
CS 115 Lecture 13
Strings

Neil Moore

Department of Computer Science
University of Kentucky

Lexington, Kentucky 40506
neil@cs.uky.edu

29 October 2015

Strings

We’ve been using strings for a while. What can we do with them?

Read them from the user: mystr = input("Name? ")

Print them to the screen: print(mystr)

Convert (type-cast) them into ints or floats: num = int(userin)

Concatenate them with +: name = first + " " + last

Compare with other strings: if "A" <= name < "K":

Check whether they are all digits: if mystr.isdigit()

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 2 / 16

String in detail

Let’s see how to do more things with strings:

Find the length.

Get individual characters.

Extract ranges of characters (“slicing”).

Convert to uppercase/lowercase.

Search for letters or substrings.

Search and replace substrings.

Remove whitespace.

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 3 / 16

String length

The length of a string is the number of characters in it.

Spaces count!

So do newlines and other special characters.

To get the length of a string, use the len function:
name = "HAL 9000"
numchars = len(name) # 8

I Argument type: string
I Return type: integer

What is len("")?
I Zero.

We’ll see later that len works with lists too.

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 4 / 16

Extracting characters
The characters in a string are numbered from 0 to length − 1

HAL 9000 (length = 8)
01234567

This number is called the position or index of the character.

You can use square brackets to get the character at a given position.

first = name[0] # "H"
I This is called subscripting or indexing.
I The position must be smaller than the length:

print(name[8]) # ERROR: out of range

You can subscript with negative numbers, to count from the end.
I name[-1] is the last character (rightmost).
I name[-2] is the next-to-last character.
I . . .
I name[-len(name)] is the first character.

name[-i] is like name[len(name) - i]
I name[-9] would still be out of range!

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 5 / 16

Extracting whole substrings: slicing
The square-bracket notation also lets us extract multiple characters.

HAL 9000 (length = 8)
01234567

For example, “The first 3 characters” or “Characters 2 through 4”.
Subscript using a slice (“slicing”).

I Syntax: start, a colon “:”, and stop (one-past-the-end).
F Similar semantics to range(start, stop).

I The first three characters: name[0:3] # "HAL"
F “Start at character 0, stop before character 3.”

I Two through four: name[2:5] # "L 9"
I Can leave out either part:

F Leave out start: start at the beginning.
first = name[:3] # "HAL"

F Leave out stop: go until the end.
last = name[4:] # "9000"

F The whole thing (kind of silly here):
copy = name[:] # "HAL 9000"

Doesn’t change the original string! (Makes a new one).

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 6 / 16

Converting case
Python strings have several methods to change their case (capitalization).

These methods don’t change the original string, either.
I They return a new string, so use them with assignment.

All lowercase:
lazy = name.lower() – “albert einstein”

All uppercase:
telegraph = name.upper() – “ALBERT EINSTEIN”

First letter uppercase:
almost = name.capitalize() – “Albert einstein”

First letter of each word uppercase:
good = name.title() – Gives “Albert Einstein”

One use: case-insensitive comparison.
I For example, a yes-no prompt:
I The user might type “Y” or “y” or “N” or “n”.
I Convert the input to uppercase and compare that!

if userin.upper() == "Y": # handles "y" too

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 7 / 16

Searching inside a string

Python has two ways to search inside a string for a substring.

The in operator: needle in haystack
I needle and haystack are both strings (for now).
I Returns a boolean.

if " " in name: # if name contains a space
I The substring can occur anywhere: beginning, middle, or end.

if "CS" in class: # CS115, SCSI, 1CS
I Case-sensitive!

if "cs" in "CS115": # FALSE!
I It must be contiguous:

if "C1" in "CS115": # FALSE!

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 8 / 16

Searching inside a string
Sometimes you need to know now just whether the substring is there,
but also where it is.

The find method returns the location of a substring.
pos = haystack.find(needle)

I Find the first occurrence of the needle in the haystack.
I Returns the position where it was found (0 = beginning, etc).
I Returns -1 if it was not found.
I Add another argument to start searching in the middle:

pos = haystack.find(needle, 4) # start at position 4
F In a loop you can use the last match + 1:

sp1 = haystack.find(" ") # first space

sp2 = haystack.find(" ", sp1 + 1) # next space

rfind is similar, but searches backwards.
I So finds the last occurrence.

text = "the last space here"

lastsp = text.rfind(" ") # 14
I To reverse-search from the middle, give the beginning and end:

prevsp = text.rfind(" ", 0, lastsp) # 8

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 9 / 16

Combining find and slicing
You can use find and slicing to extract part of a string:

space = name.find(" ")

if space != -1:

first = name[: space] # before the space

last = name[space + 1 :] # after the space

Here’s a loop to find all the words in a string:

text = "a string with many words"

prevspace = -1

nextspace = text.find(" ", prevspace + 1)

while nextspace != -1:

word = text[prevspace + 1 : nextspace]

print("word: ", word)

prevspace = nextspace

nextspace = text.find(" ", prevspace + 1)

print("last word: ", text[prevspace + 1 :])

words.py

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 10 / 16

words.py

Search and replace

Often you don’t really care where the substrings are, but just want to
replace them with something else.

Use the replace method.

newstr = str.replace("from", "to")
I Finds all the occurrences of “from” and replaces them with “to”.
I Doesn’t modify the original: returns a new string.

You can tell replace to only replace the first few occurrences.

course = "CS 115 introduction to programming"

print(course.replace(" ", "-", 1)) # first occurrence

→ "CS-115 introduction to programming"

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 11 / 16

Strip

When getting input from the user or a file, sometimes there is extra
whitespace.

The strip method removes whitespace from the beginning
and the end of the string.

I Whitespace: space, tab, newline, etc. . .
I Does not affect whitespace in the middle!
I Does not change the original string: returns a new one.

userin = " \tCS 115 \n"
clean = userin.strip() # "CS 115"

Can strip from only the left or right with lstrip and rstrip:

lclean = userin.lstrip() # "CS 115 \n"
rclean = userin.rstrip() # " \tCS 115"
print(userin) # What does this print?

F Original doesn’t change! " \tCS 115 \n"

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 12 / 16

Traversing strings

The for loop in Python can iterate not just over a range of integers, but
also over the characters of a string:
for char in name:

Called “iterating over” or traversing (“walking across”) the string.

As usual char is the name of a new variable.

In each iteration of the loop, char will be one character.
I In order.
I Not a number!

So if name is "Hal":
I The first time, char = "H"
I Then, char = "a"
I Finally, char = "l"

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 13 / 16

String traversal examples

Let’s write a couple of programs using strings and for loops to:
1 Check if a string contains a digit.

I How is this different from string.isdigit()?
I Because that checks if all the characters are digits.
I hasdigit.py

2 Remove the vowels from a string.
I Remember, we can’t modify the original string.
I So we’ll need to build a new string for the result.

F We’ll assign to this new string to append the letters we want.
F The string will be a kind of accumulator!

I devowel.py

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 14 / 16

hasdigit.py
devowel.py

Iterating with an index

Traversing a string gives you the characters, but not their positions.

If I’m traversing “HAL 9000”, the body of the loop has no way to
know which “0” it’s currently looking at.

That’s fine for many uses, but sometimes you do care.

There are three ways to do this:
1 Loop over the string and keep a counter.

F Initialize the counter to zero (start at the beginning).
F Increment the counter at the end of each iteration.

2 Loop over the range of indices (plural of “index”):
F for i in range(len(name)):
F Inside the loop, name[i] gives the character at that index.

3 Use enumerate to get both at the same time.
F for i, char in enumerate(name):
F Each iteration, i will be the index
F . . . and char the character at that index.

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 15 / 16

Iterating with an index

Let’s change our “hasdigit” function to “finddigit” in three ways.

1 finddigit-counter.py

2 finddigit-range.py

3 finddigit-enumerate.py

Neil Moore (UK CS) CS 115 Lecture 13 Fall 2015 16 / 16

finddigit-counter.py
finddigit-range.py
finddigit-enumerate.py

