CS 115 Lecture 14
Strings part 2

Neil Moore

Department of Computer Science
University of Kentucky
Lexington, Kentucky 40506
neil@cs.uky.edu

3 November 2015

Searching inside a string

Python has two ways to search inside a string for a substring.

@ The in operator: needle in haystack

>

>

needle and haystack are both strings (for now).

Returns a boolean.

if " " in name: # if name contains a space

The substring can occur anywhere: beginning, middle, or end.
if "CS" in class: # CS115, SCSI, 1CS
Case-sensitive!

if "cs" in "CS115": # FALSE!

It must be contiguous:

if "C1" in "CS115": # FALSE!

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015

2/15

Searching inside a string
Sometimes you need to know now just whether the substring is there,
but also where it is.

@ The find method returns the location of a substring.
pos = haystack.find(needle)
Find the first occurrence of the needle in the haystack.
Returns the position where it was found (0 = beginning, etc).
Returns -1 if it was not found.
Add another argument to start searching in the middle:
pos = haystack.find(needle, 4) # start at position 4
* To “continue”, you can use the last match + 1:
spl = haystack.find(" ") # first space
sp2 = haystack.find(" ", spl + 1) # next space

v

vYyy

o rfind is similar, but searches backwards.
» So finds the last occurrence.
text = "the last space here"
lastsp = text.rfind(" ") # 14
» To reverse-search from the middle, give both beginning and end:
prevsp = text.rfind(" ", O, lastsp) # 8

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015

3/15

Combining find and slicing

You can use find and slicing to extract part of a string:
space = name.find(" ")
if space != -1:
first = name[: space] # before the space
last = name[space + 1 :] # after the space

Here's a loop to find all the words in a string: words.py

text = "a string with many words"
prevspace = -1
nextspace = text.find(" ", prevspace + 1)
while nextspace != -1:
word = text[prevspace + 1 : nextspacel
print("word: ", word)

prevspace = nextspace
nextspace = text.find(" ", prevspace + 1)
print("last word: ", text[prevspace + 1 : 1)

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015

4/15

words.py

Search and replace

Often you don't really care where the substrings are, but just want to
replace them with something else.

@ Use the replace method.
newstr = str.replace("from", "to")

» Finds all the occurrences of “from” and replaces them with “to".
» Doesn't modify the original: returns a new string.

@ You can tell replace to only replace the first few occurrences.

course = "CS 115 introduction to programming"
print(course.replace(" ", "-", 1)) # first occurrence
— "CS-115 introduction to programming"

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 5/ 15

Strip

When getting input from the user or a file, sometimes there is extra
whitespace.

@ The strip method removes whitespace from the beginning
and the end of the string.
» Whitespace: space, tab, newline, etc. ..
» Does not affect whitespace in the middle!
» Does not change the original string: returns a new one.
@ userin = "__ \tCS__115_\n"
clean = userin.strip() # "CS_.115"
@ Can strip from only the left or right with 1strip and rstrip:
lclean = userin.lstrip() # "CS._.115.\n"

rclean = userin.rstrip() # "__\tCS__115"
print(userin) # What does this print?

* Original doesn't change! "__\tCS_.115_\n"

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015

6/15

Traversing strings

The for loop in Python can iterate not just over a range of integers, but
also over the characters of a string:
for char in name:

o Called “iterating over” or traversing (“walking across”) the string.

@ As usual char is the name of a new variable.

@ In each iteration of the loop, char will be one character.
> In order.
» Not a number!

@ So if name is "Hal":

» The first time, char = "H"
» Then, char = "a"
» Finally, char = "1"

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 7 /15

String traversal examples

Let's write a couple of programs using strings and for loops to:
@ Check if a string contains a digit.
» How is this different from string.isdigit()?
» Because that checks if all the characters are digits.
» hasdigit.py
@ Remove the vowels from a string.

» Remember, we can't modify the original string.
» So we'll need to build a new string for the result.

* We'll assign to this new string to append the letters we want.
* The string will be a kind of accumulator!

» devowel.py

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 8 /15

hasdigit.py
devowel.py

lterating with an index

Traversing a string gives you the characters, but not their positions.

o If I'm traversing “HAL 9000", the body of the loop has no way to
know which “0" it's currently looking at.

@ That's fine for many uses, but sometimes you do care.

@ There are three ways to do this:
@ Loop over the string and keep a counter.
* Initialize the counter to zero (start at the beginning).
* Increment the counter at the end of each iteration.
@ Loop over the range of indices (plural of “index"):
* for i in range(len(name)):
* Inside the loop, name[i] gives the character at that index.
* Lab 8.
© Use enumerate to get both at the same time.
* for i, char in enumerate(name):
* Each iteration, i will be the index
* ...and char the character at that index.

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015

9/15

lterating with an index

Let's change our "hasdigit” function to “finddigit” in three ways.
© finddigit-counter.py
©Q finddigit-range.py
© finddigit-enumerate.py

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 10 / 15

finddigit-counter.py
finddigit-range.py
finddigit-enumerate.py

Strings to lists to strings

There are two string methods that work with lists of strings:
@ split splits a string into words or other parts.
» And returns a list of strings.
@ join takes a list of strings and combines them.
» And returns a single string.

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 11 /15

Splitting strings

The split method breaks a string apart and returns a list of the pieces.
There are two ways to call split.
@ No arguments: name.split()

» Splits the string on sequences whitespace.

» Gives you a list of “words”:
phrase = "attention CS 115 students"
words = phrase.split()

— ["attention", "CS", "115", "students"]
» Multiple spaces in a row are skipped, as is leading/trailing space:
phrase = "MCSMM115—001\t"

words = sphrase.split()
— ["Cs", "115-001" 1]

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 12 /15

Splitting with a separator

You can also pass an arbitrary separator as an argument to split.
o It will break the string apart on that separator:
date = "04/02/2015"
parts = date.split("/")
— ["o4", "02", "2015" 1]
@ But there are a few differences from word-splitting:

» Multiple separators in a row aren't combined. Instead, you get an
empty string in the resulting list:
parts = "A,,B,C".split(",")

% [lIAII’ llll’ IIBII’ IICII]
» Separators at the beginning/end also give empty strings:
parts = ":A:2:".split(":")
_> [llll, IIAII, ||2||, nn]

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 13 /15

Joining strings

What if we want to do the opposite of split?
@ That is, take a list of strings. ..

@ ...and join them together with a separator.

@ First, let's write the code to do this by hand:
» join.py

Python has a built-in method to do this: join

» But calling it is a little funny. ..
result = "-".join(parts)
» The separator, not the list, comes before the dot!

* We ask the separator to join the list of strings together.
» parts is a sequence of strings (usually a list)

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 14 / 15

join.py

Filling in blanks: format

@ The format method builds a string by “filling in the blanks"”.
» You could use concatenation, but format is often simpler.
Call it on a format string with slots marked with braces {}

» Usually a literal string: "...".format(...)
» Returns a new string, so use in an expression.

Slots refer to arguments in order:
print ("{}:{} {}:{}".format (userid, first, last, salted))

@ Or out of order, by index:
author = "{1}, {0}".format(first name, last name)

Or with keyword arguments (like print’'s sep=)
madlib = "The {noun} {verb}s the {noun2}".format(
noun = "programmer", noun2 = "bug", verb = "cause"

)

@ Don't mix these in a single format string! Pick one.

Neil Moore (UK CS) CS 115 Lecture 14 Fall 2015 15 / 15

