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Getting Python and Wing|DE

Instructions for installing Python and WingIDE 101 are on the web page:
http://wuw.cs.uky.edu/~keen/help/installingpython.html

We'll use WingIDE today.
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Changing the font in WingIDE

Use a big font (18 or 20 point) for labs! It's easier for both us and your
teammates.
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Changing the font in WingIDE

Use a big font (18 or 20 point) for labs! It's easier for both us and your
teammates.
o Edit — Preferences
@ Under “User Interface”, select “Fonts”
» May be in a slightly different location on Mac OS.
o Next to “Display Font/Size":

» "“Use selected”, then “Change”.
» Select a size and click "OK".
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A first Python program, with bugs

# Compute the greatest common divisor (GCD) of two numbers.
def main():

# Inputs: two positive integers (whole numbers) a and b.

a = input("Please enter a first number: ")

b = input("Please enter another number: ")

# 1. Repeat as long as b is not zero:

while b != O:

# 1.1. If a > b, then set a <- (a - b)

if a > b:
a=a-b
# 1.2. Otherwise, set b <- (b - a)
else:
b=b-D>

# 2. Output a as the answer.
print("The GCM of your numbers is", a)
main()
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Structure of a Python program

@ def main():
» This is the “main function” where the program does all its work
* (for now)

» More about functions in chapter 5.
» Python doesn't need a main function, but use one in this class!

* (It's good practice for later.)
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Documentation and comments

@ Syntax: Comments in Python start with a # character and extend to
the end of the line.

» A variant of comments starts and ends with three single quotes.
» This version can include multiple lines, paragraphs, pages.

@ Semantics: Does nothing: ignored by Python entirely.
@ Why would we want to do that?
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» Teammates.
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* You can talk to your grader while they are grading it!
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Where to use comments

@ Comments don't usually need to say how you are doing something
or what you are doing.

» That's what the code is for.
@ Instead, they should say why
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@ Instead, they should say why:
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GOOD: counter = 0 # initialize number of lines
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Where to use comments

@ Comments don't usually need to say how you are doing something

or what you are doing.
» That's what the code is for.
@ Instead, they should say why:
BAD: counter = 0 # set variable to zero
GOOD: counter = 0 # initialize number of lines

@ If the comment is long, put it on a line of its own before the
statement.

» That way you don't have to scroll horizontally to read it.
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Header comments

All your programming assignments should have a header comment at the
top.
@ See the “Programming Standard” page under “Program
Assignments” .

@ Doesn't hurt to have them in lab assignments either!
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Header comments

All your programming assignments should have a header comment at the
top.

@ See the “Programming Standard” page under “Program
Assignments” .

Doesn’t hurt to have them in lab assignments either!
Name, email, section number

Purpose of program

Date completed

Preconditions: inputs to the program

» And what you assume about the inputs.
Postconditions: outputs of the program.

» And what you guarantee about the outputs.
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Kinds of errors

Back to our program...it has several errors right now.

@ Syntax errors
@ Semantic errors

@ Run-time errors
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Syntax errors

@ These are the easiest kind to find and fix.
@ Syntax is the rules that say how to write statements in the language.
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Semantic errors

@ Also known as logic errors.
@ Semantics = meaning.

» The program doesn't do what you wanted it to do.

Neil Moore (UK CS) CS 115 Lecture 3

Fall 2015

11/ 22



Semantic errors

@ Also known as logic errors.
@ Semantics = meaning.

» The program doesn't do what you wanted it to do.
» Maybe you multiplied instead of dividing.
» ...or used the wrong variable.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 11 /22



Semantic errors

@ Also known as logic errors.
@ Semantics = meaning.

» The program doesn't do what you wanted it to do.
» Maybe you multiplied instead of dividing.
» ...or used the wrong variable.

@ The interpreter won’t detect these for you!
@ So how do we find them?

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015

11/ 22



Semantic errors

@ Also known as logic errors.
@ Semantics = meaning.

» The program doesn't do what you wanted it to do.
» Maybe you multiplied instead of dividing.
» ...or used the wrong variable.

@ The interpreter won’t detect these for you!
@ So how do we find them? Testing!
» Test plan: what to test, provided input, expected output.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015

11/ 22



Semantic errors

@ Also known as logic errors.
@ Semantics = meaning.

» The program doesn't do what you wanted it to do.
» Maybe you multiplied instead of dividing.
» ...or used the wrong variable.

@ The interpreter won’t detect these for you!

@ So how do we find them? Testing!

» Test plan: what to test, provided input, expected output.

» Coming up with a good set of test cases is one of the hard parts of
programming.

» The first part of program 1 will be writing a test plan.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 11 /22



Semantic errors

@ Also known as logic errors.
@ Semantics = meaning.

» The program doesn't do what you wanted it to do.
» Maybe you multiplied instead of dividing.
» ...or used the wrong variable.

@ The interpreter won’t detect these for you!

@ So how do we find them? Testing!

» Test plan: what to test, provided input, expected output.

» Coming up with a good set of test cases is one of the hard parts of
programming.

» The first part of program 1 will be writing a test plan.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 11 /22



Run-time errors

@ The program or interpreter encounters a situation it can’t handle.

» Usually cause the program to halt with an error message.
> Not detected until the situation actually happens!
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Fixing bugs

Let’s fix the bugs in our program.
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Fixing bugs

Let’s fix the bugs in our program.

@ Syntax error: missing indentation.

@ Run-time error: input is a string, not a number.
@ Semantic error: wrong formula for b.
°

Semantic error: output message says “GCM".
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Fixed program

# Compute the greatest common divisor (GCD) of two numbers.

def main():

# Inputs: two positive integers (whole numbers) a and b.

a = int(input("Please enter a first number: "))
b = int(input("Please enter another number: "))
# 1. Repeat as long as b is not zero:
while b != O:

# 1.1. If a > b, then set a <- (a - b)

if a > b:

a=a-b>b
# 1.2. Otherwise, set b <- (b - a)
else:

b=D>b-a

# 2. Output a as the answer.
print("The GCD of your numbers is", a)
main()
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Variables

A variable is a “slot” or “location” that refers to a value.

@ a and b were variables in our program.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 15 / 22



Variables

A variable is a “slot” or “location” that refers to a value.
@ a and b were variables in our program.

@ A value is something like 42 or "Hello".

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 15 / 22



Variables

A variable is a “slot” or “location” that refers to a value.
@ a and b were variables in our program.
@ A value is something like 42 or "Hello".
@ Variables are stored in RAM.
@ They refer to different values as the program runs (vary-able)

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 15 / 22



Variables

A variable is a “slot” or “location” that refers to a value.
@ a and b were variables in our program.
@ A value is something like 42 or "Hello".
@ Variables are stored in RAM.

@ They refer to different values as the program runs (vary-able)
» Assignment (the equals sign) makes a variable refer to a new value.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 15 / 22



Variables

A variable is a “slot” or “location” that refers to a value.
@ a and b were variables in our program.
@ A value is something like 42 or "Hello".

@ Variables are stored in RAM.
@ They refer to different values as the program runs (vary-able)
» Assignment (the equals sign) makes a variable refer to a new value.

e A fundamental building block of (most) programming languages.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 15 / 22



Variables

A variable is a “slot” or “location” that refers to a value.
@ a and b were variables in our program.
@ A value is something like 42 or "Hello".

@ Variables are stored in RAM.
@ They refer to different values as the program runs (vary-able)
» Assignment (the equals sign) makes a variable refer to a new value.

e A fundamental building block of (most) programming languages.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 15 / 22



Properties of a variable

@ Name — what to call the variable?
» Also called an “identifier”.
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» Can have variables with the same name as long as their scopes don't
overlap.

* They're entirely unrelated variables!
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|dentifiers (variable names)

@ A sequence of letters, digits, and underscores
» “Alphanumeric” characters.

» Case sensitive: students and Students and STUDENTS are all
different.

» Cannot start with a digit (Python thinks that's a number).
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* thing, number aren't any better.
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|dentifiers (variable names)

@ A sequence of letters, digits, and underscores

» “Alphanumeric” characters.
» Case sensitive: students and Students and STUDENTS are all
different.
Cannot start with a digit (Python thinks that’s a number).
Cannot be a reserved word (if, while, etc.)

* Dark blue in WinglIDE.

vy

o OK: x, size, name2, long name, CamelCase, _ugly
@ BAD: 2bad4u, no spaces, no-punctuation
@ Just because it's legal doesn't mean it's good.

> Avoid single-letter variables.

* Except in loop counters, simple math functions.
* thing, number aren't any better.

» Instead of n, perhaps count

* Even better: num_students
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Can variable properties change?

@ The name and scope of a variable never change.
> If it looks like it did: it's a different variable.
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Can variable properties change?

@ The name and scope of a variable never change.
> If it looks like it did: it's a different variable.
@ In a “dynamically typed” language like Python, the value and type of
a variable can change.

» With an assignment statement:
score = 0.0
score = "incomplete"

o In “statically typed” languages like C++, the type cannot change.

» Even in Python, it's less confusing if each variable has one type.
» One common style: include the type in the variable name:

* user_list, name_str, ...
@ In “pure functional” languages like Haskell, the value cannot change!
» So maybe “variable” is not the right word there!

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 18 / 22



Can variable properties change?

@ The name and scope of a variable never change.
> If it looks like it did: it's a different variable.
@ In a “dynamically typed” language like Python, the value and type of
a variable can change.

» With an assignment statement:
score = 0.0
score = "incomplete"

o In “statically typed” languages like C++, the type cannot change.

» Even in Python, it's less confusing if each variable has one type.
» One common style: include the type in the variable name:

* user_list, name_str, ...
@ In “pure functional” languages like Haskell, the value cannot change!
» So maybe “variable” is not the right word there!

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 18 / 22



Assignment

@ Syntax: variable = expression

@ Semantics:
Calculates the value of (evaluates) the right hand side (RHS), then
changes the value of the variable on the left hand side (LHS).
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Calculates the value of (evaluates) the right hand side (RHS), then
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@ Order matters!
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» Changes only the variable on the /eft.
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Using assignment: swapping

Suppose we have two variables and want to swap their values.
@ So each variable's new value is the other variable's old value
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Using assignment: swapping

Suppose we have two variables and want to swap their values.

@ So each variable’s new value is the other variable’s old value:

x =10

y = 42

# do something

print(x, y) # should print: 42 10

o Will this work?

x =y
y=x
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Simple arithmetic

@ The expression on the right hand side can be an arithmetic
expression.
@ Arithmetic operators in Python are:

» +, - (add and subtract: a + b, ¢ - d)
» * (multiply), / (divide)
» *x (exponentiate, “to the")
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Next time

Data types in Python.
More about arithmetic.
Getting input.
Printing.

Testing.
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