
CS 115 Lecture 19
More about files; 2D lists

Neil Moore

Department of Computer Science
University of Kentucky

Lexington, Kentucky 40506
neil@cs.uky.edu

24 November 2015



Modifying files

We saw last time how to read and write from a file.

What if we want to modify a file?
I Need to both read and write.
I So we’ll have to open the file twice.
I But not at the same time!
I Because opening for writing truncates.

The idea:
I Read in the whole file and close it.
I Process the contents.
I Then open the file for writing.

F Using a different file object.
F That might fail, even if reading worked!

I Write the processed content back to the file.
I Finally, close the output file object.

Let’s write a program to reverse the lines of a file.
I reverse-lines.py

Neil Moore (UK CS) CS 115 Lecture 19 Fall 2015 2 / 12

reverse-lines.py


Example: letter count

Let’s see a program to count letters in a file.

26 different letters, 26 different counters?

We don’t want to make 26 different variables
I if char == "A":

a count += 1

if char == "B":

...
I Ugh!

Instead, we’ll make a list of counters.
I To initialise:

counts = [ 0 ] * 26
I A list with 26 elements, all zero.

Read through each character of each line.
I Find and increment the corresponding counter.

Neil Moore (UK CS) CS 115 Lecture 19 Fall 2015 3 / 12



Converting characters to numeric codes

Last time we heard about ASCII and Unicode.

They assign a numeric code to each different character.

Python has functions to convert between characters and code.

ord takes a character and returns its numeric code.

code = ord("A")
I Argument is a single character, returns an integer.

chr takes a numeric code and returns the character.

char = chr(65)
I Argument is an integer, returns a one-character string.
I Codes below 32 are control characters (newline, tab, . . . )

We can use these to convert letters into a list index.
I We want to put “A” at index zero, “B” at 1, etc.
I So the index is ord(char) - ord("A")
I To convert back: chr(i + ord("A"))

lettercount.py

Neil Moore (UK CS) CS 115 Lecture 19 Fall 2015 4 / 12

lettercount.py


Nested loops

Notice that we had a loop inside another loop:

For each line in the file:
I For each character in the line.

This is called a nested loop.

Which of the two loops iterates more frequently?
I The inner loop.
I Line 1 char 1, line 1 char 2, line 1 char 3, . . .
I Then line 2 char 1, line 2 char 2, . . .
I Once the inner loop finishes, go to the next iteration of the outer loop.
I What if something should happen before/after each row?

F (Like printing a newline?)
F Put it inside the outer loop but not the inner.

Let’s use a nested loop to write a multiplication table.
I mult-table.py

Neil Moore (UK CS) CS 115 Lecture 19 Fall 2015 5 / 12

mult-table.py


Counting iterations

How many times did we print a number?
I 10 times in the first iteration.
I 10 times in the second iteration.
I And so on. . .
I 10 × 10 = 100 times altogether.

When the inner loop’s sequence is the same each time:
I Total iterations = outer iterations × inner iterations.
I If it’s not the same, add up all the inner iterations.

Neil Moore (UK CS) CS 115 Lecture 19 Fall 2015 6 / 12



Two-dimensional lists

Nested loops are particularly useful when we have nested lists.

That is, a list that contains other lists.
I Also called a two-dimensional list.

Why would we use a 2D list?
I For storing a table of values.

F Anything you would put in a spreadsheet.
F Weather forecasts: row = city, column = days.
F Grade book: row = student, column = assignment.

I Or a game board.
F For example, an 8 × 8 chess board.
F Make a list of 8 rows.
F Each row is a list of 8 squares.

I Matrices (MA 322).
F Very useful for computer graphics and “big data”!

Neil Moore (UK CS) CS 115 Lecture 19 Fall 2015 7 / 12



Row-major and column-major

There are two ways to organize 2D lists:

Row-major: table is a list of rows.
I Each row is a list of entries, one per column.
I Outer (major) loop for rows, inner loop for columns.
I Row number comes first.

Column-major: table is a list of columns.
I Each column is a list of entries, one per row.
I Outer loop for columns, inner loop for rows.
I Column number comes first.

Row-major is more common. Why?
I How do we write English?
I Left-to-right (column in the inner loop)
I Then top-to-bottom (row in the outer loop).
I Printing/reading loops are a little simpler with row-major lists.

We’ll use row-major for the rest of the class.
I Whichever you use, it’s important to be consistent.

Neil Moore (UK CS) CS 115 Lecture 19 Fall 2015 8 / 12



Creating 2D lists

There are (at least) two ways to make a 2D list:

Hard-code it by putting lists inside a list:
table = [ [ 1, 2, 3 ], [ 4, 5, 6 ], [ 7, 8, 9 ] ]

I Row 0 is [1, 2, 3], etc.

Or use a two-step process:

First, create an empty outer list.

table = []
I This list will hold our rows.

Then, create the row lists and append them to the outer list.
for rownum in range(5): # five rows

row = [0, 0, 0] # three columns

table.append(row)

Why not this? table = [ [ 0, 0, 0] ] * 5
I That makes all the rows aliases of one another!

Neil Moore (UK CS) CS 115 Lecture 19 Fall 2015 9 / 12



Accessing 2D lists

Let’s say we have a list with five rows and three columns.

How do we access the element in the second row, first column?

How do we access the second row?
row = table[1]

I What type is the second row?
I A list.
I So we need index 0 in the second row:

elt = row[0]
I Can combine the two steps:

elt = table[1][0]

To access an element in a 2D list:
list2d[row][column]

I For row-major lists.
I If the list is column-major, put the column first.

Neil Moore (UK CS) CS 115 Lecture 19 Fall 2015 10 / 12



Traversing a 2D list

To iterate over the contents of a 2D list, we need a nested loop.
I Outer loop: for each row (row-major)
I Inner loop: for each column in that row.

If we only need the elements, not indices:
for row in table: # row is a list

for elt in row:

process the element

finish the row

If we do need indices, use a range instead:
for rowno in range(len(table)): # len = number of rows

for colno in range(len(table[rowno])):

process element table[rowno][colno]

finish the row

Neil Moore (UK CS) CS 115 Lecture 19 Fall 2015 11 / 12



A large example: tic-tac-toe

Let’s look at a somewhat large program using 2D arrays.

We’ll use a 2D array to represent a tic-tac-toe board.

Each element in the array will be “X”, “O”, or a space.

Use loops to print the board and check whether someone won.

tictactoe.py

Neil Moore (UK CS) CS 115 Lecture 19 Fall 2015 12 / 12

tictactoe.py

