I Test plan: what to test, provided input, expected output.

I Coming up with a good set of test cases is one of the hard parts of
programming.

I The first part of program 1 will be writing a test plan.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 11 / 22

Semantic errors

Also known as logic errors.

Semantics = meaning.
I The program doesn’t do what you wanted it to do.
I Maybe you multiplied instead of dividing.
I . . . or used the wrong variable.

The interpreter won’t detect these for you!

So how do we find them? Testing!
I Test plan: what to test, provided input, expected output.
I Coming up with a good set of test cases is one of the hard parts of

programming.
I The first part of program 1 will be writing a test plan.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 11 / 22

Semantic errors

Also known as logic errors.

Semantics = meaning.
I The program doesn’t do what you wanted it to do.
I Maybe you multiplied instead of dividing.
I . . . or used the wrong variable.

The interpreter won’t detect these for you!

So how do we find them? Testing!
I Test plan: what to test, provided input, expected output.
I Coming up with a good set of test cases is one of the hard parts of

programming.
I The first part of program 1 will be writing a test plan.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 11 / 22

Run-time errors

The program or interpreter encounters a situation it can’t handle.
I Usually cause the program to halt with an error message.
I Not detected until the situation actually happens!

Often caused by the environment (operating system):
I File not found.
I Network connection closed.
I Out of memory.

Sometimes caused by programming errors:
I Used a string where a number was expected.
I Undefined variable.

It is possible, but tricky, to catch and handle these errors
I Exception handling: near the end of the semester.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 12 / 22

Run-time errors

The program or interpreter encounters a situation it can’t handle.
I Usually cause the program to halt with an error message.
I Not detected until the situation actually happens!

Often caused by the environment (operating system):
I File not found.
I Network connection closed.
I Out of memory.

Sometimes caused by programming errors:
I Used a string where a number was expected.
I Undefined variable.

It is possible, but tricky, to catch and handle these errors
I Exception handling: near the end of the semester.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 12 / 22

Run-time errors

The program or interpreter encounters a situation it can’t handle.
I Usually cause the program to halt with an error message.
I Not detected until the situation actually happens!

Often caused by the environment (operating system):
I File not found.
I Network connection closed.
I Out of memory.

Sometimes caused by programming errors:
I Used a string where a number was expected.
I Undefined variable.

It is possible, but tricky, to catch and handle these errors
I Exception handling: near the end of the semester.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 12 / 22

Run-time errors

The program or interpreter encounters a situation it can’t handle.
I Usually cause the program to halt with an error message.
I Not detected until the situation actually happens!

Often caused by the environment (operating system):
I File not found.
I Network connection closed.
I Out of memory.

Sometimes caused by programming errors:
I Used a string where a number was expected.
I Undefined variable.

It is possible, but tricky, to catch and handle these errors
I Exception handling: near the end of the semester.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 12 / 22

Run-time errors

The program or interpreter encounters a situation it can’t handle.
I Usually cause the program to halt with an error message.
I Not detected until the situation actually happens!

Often caused by the environment (operating system):
I File not found.
I Network connection closed.
I Out of memory.

Sometimes caused by programming errors:
I Used a string where a number was expected.
I Undefined variable.

It is possible, but tricky, to catch and handle these errors
I Exception handling: near the end of the semester.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 12 / 22

Fixing bugs

Let’s fix the bugs in our program.

Syntax error: missing indentation.

Run-time error: input is a string, not a number.

Semantic error: wrong formula for b.

Semantic error: output message says “GCM”.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 13 / 22

Fixing bugs

Let’s fix the bugs in our program.

Syntax error: missing indentation.

Run-time error: input is a string, not a number.

Semantic error: wrong formula for b.

Semantic error: output message says “GCM”.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 13 / 22

Fixing bugs

Let’s fix the bugs in our program.

Syntax error: missing indentation.

Run-time error: input is a string, not a number.

Semantic error: wrong formula for b.

Semantic error: output message says “GCM”.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 13 / 22

Fixing bugs

Let’s fix the bugs in our program.

Syntax error: missing indentation.

Run-time error: input is a string, not a number.

Semantic error: wrong formula for b.

Semantic error: output message says “GCM”.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 13 / 22

Fixed program

Compute the greatest common divisor (GCD) of two numbers.

def main():

Inputs: two positive integers (whole numbers) a and b.

a = int(input("Please enter a first number: "))

b = int(input("Please enter another number: "))

1. Repeat as long as b is not zero:

while b != 0:

1.1. If a > b, then set a <- (a - b)

if a > b:

a = a - b

1.2. Otherwise, set b <- (b - a)

else:

b = b - a

2. Output a as the answer.

print("The GCD of your numbers is", a)

main()

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 14 / 22

Variables

A variable is a “slot” or “location” that refers to a value.

a and b were variables in our program.

A value is something like 42 or "Hello".

Variables are stored in RAM.

They refer to different values as the program runs (vary-able)
I Assignment (the equals sign) makes a variable refer to a new value.

A fundamental building block of (most) programming languages.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 15 / 22

Variables

A variable is a “slot” or “location” that refers to a value.

a and b were variables in our program.

A value is something like 42 or "Hello".

Variables are stored in RAM.

They refer to different values as the program runs (vary-able)
I Assignment (the equals sign) makes a variable refer to a new value.

A fundamental building block of (most) programming languages.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 15 / 22

Variables

A variable is a “slot” or “location” that refers to a value.

a and b were variables in our program.

A value is something like 42 or "Hello".

Variables are stored in RAM.

They refer to different values as the program runs (vary-able)

I Assignment (the equals sign) makes a variable refer to a new value.

A fundamental building block of (most) programming languages.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 15 / 22

Variables

A variable is a “slot” or “location” that refers to a value.

a and b were variables in our program.

A value is something like 42 or "Hello".

Variables are stored in RAM.

They refer to different values as the program runs (vary-able)
I Assignment (the equals sign) makes a variable refer to a new value.

A fundamental building block of (most) programming languages.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 15 / 22

Variables

A variable is a “slot” or “location” that refers to a value.

a and b were variables in our program.

A value is something like 42 or "Hello".

Variables are stored in RAM.

They refer to different values as the program runs (vary-able)
I Assignment (the equals sign) makes a variable refer to a new value.

A fundamental building block of (most) programming languages.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 15 / 22

Variables

A variable is a “slot” or “location” that refers to a value.

a and b were variables in our program.

A value is something like 42 or "Hello".

Variables are stored in RAM.

They refer to different values as the program runs (vary-able)
I Assignment (the equals sign) makes a variable refer to a new value.

A fundamental building block of (most) programming languages.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 15 / 22

Properties of a variable

Name – what to call the variable?
I Also called an “identifier”.

Value – what is in the variable?
I In Python, the value of a variable is an object.

Type — what kind of value?
I Integer, string, floating-point number, . . .

Scope – where in the program is the name valid?
I In Python, goes from the definition to the end of that block.
I Can have variables with the same name as long as their scopes don’t

overlap.
F They’re entirely unrelated variables!

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 16 / 22

Properties of a variable

Name – what to call the variable?
I Also called an “identifier”.

Value – what is in the variable?
I In Python, the value of a variable is an object.

Type — what kind of value?
I Integer, string, floating-point number, . . .

Scope – where in the program is the name valid?
I In Python, goes from the definition to the end of that block.
I Can have variables with the same name as long as their scopes don’t

overlap.
F They’re entirely unrelated variables!

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 16 / 22

Properties of a variable

Name – what to call the variable?
I Also called an “identifier”.

Value – what is in the variable?
I In Python, the value of a variable is an object.

Type — what kind of value?
I Integer, string, floating-point number, . . .

Scope – where in the program is the name valid?
I In Python, goes from the definition to the end of that block.
I Can have variables with the same name as long as their scopes don’t

overlap.
F They’re entirely unrelated variables!

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 16 / 22

Properties of a variable

Name – what to call the variable?
I Also called an “identifier”.

Value – what is in the variable?
I In Python, the value of a variable is an object.

Type — what kind of value?
I Integer, string, floating-point number, . . .

Scope – where in the program is the name valid?
I In Python, goes from the definition to the end of that block.

I Can have variables with the same name as long as their scopes don’t
overlap.

F They’re entirely unrelated variables!

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 16 / 22

Properties of a variable

Name – what to call the variable?
I Also called an “identifier”.

Value – what is in the variable?
I In Python, the value of a variable is an object.

Type — what kind of value?
I Integer, string, floating-point number, . . .

Scope – where in the program is the name valid?
I In Python, goes from the definition to the end of that block.
I Can have variables with the same name as long as their scopes don’t

overlap.
F They’re entirely unrelated variables!

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 16 / 22

Properties of a variable

Name – what to call the variable?
I Also called an “identifier”.

Value – what is in the variable?
I In Python, the value of a variable is an object.

Type — what kind of value?
I Integer, string, floating-point number, . . .

Scope – where in the program is the name valid?
I In Python, goes from the definition to the end of that block.
I Can have variables with the same name as long as their scopes don’t

overlap.
F They’re entirely unrelated variables!

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 16 / 22

Identifiers (variable names)

A sequence of letters, digits, and underscores
I “Alphanumeric” characters.
I Case sensitive: students and Students and STUDENTS are all

different.
I Cannot start with a digit (Python thinks that’s a number).

I Cannot be a reserved word (if, while, etc.)
F Dark blue in WingIDE.

OK: x, size, name2, long name, CamelCase, ugly

BAD: 2bad4u, no spaces, no-punctuation

Just because it’s legal doesn’t mean it’s good.
I Avoid single-letter variables.

F Except in loop counters, simple math functions.
F thing, number aren’t any better.

I Instead of n, perhaps count
F Even better: num students

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 17 / 22

Identifiers (variable names)

A sequence of letters, digits, and underscores
I “Alphanumeric” characters.
I Case sensitive: students and Students and STUDENTS are all

different.
I Cannot start with a digit (Python thinks that’s a number).
I Cannot be a reserved word (if, while, etc.)

F Dark blue in WingIDE.

OK: x, size, name2, long name, CamelCase, ugly

BAD: 2bad4u, no spaces, no-punctuation

Just because it’s legal doesn’t mean it’s good.
I Avoid single-letter variables.

F Except in loop counters, simple math functions.
F thing, number aren’t any better.

I Instead of n, perhaps count
F Even better: num students

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 17 / 22

Identifiers (variable names)

A sequence of letters, digits, and underscores
I “Alphanumeric” characters.
I Case sensitive: students and Students and STUDENTS are all

different.
I Cannot start with a digit (Python thinks that’s a number).
I Cannot be a reserved word (if, while, etc.)

F Dark blue in WingIDE.

OK: x, size, name2, long name, CamelCase, ugly

BAD: 2bad4u, no spaces, no-punctuation

Just because it’s legal doesn’t mean it’s good.
I Avoid single-letter variables.

F Except in loop counters, simple math functions.
F thing, number aren’t any better.

I Instead of n, perhaps count
F Even better: num students

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 17 / 22

Identifiers (variable names)

A sequence of letters, digits, and underscores
I “Alphanumeric” characters.
I Case sensitive: students and Students and STUDENTS are all

different.
I Cannot start with a digit (Python thinks that’s a number).
I Cannot be a reserved word (if, while, etc.)

F Dark blue in WingIDE.

OK: x, size, name2, long name, CamelCase, ugly

BAD: 2bad4u, no spaces, no-punctuation

Just because it’s legal doesn’t mean it’s good.
I Avoid single-letter variables.

F Except in loop counters, simple math functions.
F thing, number aren’t any better.

I Instead of n, perhaps count
F Even better: num students

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 17 / 22

Identifiers (variable names)

A sequence of letters, digits, and underscores
I “Alphanumeric” characters.
I Case sensitive: students and Students and STUDENTS are all

different.
I Cannot start with a digit (Python thinks that’s a number).
I Cannot be a reserved word (if, while, etc.)

F Dark blue in WingIDE.

OK: x, size, name2, long name, CamelCase, ugly

BAD: 2bad4u, no spaces, no-punctuation

Just because it’s legal doesn’t mean it’s good.
I Avoid single-letter variables.

F Except in loop counters, simple math functions.
F thing, number aren’t any better.

I Instead of n, perhaps count
F Even better: num students

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 17 / 22

Identifiers (variable names)

A sequence of letters, digits, and underscores
I “Alphanumeric” characters.
I Case sensitive: students and Students and STUDENTS are all

different.
I Cannot start with a digit (Python thinks that’s a number).
I Cannot be a reserved word (if, while, etc.)

F Dark blue in WingIDE.

OK: x, size, name2, long name, CamelCase, ugly

BAD: 2bad4u, no spaces, no-punctuation

Just because it’s legal doesn’t mean it’s good.
I Avoid single-letter variables.

F Except in loop counters, simple math functions.
F thing, number aren’t any better.

I Instead of n, perhaps count

F Even better: num students

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 17 / 22

Identifiers (variable names)

A sequence of letters, digits, and underscores
I “Alphanumeric” characters.
I Case sensitive: students and Students and STUDENTS are all

different.
I Cannot start with a digit (Python thinks that’s a number).
I Cannot be a reserved word (if, while, etc.)

F Dark blue in WingIDE.

OK: x, size, name2, long name, CamelCase, ugly

BAD: 2bad4u, no spaces, no-punctuation

Just because it’s legal doesn’t mean it’s good.
I Avoid single-letter variables.

F Except in loop counters, simple math functions.
F thing, number aren’t any better.

I Instead of n, perhaps count
F Even better: num students

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 17 / 22

Can variable properties change?

The name and scope of a variable never change.
I If it looks like it did: it’s a different variable.

In a “dynamically typed” language like Python, the value and type of
a variable can change.

I With an assignment statement:
score = 0.0

score = "incomplete"

In “statically typed” languages like C++, the type cannot change.
I Even in Python, it’s less confusing if each variable has one type.
I One common style: include the type in the variable name:

F user list, name str, . . .

In “pure functional” languages like Haskell, the value cannot change!
I So maybe “variable” is not the right word there!

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 18 / 22

Can variable properties change?

The name and scope of a variable never change.
I If it looks like it did: it’s a different variable.

In a “dynamically typed” language like Python, the value and type of
a variable can change.

I With an assignment statement:
score = 0.0

score = "incomplete"

In “statically typed” languages like C++, the type cannot change.
I Even in Python, it’s less confusing if each variable has one type.
I One common style: include the type in the variable name:

F user list, name str, . . .

In “pure functional” languages like Haskell, the value cannot change!
I So maybe “variable” is not the right word there!

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 18 / 22

Can variable properties change?

The name and scope of a variable never change.
I If it looks like it did: it’s a different variable.

In a “dynamically typed” language like Python, the value and type of
a variable can change.

I With an assignment statement:
score = 0.0

score = "incomplete"

In “statically typed” languages like C++, the type cannot change.
I Even in Python, it’s less confusing if each variable has one type.

I One common style: include the type in the variable name:
F user list, name str, . . .

In “pure functional” languages like Haskell, the value cannot change!
I So maybe “variable” is not the right word there!

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 18 / 22

Can variable properties change?

The name and scope of a variable never change.
I If it looks like it did: it’s a different variable.

In a “dynamically typed” language like Python, the value and type of
a variable can change.

I With an assignment statement:
score = 0.0

score = "incomplete"

In “statically typed” languages like C++, the type cannot change.
I Even in Python, it’s less confusing if each variable has one type.
I One common style: include the type in the variable name:

F user list, name str, . . .

In “pure functional” languages like Haskell, the value cannot change!
I So maybe “variable” is not the right word there!

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 18 / 22

Can variable properties change?

The name and scope of a variable never change.
I If it looks like it did: it’s a different variable.

In a “dynamically typed” language like Python, the value and type of
a variable can change.

I With an assignment statement:
score = 0.0

score = "incomplete"

In “statically typed” languages like C++, the type cannot change.
I Even in Python, it’s less confusing if each variable has one type.
I One common style: include the type in the variable name:

F user list, name str, . . .

In “pure functional” languages like Haskell, the value cannot change!
I So maybe “variable” is not the right word there!

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 18 / 22

Can variable properties change?

The name and scope of a variable never change.
I If it looks like it did: it’s a different variable.

In a “dynamically typed” language like Python, the value and type of
a variable can change.

I With an assignment statement:
score = 0.0

score = "incomplete"

In “statically typed” languages like C++, the type cannot change.
I Even in Python, it’s less confusing if each variable has one type.
I One common style: include the type in the variable name:

F user list, name str, . . .

In “pure functional” languages like Haskell, the value cannot change!
I So maybe “variable” is not the right word there!

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 18 / 22

Assignment

Syntax: variable = expression

Semantics:
Calculates the value of (evaluates) the right hand side (RHS), then
changes the value of the variable on the left hand side (LHS).

I In a later class we’ll see other things that can go on the LHS.

Not an equation!
I In math, x = x + 1 has no solution.
I But in Python, x = x + 1 means “add one to x”.
I Maybe better to pronounce it “gets” than “equals”.
I “Assign x + 1 to x” or “Assign x with/from x + 1”.

Order matters!
I Performs the calculation on the right.
I Changes only the variable on the left.
I x + 1 = x # Syntax error!

If the LHS variable doesn’t already exist in this scope, creates it.
I “Initialization”: giving a variable its initial value.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 19 / 22

Assignment

Syntax: variable = expression

Semantics:
Calculates the value of (evaluates) the right hand side (RHS), then
changes the value of the variable on the left hand side (LHS).

I In a later class we’ll see other things that can go on the LHS.

Not an equation!
I In math, x = x + 1 has no solution.
I But in Python, x = x + 1 means “add one to x”.
I Maybe better to pronounce it “gets” than “equals”.
I “Assign x + 1 to x” or “Assign x with/from x + 1”.

Order matters!
I Performs the calculation on the right.
I Changes only the variable on the left.
I x + 1 = x # Syntax error!

If the LHS variable doesn’t already exist in this scope, creates it.
I “Initialization”: giving a variable its initial value.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 19 / 22

Assignment

Syntax: variable = expression

Semantics:
Calculates the value of (evaluates) the right hand side (RHS), then
changes the value of the variable on the left hand side (LHS).

I In a later class we’ll see other things that can go on the LHS.

Not an equation!
I In math, x = x + 1 has no solution.
I But in Python, x = x + 1 means “add one to x”.

I Maybe better to pronounce it “gets” than “equals”.
I “Assign x + 1 to x” or “Assign x with/from x + 1”.

Order matters!
I Performs the calculation on the right.
I Changes only the variable on the left.
I x + 1 = x # Syntax error!

If the LHS variable doesn’t already exist in this scope, creates it.
I “Initialization”: giving a variable its initial value.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 19 / 22

Assignment

Syntax: variable = expression

Semantics:
Calculates the value of (evaluates) the right hand side (RHS), then
changes the value of the variable on the left hand side (LHS).

I In a later class we’ll see other things that can go on the LHS.

Not an equation!
I In math, x = x + 1 has no solution.
I But in Python, x = x + 1 means “add one to x”.
I Maybe better to pronounce it “gets” than “equals”.

I “Assign x + 1 to x” or “Assign x with/from x + 1”.

Order matters!
I Performs the calculation on the right.
I Changes only the variable on the left.
I x + 1 = x # Syntax error!

If the LHS variable doesn’t already exist in this scope, creates it.
I “Initialization”: giving a variable its initial value.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 19 / 22

Assignment

Syntax: variable = expression

Semantics:
Calculates the value of (evaluates) the right hand side (RHS), then
changes the value of the variable on the left hand side (LHS).

I In a later class we’ll see other things that can go on the LHS.

Not an equation!
I In math, x = x + 1 has no solution.
I But in Python, x = x + 1 means “add one to x”.
I Maybe better to pronounce it “gets” than “equals”.
I “Assign x + 1 to x” or “Assign x with/from x + 1”.

Order matters!
I Performs the calculation on the right.
I Changes only the variable on the left.
I x + 1 = x # Syntax error!

If the LHS variable doesn’t already exist in this scope, creates it.
I “Initialization”: giving a variable its initial value.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 19 / 22

Assignment

Syntax: variable = expression

Semantics:
Calculates the value of (evaluates) the right hand side (RHS), then
changes the value of the variable on the left hand side (LHS).

I In a later class we’ll see other things that can go on the LHS.

Not an equation!
I In math, x = x + 1 has no solution.
I But in Python, x = x + 1 means “add one to x”.
I Maybe better to pronounce it “gets” than “equals”.
I “Assign x + 1 to x” or “Assign x with/from x + 1”.

Order matters!
I Performs the calculation on the right.
I Changes only the variable on the left.

I x + 1 = x # Syntax error!

If the LHS variable doesn’t already exist in this scope, creates it.
I “Initialization”: giving a variable its initial value.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 19 / 22

Assignment

Syntax: variable = expression

Semantics:
Calculates the value of (evaluates) the right hand side (RHS), then
changes the value of the variable on the left hand side (LHS).

I In a later class we’ll see other things that can go on the LHS.

Not an equation!
I In math, x = x + 1 has no solution.
I But in Python, x = x + 1 means “add one to x”.
I Maybe better to pronounce it “gets” than “equals”.
I “Assign x + 1 to x” or “Assign x with/from x + 1”.

Order matters!
I Performs the calculation on the right.
I Changes only the variable on the left.
I x + 1 = x # Syntax error!

If the LHS variable doesn’t already exist in this scope, creates it.
I “Initialization”: giving a variable its initial value.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 19 / 22

Assignment

Syntax: variable = expression

Semantics:
Calculates the value of (evaluates) the right hand side (RHS), then
changes the value of the variable on the left hand side (LHS).

I In a later class we’ll see other things that can go on the LHS.

Not an equation!
I In math, x = x + 1 has no solution.
I But in Python, x = x + 1 means “add one to x”.
I Maybe better to pronounce it “gets” than “equals”.
I “Assign x + 1 to x” or “Assign x with/from x + 1”.

Order matters!
I Performs the calculation on the right.
I Changes only the variable on the left.
I x + 1 = x # Syntax error!

If the LHS variable doesn’t already exist in this scope, creates it.
I “Initialization”: giving a variable its initial value.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 19 / 22

Assignment

Syntax: variable = expression

Semantics:
Calculates the value of (evaluates) the right hand side (RHS), then
changes the value of the variable on the left hand side (LHS).

I In a later class we’ll see other things that can go on the LHS.

Not an equation!
I In math, x = x + 1 has no solution.
I But in Python, x = x + 1 means “add one to x”.
I Maybe better to pronounce it “gets” than “equals”.
I “Assign x + 1 to x” or “Assign x with/from x + 1”.

Order matters!
I Performs the calculation on the right.
I Changes only the variable on the left.
I x + 1 = x # Syntax error!

If the LHS variable doesn’t already exist in this scope, creates it.
I “Initialization”: giving a variable its initial value.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 19 / 22

Using assignment: swapping

Suppose we have two variables and want to swap their values.

So each variable’s new value is the other variable’s old value

:

x = 10

y = 42

do something

print(x, y) # should print: 42 10

Will this work?

x = y

y = x

print(x, y) ⇒ 42 42

We lost the old value of x! Need a temporary variable:

temp = x

x = y

y = temp

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 20 / 22

Using assignment: swapping

Suppose we have two variables and want to swap their values.

So each variable’s new value is the other variable’s old value:

x = 10

y = 42

do something

print(x, y) # should print: 42 10

Will this work?

x = y

y = x

print(x, y) ⇒ 42 42

We lost the old value of x! Need a temporary variable:

temp = x

x = y

y = temp

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 20 / 22

Using assignment: swapping

Suppose we have two variables and want to swap their values.

So each variable’s new value is the other variable’s old value:

x = 10

y = 42

do something

print(x, y) # should print: 42 10

Will this work?

x = y

y = x

print(x, y)

⇒ 42 42

We lost the old value of x! Need a temporary variable:

temp = x

x = y

y = temp

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 20 / 22

Using assignment: swapping

Suppose we have two variables and want to swap their values.

So each variable’s new value is the other variable’s old value:

x = 10

y = 42

do something

print(x, y) # should print: 42 10

Will this work?

x = y

y = x

print(x, y) ⇒ 42 42

We lost the old value of x!

Need a temporary variable:

temp = x

x = y

y = temp

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 20 / 22

Using assignment: swapping

Suppose we have two variables and want to swap their values.

So each variable’s new value is the other variable’s old value:

x = 10

y = 42

do something

print(x, y) # should print: 42 10

Will this work?

x = y

y = x

print(x, y) ⇒ 42 42

We lost the old value of x! Need a temporary variable:

temp = x

x = y

y = temp

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 20 / 22

Using assignment: swapping

Suppose we have two variables and want to swap their values.

So each variable’s new value is the other variable’s old value:

x = 10

y = 42

do something

print(x, y) # should print: 42 10

Will this work?

x = y

y = x

print(x, y) ⇒ 42 42

We lost the old value of x! Need a temporary variable:

temp = x

x = y

y = temp

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 20 / 22

Simple arithmetic

The expression on the right hand side can be an arithmetic
expression.

Arithmetic operators in Python are:
I +, - (add and subtract: a + b, c - d)
I * (multiply), / (divide)
I ** (exponentiate, “to the”)

Order of operations:
I ** first (highest precedence)
I Then * and /
I Then + and - (lowest precedence)
I Can use parentheses to make the order explicit:

total = price * (tax + 100) / 100

We’ll see more details about these operators next time when we talk
about types.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 21 / 22

Simple arithmetic

The expression on the right hand side can be an arithmetic
expression.

Arithmetic operators in Python are:
I +, - (add and subtract: a + b, c - d)
I * (multiply), / (divide)
I ** (exponentiate, “to the”)

Order of operations:
I ** first (highest precedence)
I Then * and /
I Then + and - (lowest precedence)

I Can use parentheses to make the order explicit:
total = price * (tax + 100) / 100

We’ll see more details about these operators next time when we talk
about types.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 21 / 22

Simple arithmetic

The expression on the right hand side can be an arithmetic
expression.

Arithmetic operators in Python are:
I +, - (add and subtract: a + b, c - d)
I * (multiply), / (divide)
I ** (exponentiate, “to the”)

Order of operations:
I ** first (highest precedence)
I Then * and /
I Then + and - (lowest precedence)
I Can use parentheses to make the order explicit:

total = price * (tax + 100) / 100

We’ll see more details about these operators next time when we talk
about types.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 21 / 22

Simple arithmetic

The expression on the right hand side can be an arithmetic
expression.

Arithmetic operators in Python are:
I +, - (add and subtract: a + b, c - d)
I * (multiply), / (divide)
I ** (exponentiate, “to the”)

Order of operations:
I ** first (highest precedence)
I Then * and /
I Then + and - (lowest precedence)
I Can use parentheses to make the order explicit:

total = price * (tax + 100) / 100

We’ll see more details about these operators next time when we talk
about types.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 21 / 22

Simple arithmetic

The expression on the right hand side can be an arithmetic
expression.

Arithmetic operators in Python are:
I +, - (add and subtract: a + b, c - d)
I * (multiply), / (divide)
I ** (exponentiate, “to the”)

Order of operations:
I ** first (highest precedence)
I Then * and /
I Then + and - (lowest precedence)
I Can use parentheses to make the order explicit:

total = price * (tax + 100) / 100

We’ll see more details about these operators next time when we talk
about types.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 21 / 22

Next time

Data types in Python.

More about arithmetic.

Getting input.

Printing.

Testing.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 22 / 22

