
CS 115 Lecture 16
List algorithms, parallel lists

Neil Moore

Department of Computer Science
University of Kentucky

Lexington, Kentucky 40506
neil@cs.uky.edu

12 Nov 2015



Functions that mutate lists

Let’s write a function that mutates a list.

Scaling: multiply all the elements by the same number.

Parameters: a list and a scaling factor.

Postconditions: mutates the list and returns nothing.

Usually a mutating function needs to loop over indices, not elements.

scale.py

What happens if we pass it a string instead of a list?

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015 2 / 13

scale.py


List algorithms

Let’s look at and implement several algorithms for lists.

Pretty much all list algorithms use a loop.
I Usually a for loop, occasionally a while.

Sum: add together all the elements.

Count: find the number of occurrences of a value.

Max/min: find the largest/smallest value.

Sort: rearrange the elements to be in order.

All of these are available as built-in functions or methods.
I But we’ll still write them ourselves. Why?
I It’s good to understand how they work.
I And sometimes we need a slightly different variant.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015 3 / 13



Sum

Adding up the elements of a list works like adding up user input,
which we’ve done before.

Need an accumulator. What initial value?
I 0 — the additive identity (adding 0 doesn’t change anything)

The algorithm:
1 Initialize the accumulator to 0.
2 For each element of the list, add it to the accumulator.
3 Return the accumulator.

In Python we can also use the built-in function sum:
total = sum(mylist)

Variations: sum of squares, product, concatenation.

addup.py

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015 4 / 13

addup.py


Count

The in operator tells us whether an value is in a list. Sometimes we also
want to know how many times it is there.

Two parameters: a list, and the value to search for.

We’ll need an accumulator again to keep track of the count.
I In particular, a counter.

The algorithm:
1 Initialize the counter to 0.
2 For each element of the list:

(2.1) If it equals the search value, add one to the counter.

3 Return the counter.

Python lists have a count method:
numzeros = mylist.count(0)

Variations: count the elements with a particular property.

count.py

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015 5 / 13

count.py


Maximum and minimum
What if we want to find the largest element?

Use a variable to track the largest so far.
I What to initialize it to?
I 0? What if the list is all negative?
I -999999? Same problem: the elements might all be smaller.
I Use the first element of the list!

F “The largest” doesn’t make sense on an empty list: error.

The algorithm:
1 Initialize the “best” variable to the first element.
2 For each element in the rest of the list:

(2.1) If it’s bigger than the best, it is the new best.

3 Return the best.

Python has functions max and min:
largest = max(mylist)

I Elements must be comparable (all str or all numbers, not a mix)

Variations: index of the maximum, maximum function value.

maximum.py

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015 6 / 13

maximum.py


Sorting

We already know the sort function.

But how does it work?

There are several algorithms for sorting:
I Selection sort, insertion sort, quick sort, merge sort.
I http://www.sorting-algorithms.com/
I Most of these algorithms are based around:

F Comparing elements.
F Then swapping them into the right place.

I Different algorithms have different trade-offs:
F Some require fewer comparisons.
F Some require fewer swaps.
F Some require less memory.
F Some are good on “almost-sorted” data.

We’ll look at one algorithm: selection sort.
I Not the fastest, but one of the simplest.
I Also requires the fewest swaps.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015 7 / 13

http://www.sorting-algorithms.com/


Selection sort

The idea behind selection sort: iterate through the list in multiple passes:

First, put the smallest element into the right place.
I Can find the smallest with min and index.
I Then swap it with the first element.

lst[0], lst[minpos] = lst[minpos], lst[0]
I This is pass 1.

Then put the second-smallest element into the right place.
I Use min and index on the unsorted part of the list.
I Then swap it with the second element.
I That’s pass 2.

And the third-smallest, and the fourth, and. . .

Sounds like we need a loop!

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015 8 / 13



Selection sort algorithm

For each index in the list (each pass):
1 Find the smallest element after index i .
2 Swap that element with index i .

Now all the elements up to index i are sorted.

That’s all!
I Each pass makes more of the list sorted than before.
I Gets us closer to the goal, but not all the way there.
I Then repeat until we reach the goal: common algorithmic technique.
I Have to make sure you’re getting closer to the goal: in each pass, there

are fewer numbers to sort than in the previous.

It turns out we could stop before the last index. Why?
I If everything else is in the right place, it must be too!

selsort.py

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015 9 / 13

selsort.py


Parallel lists

Sometimes we need to store collections of related information:
I Employees and salaries.
I Songs, performers, and albums.
I Monster locations and hit points.

We can do this using multiple lists with matching indices.
I So songs[0] goes with artists[0], etc.
I That means all the lists must be the same length.
I These are called parallel lists.

Python has other ways to do similar things:
I Lists of lists, dictionaries, user-defined objects. . .
I Parallel lists are the easiest to get started with.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015 10 / 13



Parallel list examples

Suppose we have two parallel lists, of student names and scores.

If I give you a name, how would you find their score?
I Find the index of that name in the name list.
I The score is at the same index in the other list.

What if I wanted a list of all the students with “A”s?
1 Build an accumulator list for the answer.
2 Iterate over the score list (keeping track of the index)

(2.1) If the score is ≥ 90:
(2.1.1) Find the name at the same index.
(2.1.2) Append that name to the accumulator.

3 Return the accumulator.

Let’s implement functions for both of these.

parallel.py

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015 11 / 13

parallel.py


Another example

Another example related to grading. . . multiple-choice

Let’s say we have a list of the correct answers.

. . . and we also have someone’s answers to the same questions.
I These are parallel lists!

How can we calculate their score (number of right answers)?
1 Keep an counter of the number of correct answers.
2 For each index in the lists:

(2.1) If the student’s answer equals the correct answer:
(2.1.1) Increment the counter.

3 Return the counter.

gradequiz.py

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015 12 / 13

gradequiz.py


Something to think about

How would you sort parallel lists?

Can you use the built-in sort method?

No—because that sorts only one list.

Can’t we just call sort twice, once on each list?
I No—that would scramble the associations.
I Sorry, Aaron, you now have the lowest grade in class.

We need one function that takes two lists.
I Use selection sort, comparing the elements of one list.
I But when you swap, swap the same positions in both lists.

Neil Moore (UK CS) CS 115 Lecture 16 Fall 2015 13 / 13


