
CS 115 Lecture 17
Exceptions and files

Neil Moore

Department of Computer Science
University of Kentucky

Lexington, Kentucky 40506
neil@cs.uky.edu

17 November 2015



Run-time errors

Remember the three kinds of errors:

Syntax error (can’t even run the code).

Run-time error (detected when the code runs; crashes).

Semantic error (not detected: program does the wrong thing).

Sometimes you might want to signal a run-time error yourself. Why?

If you encounter a situation you can’t handle.
I Usually better to handle it with an if!
I But sometimes that’s not possible: float(input(...))

If your function’s preconditions are violated.

A run-time error is better than a semantic error.
I At least you know it’s an error!

Neil Moore (UK CS) CS 115 Lecture 17 Fall 2015 2 / 18



Exceptions

Another name for a run-time error in Python is an exception.

“Exception, not the rule”

Signalling a run-time error is caused raising an exception.
I Also called “throwing” an exception (C++ and Java)
I Python does this automatically in several situations.

By default, raising an exception crashes your program.
I But exceptions can be caught and handled.

Many different kinds of exceptions:
I TypeError: argument has the wrong type.
I ValueError: argument has a good type but a bad value.
I IndexError: accessing a sequence out of range.
I ZeroDivisionError: exactly what it says.
I IOError: file problem, such as “file not found”.
I RuntimeError: “none of the above”.

https://docs.python.org/3/library/exceptions.html

Neil Moore (UK CS) CS 115 Lecture 17 Fall 2015 3 / 18

https://docs.python.org/3/library/exceptions.html


Raising exceptions

To raise an exception, use the raise keyword.

You have to say which kind of exception:
raise ValueError("Empty list provided to minimum.")

raise ZeroDivisionError()

The various kinds of exceptions are all classes.
I Call the constructor with an optional message (a string).

The exception name and string will appear in the crash message:
Traceback (most recent call last):

...

ValueError: Empty list provided to minimum.

Neil Moore (UK CS) CS 115 Lecture 17 Fall 2015 4 / 18



Catching exceptions

By default, exceptions cause the program to crash.

Because that’s better than continuing and doing the wrong thing.

But sometimes you might have a better idea.

For example, type-casting a string to int.
I If the string wasn’t numeric, Python can’t give you a number.
I You asked Python to do something and it can’t.

F Exception!

I But maybe you know what to do in this particular case.
F If it was user input, repeat the loop and ask again.
F If it came from a file, maybe ignore that line.

This is especially important when you can’t check in advance whether
an exception is going to be raised.

I We’ll see this later with IOError.

Neil Moore (UK CS) CS 115 Lecture 17 Fall 2015 5 / 18



try/except
To catch an exception, you use a try/except statement:

try:

body that might raise an exception

except ExceptionClass:

handle the exception

following code

ExceptionClass is one of ValueError, IOError, etc. . .
If the body raises the specified exception:

I The body stops executing immediately (like a “go to”).
F Doesn’t even finish the current line.

I Then Python runs the except block (instead of crashing).
I After the body or the handler, go on to following code.

This applies even if the exception is raised inside a function call!
I Exceptions go up the call stack looking for a handler.

Can have several except blocks for different exceptions.
I trysqrt.py
I Or one block for several exceptions:

except (ValueError, IndexError): # need parentheses!

Neil Moore (UK CS) CS 115 Lecture 17 Fall 2015 6 / 18

trysqrt.py


An exception example

Let’s go back to the numeric input example.

Suppose we want to keep asking for a float until we get one.
I So this will be an input validation loop (sentinel logic).
I We’ll use a flag to mark whether we got a good input.

while not ok:

How do we get the input and convert to a number?
number = float(input("Please enter a number: "))

I float(...) raises a ValueError on non-numeric input.
I So put the line inside a try.
I If we catch the exception, set the ok flag to False.
I If there wasn’t an exception, set the flag to True. Where?

F In the try body after the input.

Finally, put that whole try/except in two places:
I Before the loop, and as the last step of the loop.
I When the loop finishes, we know we have a number.

nonnumeric.py

Neil Moore (UK CS) CS 115 Lecture 17 Fall 2015 7 / 18

nonnumeric.py


Another way

Another way to do loops involving an exception.

Use a flag like we did before, initialized to False.

Set the flag to True in the try as before.

Put the input try/except inside the loop only.
I Because the flag is False, the loop will run at least once.

Put the error message in the except.
I (So it only happens if there was an exception.)

nonnumeric2.py

We’ll see this again when re-prompting for a file.

Neil Moore (UK CS) CS 115 Lecture 17 Fall 2015 8 / 18

nonnumeric2.py


Hints for catching exceptions

“Do not summon up that which you cannot put down.”
—H.P. Lovecraft, “The Case of Charles Dexter Ward”

I Have a plan!
I If you don’t know how to fix the error, don’t catch it.
I It’s better to crash than to continue with bad data.

Keep the try block as small as possible.
I It should contain the line that might raise the exception.
I And subsequent lines that depend on its success.
I Don’t duplicate code in the try and except.

F That code should come after the try/except so it happens either way.

I Don’t wrap the whole main in a try!
F main probably doesn’t know how to fix the error.

If you can use it, if is usually simpler.
I If you know in advance what situations will cause an error.

Neil Moore (UK CS) CS 115 Lecture 17 Fall 2015 9 / 18



Dealing with lots of data

Some program need a lot of data. What to do?

Hard code it (write it in your source)?
That’s hard for non-programmers to change.

Ask the user to type it in each time?
If it’s a lot of data, your users will hate you.

Do you have to type your source code every time you run it?
No—you save it in a file.

Why use files?
I Easier to edit than source.

F Especially if you want to change it during a run.

I Files persist across runs of your program.
F And across reboots of your operating system.
F Can save output for later use.

I Can hold large amounts of data (more than fits in RAM).
I Can use the same data as input to different programs.

Neil Moore (UK CS) CS 115 Lecture 17 Fall 2015 10 / 18



Input/output with the user

Keyboard
Screen

executing
program

input data output data

Neil Moore (UK CS) CS 115 Lecture 17 Fall 2015 11 / 18



I/O with files

Input file variable

Input.txt Report.txt
executing
program

input data output data

Output file variable

Neil Moore (UK CS) CS 115 Lecture 17 Fall 2015 12 / 18



Using files

As in other programs (word processors, IDEs, etc.), you must open a file
before you can use it in your program.

Create a file object in your program that represents the file on disk.
I You can read from and/or write to the object.
I Input-output from/to the file instead of the user.

Syntax:
fileobj = open(filename, "r") # r for reading
fileobj = open(filename) # default is reading

I fileobj is a variable that will hold the file object
I filename is a string that names the file.

F By default, looks for that file in the current directory.
F You can specify an absolute path instead:

open("C:\\Users\\me\\input.txt")
F Don’t do this in your 115 programs: your TA probably uses different

directories.

Can also open a file for writing:
fileobj = open(filename, "w") # w for write

Neil Moore (UK CS) CS 115 Lecture 17 Fall 2015 13 / 18



IOError
If we are trying to read from a file, what can go wrong?

Maybe the file isn’t there.

Or it’s there, but you don’t have permissions to access it.

Or you do, but then your hard drive crashes.

In these situations, opening a file raises a IOError exception.
I Renamed to OSError in Python 3.4.

You can catch the exception just like any other.
I But there’s no point in trying again with the same filename.
I Maybe ask the user for a new filename.

ok = False

while not ok:

try:

fn = input("Enter a file name: ")

infile = open(fn, "r")

ok = True

except IOError:

print("Could not open", fn)

Neil Moore (UK CS) CS 115 Lecture 17 Fall 2015 14 / 18



Looping over the lines in a file

The simplest way to use an input file once you have opened it:

Loop over the lines of the file.

A file object can be used as a sequence of lines:
for line in file:

I Each line is a string.
I file should be a file object, not a filename.

Beware: the line ends in a newline character!
I You might need to use strip or rstrip.

When you’re finished with the file, close it:
file.close()

I Frees up resources associated with the file.
I If you don’t, the file will take up memory until the program exits.
I More on this later.

readfile-for.py

Neil Moore (UK CS) CS 115 Lecture 17 Fall 2015 15 / 18

readfile-for.py


Text files: characters and bytes

Files are stored on disk as a sequence of bytes.

A byte is a collection of eight bits (ones or zeros)
I Can represent a number from 0 to 255.

In text files, bytes are used to encode characters.

An encoding says how to translate between bytes and characters.
I ASCII: one byte, one character—more than enough for English.
I Latin-1, KOI8-R, . . . : Use the leftover numbers for more characters.

F But 256 characters is not enough for CJK (Chinese, Japanese, and
Korean).

I Unicode: more than 256 different characters.
F So you need multiple bytes per character.
F UTF-8, UCS-4, UTF-16: different encodings of Unicode.
F UTF-8 is ASCII-compatible, so is the most commonly used.
F (It’s the default for text files in Python).

Text file: stores a sequence of characters.

Binary file: stores a sequence of bytes.

Neil Moore (UK CS) CS 115 Lecture 17 Fall 2015 16 / 18



Text files: lines

So if a text file is just a sequence of characters, what is a line?

A sequence of characters. . .

There’s one character that can’t appear in the middle of a line.
I The newline character!
I Newline (’\n’) is the line delimiter.

F (Technically it’s a little more complex on Windows,
but Python mostly hides that complexity.)

What would two newlines in a row mean?
I There’s an empty line between them.

So this file:
Hello, world.

How’s it going?

would look like:
Hello, world.\n\nHow’s it going?\n

Neil Moore (UK CS) CS 115 Lecture 17 Fall 2015 17 / 18



Sequential and random access

Sequential access: reading (or writing) the file in order
starting from the beginning.

I Like a for loop.
I Read the first line first, then the second line, etc.

Random access: reading or writing out of order.
I “Go to byte 7563 and put a 1 there.”
I Like lists: we can say mylist[5] without having to

go through indices 0 through 4 first.

Random access doesn’t work that well with text files.
I Bytes don’t always match up with characters.
I And they definitely don’t match up well with lines. . .

At what byte number does line 10 start?
F You’d have to go through the lines sequentially and count!

Text files: usually sequential access.

Binary files: either sequential or random access.

Neil Moore (UK CS) CS 115 Lecture 17 Fall 2015 18 / 18


