
CS 115 Lecture 9
Boolean logic; random numbers

Neil Moore

Department of Computer Science
University of Kentucky

Lexington, Kentucky 40506
neil@cs.uky.edu

29 September 2015
1 October 2015



Augmented assignment

Often you want to perform an operation on a variable and store the result
in the same variable:

num students = num students + 1

price = price * 0.9 # 10 percent discount

change = change % 25 # change after quarters

Python provides a shorthand for this, augmented assignment:

num students += 1

price *= 0.9

change %= 25

Combines assignment with an arithmetic operator.

The precedence is the same as assignment (=).
I Evaluate the right hand side first.
I What does this do? product *= i + 1
I Not: product = product * i + 1
I But: product = product * (i + 1)

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 2 / 18



Comparing strings

The relational operators <, >=, etc. work with strings, too.

Uses a form of “lexicographic” (alphabetical, dictionary) order.
I Compare corresponding characters in order.
I The first difference tells us the answer.
I ’comparison’ < ’compiler’
I Prefix comes “first”: ’pick’ < ’pickle’

Compares the numeric code (Unicode) for each character.
I Mostly alphabetic for basic English characters.
I Uppercase before lowercase! ’Z’ < ’a’
I Digits come before letters. ’A2’ < ’AA’
I Space comes before digits and letters. ’good day’ < ’goodbye’
I ’ ’ < ’0’ < · · · < ’9’ < ’A’ < · · · < ’Z’ < ’a’ < · · · < ’z’
I ASCII is a subset of Unicode with only basic English characters.

https://en.wikipedia.org/wiki/ASCII#ASCII_printable_code_chart

Can’t compare a string to a number, only to other strings!

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 3 / 18

https://en.wikipedia.org/wiki/ASCII#ASCII_printable_code_chart


Chaining comparisons

In Python, comparisons can be chained together:
if 0 < x < y <= 100:

Means: 0 < x and x < y and y ≤ 100.

This notation is common in mathematics.
I But not in most programming languages!
I Python is rather unique in allowing it.

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 4 / 18



Boolean logic

There are three logical operators that let us combine boolean
expressions. They have lower precedence than the relational operators.

not A: True if A is false, false if A is true.
I A can be any boolean expression:

if not is finished:

do more work()

A and B: True if both A and B are true.

in range = size >= 0 and size <= 100

A or B: True if either A or B is true.
I Or both!

if snow inches > 6 or temperature < 0:

print("Class is cancelled")

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 5 / 18



Complex boolean expressions

not has highest precedence (still lower than comparison).

and has the next highest.

or has the lowest.

So not A or B and C or D means:
(((not A) or (B and C)) or D)

People often forget the order of and and or
I It’s not a bad idea to always use parentheses when combining them.

not A or (B and C) or D

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 6 / 18



Truth tables

The truth table is a tool for making sense of complex boolean expressions.

A not A
T F
F T

A B A and B
T T T
T F F
F T F
F F F

A B A or B
T T T
T F T
F T T
F F F

One row for each possible combination of values
I If there is one input, two rows (T, F).
I Two inputs, four rows (TT, TF, FT, FF).
I 3 inputs, 8 rows (TTT, TTF, TFT, TFF, FTT, FTF, FFT, FFF).

A column for each boolean expression.
I Inputs: Boolean variables, comparisons (relational expressions).
I Intermediates: Each not, and, and or.
I Output: The whole expression.

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 7 / 18



A more complicated example

not (not A or not B)

A B not A not B not A or not B answer
T T F F F T
T F F T T F
F T T F T F
F F T T T F

De Morgan’s laws:

not (not A or not B) = A and B

not (not A and not B) = A or B

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 8 / 18



Be careful!

It is easy to accidentally write an expression that is always true, or always
false.

Tautology and contradiction.

An example:
if size >= 10 or size < 50:

print("in range")
I What happens when size is 100? 20? 2?
I or is true if either comparison is true.
I But they can’t ever both be false!
I So this or is always true (a tautology).

if size < 10 and size > 100:
print("out of range")

I The comparisons can’t ever both be true!
I A contradiction—will never print the message.

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 9 / 18



Be careful!

Don’t trust the English language!
I Make a truth table if you are unsure.

“I want to run this if size < 10 and if size > 100”
I In logic, that’s an or, not an and:

“Run this if size < 10 or size > 100”
I (The example from last slide)

“If x is equal to 4 or 5. . . ”
I Wrong: if x == 4 or 5:
I Boolean expressions are like sentences.

F But here “or” joins nouns, not sentences.

I Instead: “If x is equal to 4 or x is equal to 5”
if x == 4 or x == 5:

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 10 / 18



Python modules

We’ve already seen a couple of modules or libraries in Python:

math

graphics

A collection of pre-written code intended to be re-used.

Python comes with a couple hundred modules.

And there are thousands mode third-party modules.

Let’s look at one more: random

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 11 / 18



Randomness

The random module provides functions for generating random numbers.

Computers are deterministic:
I The same instructions and the same data = the same results.
I Usually this is what we want.
I When might we want the program to do a different thing every time?

F Games.
F Simulations: traffic, weather, galaxies colliding, . . .
F Cryptography.

For these kinds of problems we want random numbers.
I But how can we get real randomness in a deterministic machine?
I There are ways, but usually it’s not necessary.
I Pseudorandom numbers are usually good enough.

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 12 / 18



Randomness

What does “random” mean? Two things:

An even distribution of results.
I If we’re rolling a die, we expect 1 about 1/6 of the time.
I and 2 about 1/6 of the time, 3 about 1/6, . . .
I Uniform distribution: each possibility is equally likely
I This doesn’t mean exactly uniform results!

F Roll a die six times: I bet you get some number twice.
F Over a large number of tests, gets closer to 1/6 each.

An even distribution isn’t enough to be “random”
I What if the die always rolled 1, 2, 3, 4, 5, 6 in that order?
I Random numbers should be unpredictable.
I Specifically, seeing several numbers shouldn’t let us guess the next one.

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 13 / 18



Psseudorandom numbers

Pseudorandom numbers use a deterministic procedure (a random
number generator, RNG) to generate numbers that appear to be
random:

Approximately uniform.

Hard to predict (maybe not impossible).
I RNGs will repeat eventually: want this to take a long time.

A lot of research has gone (and goes) into RNGs:
I Linear congruential, alternating shift generator, Mersenne twister, . . .
I The Art of Computer Programming spends half a book on RNGs.
I Why so much research? Important for security!

F Cryptography uses random numbers for session keys
(like automatically generated one-time passwords).

F If someone could predict the output of the RNG, they could predict the
key and break in or read your data!

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 14 / 18



Using Python’s random number library

Python’s random number generator is in the random library.

import random or from random import *

There are several functions in the library.
I https://docs.python.org/3/library/random.html
I (Note the big red warning!)

The simplest function is random:

chance = random()
I Gives a random float in the range [0.0, 1.0):

F Notation: including 0.0, not including 1.0.

I Useful for probabilities: 1 means “will happen”, 0 means “will not”
if random() < 0.7: # 70% chance

What if we want a random float in a different range?
I Multiply and add:

score = 90.0 * random() + 10.0

Range: [10.0, 100.0)

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 15 / 18

https://docs.python.org/3/library/random.html


Random integers

We could multiply, add, and type-cast to get a random integer.
But there’s a simpler and better way.

The randrange function.

Takes one to three arguments and returns an integer:
I randrange(stop): [0, stop)

Between zero (inclusive) and stop (exclusive!)
I randrange(start, stop): [start, stop)

Between start (inclusive) and stop (exclusive)
I randrange(start, stop, step):

Likewise, but only gives start plus a multiple of step.

“Give me a random multiple of 10 between 0 and 100 inclusive.”
I score = randrange(0, 101, 10)
I What if we wrote 100 instead? Wouldn’t be inclusive.

Related: randint(a, b): [a, b]
I Inclusive on both ends! The same as randrange(a, b + 1)
I Prefer randrange in new code.

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 16 / 18



Random choice

Python can also choose randomly from a list of alternatives:

sacrifice = choice(["time", "money", "quality"])

Must give a list of choices, in square brackets.
I Don’t forget the brackets!

choice("time", "money", "quality")

→ TypeError: choice() takes 2 positional arguments...

Can give a string instead: answer = choice("ABCD")

Returns a random letter from the string.

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 17 / 18



Seeding the RNG

Sometimes it’s useful to be able to repeat the program exactly, with the
same sequence of random numbers. Why?

Reproducible simulations.

Cryptography: client and server might need the same numbers.

Testing games (and “tool-assisted speedruns”).

We can specify the seed for the RNG.
I seed(42) — once at the beginning of the program.
I Now the sequence of numbers will be the same each time.
I seed(43): completely different sequence.

F Not necessarily larger numbers!

What if you never set a seed?
I Python picks one for you, based on the system time.
I On some OSes it can use OS randomness instead.

Only set the seed once per program!

Neil Moore (UK CS) CS 115 Lecture 9 Fall 2015 18 / 18


