CS 115 Lecture 3

A first look at Python

Neil Moore

Department of Computer Science
University of Kentucky
Lexington, Kentucky 40506
neil@cs.uky.edu

3 September 2015

Getting Python and Wing|DE

Instructions for installing Python and WingIDE 101 are on the web page:
http://wuw.cs.uky.edu/~keen/help/installingpython.html

We'll use WingIDE today.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 2/22

http://www.cs.uky.edu/~keen/help/installingpython.html

Changing the font in WingIDE

Use a big font (18 or 20 point) for labs! It's easier for both us and your
teammates.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 3/22

Changing the font in WingIDE

Use a big font (18 or 20 point) for labs! It's easier for both us and your
teammates.
o Edit — Preferences
@ Under “User Interface”, select “Fonts”
» May be in a slightly different location on Mac OS.
o Next to “Display Font/Size":

» "“Use selected”, then “Change”.
» Select a size and click "OK".

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 3/22

Changing the font in WingIDE

Use a big font (18 or 20 point) for labs! It's easier for both us and your
teammates.
o Edit — Preferences
@ Under “User Interface”, select “Fonts”
» May be in a slightly different location on Mac OS.
o Next to “Display Font/Size":

» "“Use selected”, then “Change”.
» Select a size and click "OK".

For “Editor Font/Size” (controls your code's font):

> Either do the same. ..
» Or select “Match Display Font/Size"

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 3/22

Changing the font in WingIDE

Use a big font (18 or 20 point) for labs! It's easier for both us and your
teammates.
o Edit — Preferences
@ Under “User Interface”, select “Fonts”
» May be in a slightly different location on Mac OS.
o Next to “Display Font/Size":
» "“Use selected”, then “Change”.
» Select a size and click “OK".
e For “Editor Font/Size" (controls your code’s font):
» Either do the same. ..

» Or select “Match Display Font/Size"
» Many people prefer a monospace font for code.

* Consolas, Lucida Console, Courier New, ...

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 3/22

Changing the font in WingIDE

Use a big font (18 or 20 point) for labs! It's easier for both us and your
teammates.
o Edit — Preferences
@ Under “User Interface”, select “Fonts”
» May be in a slightly different location on Mac OS.
o Next to “Display Font/Size":
» "“Use selected”, then “Change”.
» Select a size and click “OK".
e For “Editor Font/Size" (controls your code’s font):
» Either do the same. ..

» Or select “Match Display Font/Size"
» Many people prefer a monospace font for code.

* Consolas, Lucida Console, Courier New, ...

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 3/22

A first Python program, with bugs

Compute the greatest common divisor (GCD) of two numbers.
def main():

Inputs: two positive integers (whole numbers) a and b.

a = input("Please enter a first number: ")

b = input("Please enter another number: ")

1. Repeat as long as b is not zero:

while b != O:

1.1. If a > b, then set a <- (a - b)

if a > b:
a=a-b
1.2. Otherwise, set b <- (b - a)
else:
b=b-D>

2. Output a as the answer.
print("The GCM of your numbers is", a)
main()

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 4 /22

Structure of a Python program

@ def main():
» This is the “main function” where the program does all its work
* (for now)

» More about functions in chapter 5.
» Python doesn't need a main function, but use one in this class!

* (It's good practice for later.)

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 5/22

Structure of a Python program

@ def main():
» This is the “main function” where the program does all its work
* (for now)

» More about functions in chapter 5.
» Python doesn't need a main function, but use one in this class!

* (It's good practice for later.)
@ Indentation and blocks.

» Code is arranged in indented blocks.
» The body of main is one block.
» It has several blocks inside.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015

5/22

Structure of a Python program

@ def main():
» This is the “main function” where the program does all its work
* (for now)

» More about functions in chapter 5.
» Python doesn't need a main function, but use one in this class!

* (It's good practice for later.)
@ Indentation and blocks.
» Code is arranged in indented blocks.
» The body of main is one block.
» It has several blocks inside.
@ main()

» Calls the main function.
» Not inside the main function.

* The main() is not indented at all!

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015

5/22

Structure of a Python program

@ def main():
» This is the “main function” where the program does all its work
* (for now)

» More about functions in chapter 5.
» Python doesn't need a main function, but use one in this class!

* (It's good practice for later.)
@ Indentation and blocks.
» Code is arranged in indented blocks.
» The body of main is one block.
» It has several blocks inside.
@ main()

» Calls the main function.
» Not inside the main function.

* The main() is not indented at all!
> If you forget this line, the program doesn't do anything!

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015

5/22

Structure of a Python program

@ def main():
» This is the “main function” where the program does all its work
* (for now)

» More about functions in chapter 5.
» Python doesn't need a main function, but use one in this class!

* (It's good practice for later.)
@ Indentation and blocks.
» Code is arranged in indented blocks.
» The body of main is one block.
» It has several blocks inside.
@ main()

» Calls the main function.
» Not inside the main function.

* The main() is not indented at all!
> If you forget this line, the program doesn't do anything!

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015

5/22

Documentation and comments

@ Syntax: Comments in Python start with a # character and extend to
the end of the line.

» A variant of comments starts and ends with three single quotes.
» This version can include multiple lines, paragraphs, pages.

@ Semantics: Does nothing: ignored by Python entirely.
@ Why would we want to do that?

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 6 /22

Documentation and comments

@ Syntax: Comments in Python start with a # character and extend to
the end of the line.

» A variant of comments starts and ends with three single quotes.
» This version can include multiple lines, paragraphs, pages.

@ Semantics: Does nothing: ignored by Python entirely.

@ Why would we want to do that?
o Comments are for humans, not the computer.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 6 /22

Documentation and comments

@ Syntax: Comments in Python start with a # character and extend to
the end of the line.

» A variant of comments starts and ends with three single quotes.
» This version can include multiple lines, paragraphs, pages.

@ Semantics: Does nothing: ignored by Python entirely.

o Why would we want to do that?

o Comments are for humans, not the computer.

» Teammates.
> Your boss (or instructor, grader, ...)

* You can talk to your grader while they are grading it!

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 6 /22

Documentation and comments

@ Syntax: Comments in Python start with a # character and extend to
the end of the line.

» A variant of comments starts and ends with three single quotes.
» This version can include multiple lines, paragraphs, pages.

@ Semantics: Does nothing: ignored by Python entirely.

o Why would we want to do that?

o Comments are for humans, not the computer.

» Teammates.
> Your boss (or instructor, grader, ...)

* You can talk to your grader while they are grading it!
» Yourself next week!

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 6 /22

Documentation and comments

@ Syntax: Comments in Python start with a # character and extend to
the end of the line.

» A variant of comments starts and ends with three single quotes.
» This version can include multiple lines, paragraphs, pages.

@ Semantics: Does nothing: ignored by Python entirely.

o Why would we want to do that?

o Comments are for humans, not the computer.

» Teammates.
> Your boss (or instructor, grader, ...)

* You can talk to your grader while they are grading it!
» Yourself next week!

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 6 /22

Where to use comments

@ Comments don't usually need to say how you are doing something
or what you are doing.

» That's what the code is for.
@ Instead, they should say why

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 7/22

Where to use comments

@ Comments don't usually need to say how you are doing something
or what you are doing.

» That's what the code is for.

@ Instead, they should say why:
BAD: counter = 0 # set variable to zero
GOOD: counter = 0 # initialize number of lines

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 7/22

Where to use comments

@ Comments don't usually need to say how you are doing something

or what you are doing.
» That's what the code is for.
@ Instead, they should say why:
BAD: counter = 0 # set variable to zero
GOOD: counter = 0 # initialize number of lines

@ If the comment is long, put it on a line of its own before the
statement.

» That way you don't have to scroll horizontally to read it.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015

7/22

Where to use comments

@ Comments don't usually need to say how you are doing something
or what you are doing.

» That's what the code is for.

@ Instead, they should say why:
BAD: counter = 0 # set variable to zero
GOOD: counter = 0 # initialize number of lines

@ If the comment is long, put it on a line of its own before the
statement.
» That way you don't have to scroll horizontally to read it.

* In general, try to keep code lines to < 80 characters.
* Less on team labs, where you should use big fonts.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 7/22

Where to use comments

@ Comments don't usually need to say how you are doing something
or what you are doing.

» That's what the code is for.

@ Instead, they should say why:
BAD: counter = 0 # set variable to zero
GOOD: counter = 0 # initialize number of lines

@ If the comment is long, put it on a line of its own before the
statement.
» That way you don't have to scroll horizontally to read it.

* In general, try to keep code lines to < 80 characters.
* Less on team labs, where you should use big fonts.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 7/22

Header comments

All your programming assignments should have a header comment at the
top.
@ See the “Programming Standard” page under “Program
Assignments” .

@ Doesn't hurt to have them in lab assignments either!

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 8 /22

Header comments

All your programming assignments should have a header comment at the
top.

@ See the “Programming Standard” page under “Program
Assignments” .

Doesn’t hurt to have them in lab assignments either!
Name, email, section number

Purpose of program

Date completed

Preconditions: inputs to the program

» And what you assume about the inputs.
Postconditions: outputs of the program.

» And what you guarantee about the outputs.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 8 /22

Kinds of errors

Back to our program...it has several errors right now.

@ Syntax errors
@ Semantic errors

@ Run-time errors

Neil Moore (UK CS) CS 115 Lecture 3

Fall 2015

9/22

Syntax errors

@ These are the easiest kind to find and fix.
@ Syntax is the rules that say how to write statements in the language.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 10 / 22

Syntax errors

@ These are the easiest kind to find and fix.
@ Syntax is the rules that say how to write statements in the language.

» Programming languages are very rigid about syntax rules.
» Misspelling, wrong punctuation, bad grammar, etc.
» Humans can figure out what you meant: not computers.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 10 / 22

Syntax errors

@ These are the easiest kind to find and fix.
@ Syntax is the rules that say how to write statements in the language.

» Programming languages are very rigid about syntax rules.
» Misspelling, wrong punctuation, bad grammar, etc.
» Humans can figure out what you meant: not computers.

@ The interpreter (or compiler) will give you an error message.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 10 / 22

Syntax errors

@ These are the easiest kind to find and fix.
@ Syntax is the rules that say how to write statements in the language.

» Programming languages are very rigid about syntax rules.
» Misspelling, wrong punctuation, bad grammar, etc.
» Humans can figure out what you meant: not computers.

@ The interpreter (or compiler) will give you an error message.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 10 / 22

Semantic errors

@ Also known as logic errors.
@ Semantics = meaning.

» The program doesn't do what you wanted it to do.

Neil Moore (UK CS) CS 115 Lecture 3

Fall 2015

11/ 22

Semantic errors

@ Also known as logic errors.
@ Semantics = meaning.

» The program doesn't do what you wanted it to do.
» Maybe you multiplied instead of dividing.
» ...or used the wrong variable.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 11 /22

Semantic errors

@ Also known as logic errors.
@ Semantics = meaning.

» The program doesn't do what you wanted it to do.
» Maybe you multiplied instead of dividing.
» ...or used the wrong variable.

@ The interpreter won’t detect these for you!
@ So how do we find them?

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015

11/ 22

Semantic errors

@ Also known as logic errors.
@ Semantics = meaning.

» The program doesn't do what you wanted it to do.
» Maybe you multiplied instead of dividing.
» ...or used the wrong variable.

@ The interpreter won’t detect these for you!
@ So how do we find them? Testing!
» Test plan: what to test, provided input, expected output.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015

11/ 22

Semantic errors

@ Also known as logic errors.
@ Semantics = meaning.

» The program doesn't do what you wanted it to do.
» Maybe you multiplied instead of dividing.
» ...or used the wrong variable.

@ The interpreter won’t detect these for you!

@ So how do we find them? Testing!

» Test plan: what to test, provided input, expected output.

» Coming up with a good set of test cases is one of the hard parts of
programming.

» The first part of program 1 will be writing a test plan.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 11 /22

Semantic errors

@ Also known as logic errors.
@ Semantics = meaning.

» The program doesn't do what you wanted it to do.
» Maybe you multiplied instead of dividing.
» ...or used the wrong variable.

@ The interpreter won’t detect these for you!

@ So how do we find them? Testing!

» Test plan: what to test, provided input, expected output.

» Coming up with a good set of test cases is one of the hard parts of
programming.

» The first part of program 1 will be writing a test plan.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 11 /22

Run-time errors

@ The program or interpreter encounters a situation it can’t handle.

» Usually cause the program to halt with an error message.
> Not detected until the situation actually happens!

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 12 / 22

Run-time errors

@ The program or interpreter encounters a situation it can’t handle.

» Usually cause the program to halt with an error message.
> Not detected until the situation actually happens!

e Often caused by the environment (operating system):

» File not found.
» Network connection closed.
» Out of memory.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 12 / 22

Run-time errors

@ The program or interpreter encounters a situation it can’t handle.

» Usually cause the program to halt with an error message.
> Not detected until the situation actually happens!

e Often caused by the environment (operating system):
» File not found.
» Network connection closed.
» Out of memory.

@ Sometimes caused by programming errors:

» Used a string where a number was expected.
» Undefined variable.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 12 / 22

Run-time errors

@ The program or interpreter encounters a situation it can’t handle.

» Usually cause the program to halt with an error message.
> Not detected until the situation actually happens!

e Often caused by the environment (operating system):

» File not found.
» Network connection closed.
» Out of memory.

@ Sometimes caused by programming errors:

» Used a string where a number was expected.
» Undefined variable.

@ It is possible, but tricky, to catch and handle these errors
» Exception handling: near the end of the semester.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 12 / 22

Run-time errors

@ The program or interpreter encounters a situation it can’t handle.

» Usually cause the program to halt with an error message.
> Not detected until the situation actually happens!

e Often caused by the environment (operating system):

» File not found.
» Network connection closed.
» Out of memory.

@ Sometimes caused by programming errors:

» Used a string where a number was expected.
» Undefined variable.

@ It is possible, but tricky, to catch and handle these errors
» Exception handling: near the end of the semester.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 12 / 22

Fixing bugs

Let’s fix the bugs in our program.

Neil Moore (UK CS) CS 115 Lecture 3

Fixing bugs

Let’s fix the bugs in our program.

Neil Moore (UK CS) CS 115 Lecture 3

Fixing bugs

Let’s fix the bugs in our program.

@ Syntax error: missing indentation.

@ Run-time error: input is a string, not a number.
@ Semantic error: wrong formula for b.
°

Semantic error: output message says “GCM".

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015

13/ 22

Fixing bugs

Let’s fix the bugs in our program.

@ Syntax error: missing indentation.

@ Run-time error: input is a string, not a number.
@ Semantic error: wrong formula for b.
°

Semantic error: output message says “GCM".

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015

13 / 22

Fixed program

Compute the greatest common divisor (GCD) of two numbers.

def main():

Inputs: two positive integers (whole numbers) a and b.

a = int(input("Please enter a first number: "))
b = int(input("Please enter another number: "))
1. Repeat as long as b is not zero:
while b != O:

1.1. If a > b, then set a <- (a - b)

if a > b:

a=a-b>b
1.2. Otherwise, set b <- (b - a)
else:

b=D>b-a

2. Output a as the answer.
print("The GCD of your numbers is", a)
main()

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015

14 / 22

Variables

A variable is a “slot” or “location” that refers to a value.

@ a and b were variables in our program.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 15 / 22

Variables

A variable is a “slot” or “location” that refers to a value.
@ a and b were variables in our program.

@ A value is something like 42 or "Hello".

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 15 / 22

Variables

A variable is a “slot” or “location” that refers to a value.
@ a and b were variables in our program.
@ A value is something like 42 or "Hello".
@ Variables are stored in RAM.
@ They refer to different values as the program runs (vary-able)

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 15 / 22

Variables

A variable is a “slot” or “location” that refers to a value.
@ a and b were variables in our program.
@ A value is something like 42 or "Hello".
@ Variables are stored in RAM.

@ They refer to different values as the program runs (vary-able)
» Assignment (the equals sign) makes a variable refer to a new value.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 15 / 22

Variables

A variable is a “slot” or “location” that refers to a value.
@ a and b were variables in our program.
@ A value is something like 42 or "Hello".

@ Variables are stored in RAM.
@ They refer to different values as the program runs (vary-able)
» Assignment (the equals sign) makes a variable refer to a new value.

e A fundamental building block of (most) programming languages.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 15 / 22

Variables

A variable is a “slot” or “location” that refers to a value.
@ a and b were variables in our program.
@ A value is something like 42 or "Hello".

@ Variables are stored in RAM.
@ They refer to different values as the program runs (vary-able)
» Assignment (the equals sign) makes a variable refer to a new value.

e A fundamental building block of (most) programming languages.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 15 / 22

Properties of a variable

@ Name — what to call the variable?
» Also called an “identifier”.

Neil Moore (UK CS) CS 115 Lecture 3

Properties of a variable

@ Name — what to call the variable?
» Also called an “identifier”.
@ Value — what is in the variable?
> In Python, the value of a variable is an object.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 16 / 22

Properties of a variable

@ Name — what to call the variable?

» Also called an “identifier”.
@ Value — what is in the variable?

> In Python, the value of a variable is an object.
@ Type — what kind of value?

> Integer, string, floating-point number, ...

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 16 / 22

Properties of a variable

@ Name — what to call the variable?
> Also called an “identifier”.
@ Value — what is in the variable?
> In Python, the value of a variable is an object.
@ Type — what kind of value?
> Integer, string, floating-point number, ...
@ Scope — where in the program is the name valid?
> In Python, goes from the definition to the end of that block.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015

16 / 22

Properties of a variable

@ Name — what to call the variable?
» Also called an “identifier”.
@ Value — what is in the variable?
> In Python, the value of a variable is an object.
@ Type — what kind of value?
> Integer, string, floating-point number, ...
@ Scope — where in the program is the name valid?

> In Python, goes from the definition to the end of that block.
» Can have variables with the same name as long as their scopes don't
overlap.

* They're entirely unrelated variables!

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 16 / 22

Properties of a variable

@ Name — what to call the variable?
» Also called an “identifier”.
@ Value — what is in the variable?
> In Python, the value of a variable is an object.
@ Type — what kind of value?
> Integer, string, floating-point number, ...
@ Scope — where in the program is the name valid?

> In Python, goes from the definition to the end of that block.
» Can have variables with the same name as long as their scopes don't
overlap.

* They're entirely unrelated variables!

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 16 / 22

|dentifiers (variable names)

@ A sequence of letters, digits, and underscores
» “Alphanumeric” characters.

» Case sensitive: students and Students and STUDENTS are all
different.

» Cannot start with a digit (Python thinks that's a number).

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 17 / 22

|dentifiers (variable names)

@ A sequence of letters, digits, and underscores
» “Alphanumeric” characters.

» Case sensitive: students and Students and STUDENTS are all
different.

Cannot start with a digit (Python thinks that’s a number).
Cannot be a reserved word (if, while, etc.)

vy

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015

17 / 22

|dentifiers (variable names)

@ A sequence of letters, digits, and underscores
» “Alphanumeric” characters.
» Case sensitive: students and Students and STUDENTS are all
different.

Cannot start with a digit (Python thinks that’s a number).
Cannot be a reserved word (if, while, etc.)

* Dark blue in WingIDE.

vy

o OK: x, size, name2, long name, CamelCase, _ugly

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 17 / 22

|dentifiers (variable names)

@ A sequence of letters, digits, and underscores
» “Alphanumeric” characters.
» Case sensitive: students and Students and STUDENTS are all
different.

Cannot start with a digit (Python thinks that’s a number).
Cannot be a reserved word (if, while, etc.)

* Dark blue in WingIDE.

vy

o OK: x, size, name2, long name, CamelCase, _ugly

@ BAD: 2bad4u, no spaces, no-punctuation

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015

17 / 22

|dentifiers (variable names)

@ A sequence of letters, digits, and underscores

» “Alphanumeric” characters.
» Case sensitive: students and Students and STUDENTS are all
different.
Cannot start with a digit (Python thinks that’s a number).
Cannot be a reserved word (if, while, etc.)

* Dark blue in WinglIDE.

vy

o OK: x, size, name2, long name, CamelCase, _ugly
@ BAD: 2bad4u, no spaces, no-punctuation

@ Just because it's legal doesn't mean it's good.
> Avoid single-letter variables.

* Except in loop counters, simple math functions.
* thing, number aren't any better.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 17 / 22

|dentifiers (variable names)

@ A sequence of letters, digits, and underscores

» “Alphanumeric” characters.
» Case sensitive: students and Students and STUDENTS are all
different.
Cannot start with a digit (Python thinks that’s a number).
Cannot be a reserved word (if, while, etc.)

* Dark blue in WinglIDE.

vy

o OK: x, size, name2, long name, CamelCase, _ugly
@ BAD: 2bad4u, no spaces, no-punctuation
@ Just because it's legal doesn't mean it's good.

> Avoid single-letter variables.

* Except in loop counters, simple math functions.
* thing, number aren't any better.

» Instead of n, perhaps count

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 17 / 22

|dentifiers (variable names)

@ A sequence of letters, digits, and underscores

» “Alphanumeric” characters.
» Case sensitive: students and Students and STUDENTS are all
different.
Cannot start with a digit (Python thinks that’s a number).
Cannot be a reserved word (if, while, etc.)

* Dark blue in WinglIDE.

vy

o OK: x, size, name2, long name, CamelCase, _ugly
@ BAD: 2bad4u, no spaces, no-punctuation
@ Just because it's legal doesn't mean it's good.

> Avoid single-letter variables.

* Except in loop counters, simple math functions.
* thing, number aren't any better.

» Instead of n, perhaps count

* Even better: num_students

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 17 / 22

Can variable properties change?

@ The name and scope of a variable never change.
> If it looks like it did: it's a different variable.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 18 / 22

Can variable properties change?

@ The name and scope of a variable never change.
> If it looks like it did: it's a different variable.
@ In a “dynamically typed” language like Python, the value and type of
a variable can change.

» With an assignment statement:
score = 0.0
score = "incomplete"

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 18 / 22

Can variable properties change?

@ The name and scope of a variable never change.
> If it looks like it did: it's a different variable.

@ In a “dynamically typed” language like Python, the value and type of
a variable can change.

» With an assignment statement:
score = 0.0
score = "incomplete"

o In “statically typed” languages like C++, the type cannot change.
» Even in Python, it's less confusing if each variable has one type.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 18 / 22

Can variable properties change?

@ The name and scope of a variable never change.
> If it looks like it did: it's a different variable.
@ In a “dynamically typed” language like Python, the value and type of
a variable can change.
» With an assignment statement:
score = 0.0
score = "incomplete"
o In “statically typed” languages like C++, the type cannot change.

» Even in Python, it's less confusing if each variable has one type.
» One common style: include the type in the variable name:

* user_list, name_str, ...

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 18 / 22

Can variable properties change?

@ The name and scope of a variable never change.
> If it looks like it did: it's a different variable.
@ In a “dynamically typed” language like Python, the value and type of
a variable can change.

» With an assignment statement:
score = 0.0
score = "incomplete"

o In “statically typed” languages like C++, the type cannot change.

» Even in Python, it's less confusing if each variable has one type.
» One common style: include the type in the variable name:

* user_list, name_str, ...
@ In “pure functional” languages like Haskell, the value cannot change!
» So maybe “variable” is not the right word there!

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 18 / 22

Can variable properties change?

@ The name and scope of a variable never change.
> If it looks like it did: it's a different variable.
@ In a “dynamically typed” language like Python, the value and type of
a variable can change.

» With an assignment statement:
score = 0.0
score = "incomplete"

o In “statically typed” languages like C++, the type cannot change.

» Even in Python, it's less confusing if each variable has one type.
» One common style: include the type in the variable name:

* user_list, name_str, ...
@ In “pure functional” languages like Haskell, the value cannot change!
» So maybe “variable” is not the right word there!

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 18 / 22

Assignment

@ Syntax: variable = expression

@ Semantics:
Calculates the value of (evaluates) the right hand side (RHS), then
changes the value of the variable on the left hand side (LHS).

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 19 / 22

Assignment

@ Syntax: variable = expression

@ Semantics:
Calculates the value of (evaluates) the right hand side (RHS), then
changes the value of the variable on the left hand side (LHS).

> In a later class we'll see other things that can go on the LHS.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 19 / 22

Assignment

@ Syntax: variable = expression

@ Semantics:
Calculates the value of (evaluates) the right hand side (RHS), then
changes the value of the variable on the left hand side (LHS).

> In a later class we'll see other things that can go on the LHS.
@ Not an equation!

» In math, x = x + 1 has no solution.
» But in Python, x = x + 1 means “add one to x".

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 19 / 22

Assignment

@ Syntax: variable = expression

@ Semantics:
Calculates the value of (evaluates) the right hand side (RHS), then
changes the value of the variable on the left hand side (LHS).

> In a later class we'll see other things that can go on the LHS.
@ Not an equation!

» In math, x = x + 1 has no solution.
» But in Python, x = x + 1 means “add one to x".
» Maybe better to pronounce it “gets” than “equals”.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 19 / 22

Assignment

@ Syntax: variable = expression

@ Semantics:

Calculates the value of (evaluates) the right hand side (RHS), then
changes the value of the variable on the left hand side (LHS).
> In a later class we'll see other things that can go on the LHS.
@ Not an equation!
» In math, x = x + 1 has no solution.
» But in Python, x = x + 1 means “add one to x".
» Maybe better to pronounce it “gets” than “equals”.
» “Assign x + 1 to x" or “Assign x with/from x 4+ 1".

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 19 / 22

Assignment

@ Syntax: variable = expression

@ Semantics:

Calculates the value of (evaluates) the right hand side (RHS), then

changes the value of the variable on the left hand side (LHS).

> In a later class we'll see other things that can go on the LHS.
@ Not an equation!

» In math, x = x + 1 has no solution.

» But in Python, x = x + 1 means “add one to x".

» Maybe better to pronounce it “gets” than “equals”.

» “Assign x + 1 to x" or “Assign x with/from x 4+ 1".
@ Order matters!

» Performs the calculation on the right.

» Changes only the variable on the /eft.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015

19 /22

Assignment

@ Syntax: variable = expression

@ Semantics:

Calculates the value of (evaluates) the right hand side (RHS), then

changes the value of the variable on the left hand side (LHS).

> In a later class we'll see other things that can go on the LHS.
@ Not an equation!

» In math, x = x + 1 has no solution.

» But in Python, x = x + 1 means “add one to x".

» Maybe better to pronounce it “gets” than “equals”.

» “Assign x + 1 to x" or “Assign x with/from x 4+ 1".
@ Order matters!

» Performs the calculation on the right.

» Changes only the variable on the /eft.

» x + 1 = x # Syntax error!

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015

19 /22

Assignment

@ Syntax: variable = expression

@ Semantics:
Calculates the value of (evaluates) the right hand side (RHS), then
changes the value of the variable on the left hand side (LHS).

> In a later class we'll see other things that can go on the LHS.
@ Not an equation!

» In math, x = x + 1 has no solution.

» But in Python, x = x + 1 means “add one to x".
» Maybe better to pronounce it “gets” than “equals”.
» “Assign x + 1 to x" or “Assign x with/from x 4+ 1".

@ Order matters!

» Performs the calculation on the right.
» Changes only the variable on the /eft.
» x + 1 = x # Syntax error!

@ If the LHS variable doesn’t already exist in this scope, creates it.
» “Initialization”: giving a variable its initial value.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 19 / 22

Assignment

@ Syntax: variable = expression

@ Semantics:
Calculates the value of (evaluates) the right hand side (RHS), then
changes the value of the variable on the left hand side (LHS).

> In a later class we'll see other things that can go on the LHS.
@ Not an equation!

» In math, x = x + 1 has no solution.

» But in Python, x = x + 1 means “add one to x".
» Maybe better to pronounce it “gets” than “equals”.
» “Assign x + 1 to x" or “Assign x with/from x 4+ 1".

@ Order matters!

» Performs the calculation on the right.
» Changes only the variable on the /eft.
» x + 1 = x # Syntax error!

@ If the LHS variable doesn’t already exist in this scope, creates it.
» “Initialization”: giving a variable its initial value.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 19 / 22

Using assignment: swapping

Suppose we have two variables and want to swap their values.
@ So each variable's new value is the other variable's old value

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 20/ 22

Using assignment: swapping

Suppose we have two variables and want to swap their values.
@ So each variable's new value is the other variable's old value:
x = 10
y = 42
do something
print(x, y) # should print: 42 10

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015

20 / 22

Using assignment: swapping

Suppose we have two variables and want to swap their values.

@ So each variable’s new value is the other variable’s old value:

x =10

y = 42

do something

print(x, y) # should print: 42 10

o Will this work?

x =y
y=x
print(x, y)

Neil Moore (UK CS) CS 115 Lecture 3

Fall 2015

20 / 22

Using assignment: swapping

Suppose we have two variables and want to swap their values.
@ So each variable's new value is the other variable's old value:
x = 10
y = 42
do something
print(x, y) # should print: 42 10

o Will this work?
X =y
y=x
print(x, y) = 42 42

@ We lost the old value of x!

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015

20 / 22

Using assignment: swapping

Suppose we have two variables and want to swap their values.
@ So each variable's new value is the other variable's old value:
x = 10
y = 42
do something
print(x, y) # should print: 42 10
o Will this work?
X =Yy
y=x
print(x, y) = 42 42
@ We lost the old value of x! Need a temporary variable:

temp = x
X =y
y = temp

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015

20 / 22

Using assignment: swapping

Suppose we have two variables and want to swap their values.
@ So each variable's new value is the other variable's old value:
x = 10
y = 42
do something
print(x, y) # should print: 42 10
o Will this work?
X =Yy
y=x
print(x, y) = 42 42
@ We lost the old value of x! Need a temporary variable:

temp = x
X =y
y = temp

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015

20 / 22

Simple arithmetic

@ The expression on the right hand side can be an arithmetic
expression.
@ Arithmetic operators in Python are:

» +, - (add and subtract: a + b, ¢ - d)
» * (multiply), / (divide)
» *x (exponentiate, “to the")

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 21 /22

Simple arithmetic

@ The expression on the right hand side can be an arithmetic
expression.
@ Arithmetic operators in Python are:
» +, - (add and subtract: a + b, ¢ - d)
> * (multiply), / (divide)
» *x (exponentiate, “to the")
@ Order of operations:

» *x first (highest precedence)
» Then * and /
» Then + and - (lowest precedence)

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 21 /22

Simple arithmetic

@ The expression on the right hand side can be an arithmetic
expression.
@ Arithmetic operators in Python are:
» + - (add and subtract: a + b, c - d)
> * (multiply), / (divide)
» *x (exponentiate, “to the")
@ Order of operations:
» *x first (highest precedence)
» Then * and /
» Then + and - (lowest precedence)
» Can use parentheses to make the order explicit:
total = price * (tax + 100) / 100

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015

21 /22

Simple arithmetic

@ The expression on the right hand side can be an arithmetic
expression.
@ Arithmetic operators in Python are:
» + - (add and subtract: a + b, c - d)
> * (multiply), / (divide)
» *x (exponentiate, “to the")
@ Order of operations:
» *x first (highest precedence)
» Then * and /
» Then + and - (lowest precedence)
» Can use parentheses to make the order explicit:
total = price * (tax + 100) / 100
o We'll see more details about these operators next time when we talk
about types.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 21 /22

Simple arithmetic

@ The expression on the right hand side can be an arithmetic
expression.
@ Arithmetic operators in Python are:
» + - (add and subtract: a + b, c - d)
> * (multiply), / (divide)
» *x (exponentiate, “to the")
@ Order of operations:
» *x first (highest precedence)
» Then * and /
» Then + and - (lowest precedence)
» Can use parentheses to make the order explicit:
total = price * (tax + 100) / 100
o We'll see more details about these operators next time when we talk
about types.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 21 /22

Next time

Data types in Python.
More about arithmetic.
Getting input.
Printing.

Testing.

Neil Moore (UK CS) CS 115 Lecture 3 Fall 2015 22 /22

