
CS 115 Lecture 6
Graphics

Neil Moore

Department of Computer Science
University of Kentucky

Lexington, Kentucky 40506
neil@cs.uky.edu

17 September 2015



The graphics library
So far all our programs have interacted with the user through standard
input and output (the shell window)

Plain-text input (input) and output (print).

Can we do something that looks nicer?

The graphics library by John Zelle is one way.
I Not part of Python: a third-party library.
I Download it from the 115 web page, or Zelle’s site.
I Then what?
I Either: put it in the same directory as your code. . .
I . . . or find your system Python directory and put it there.

F http://www.cs.uky.edu/~keen/115/graphics-fix.html
F import sys

print(sys.path)

and find site-packages

Other graphics packages take different approaches:
I turtle does turtle graphics, based around moving a cursor.
I Tkinter does graphical user interfaces based around widgets like

checkboxes, labels, text fields, . . .

Neil Moore (UK CS) CS 115 Lecture 6 Fall 2015 2 / 16

http://www.cs.uky.edu/~keen/115/graphics-fix.html


Classes, objects and constructors

Object oriented programming: classes, objects, and methods.

A class is a type (kind of thing that can be stored in a variable)
I Especially a user- or library-defined type.
I But in Python, str, float, etc. are also classes.

An object is a particular thing of that type.
I So int is a class, and 42 is an object of that class.
I str is a class, and "abracadabra" an object.
I Point is a class, and Point(100, 100) an object.

Why did we have to write it as Point(100, 100)?
I Unlike Python’s built-in types, most classes don’t have literals.
I Instead you call a constructor to make an object.

F A special function that returns a new object.
F Name of the constructor = name of the class.

Neil Moore (UK CS) CS 115 Lecture 6 Fall 2015 3 / 16



Classes in the graphics library

The Zelle graphics library defines several classes. Among them:

GraphWin — a window for drawing graphics.

Point — an (x , y) coordinate.

Line — a line segment with two endpoints.

Circle — a circle with center and radius.

Rectangle — a rectangle (given by two opposite corners).

Oval — an oval that fits inside a “bounding box”

Polygon — defined by connecting a sequence of points.

Text — text with a given string, position, size, etc.

Entry — text with a given string, position, size, etc.

The complete reference: http://mcsp.wartburg.edu/zelle/

python/graphics/graphics/graphics.html

Neil Moore (UK CS) CS 115 Lecture 6 Fall 2015 4 / 16

http://mcsp.wartburg.edu/zelle/python/graphics/graphics/graphics.html
http://mcsp.wartburg.edu/zelle/python/graphics/graphics/graphics.html


Getting started

Begin by importing the library:
import graphics

I Or: from graphics import *

Now we need to create a window to draw in.
I The class for windows is called GraphWin.

F Constructor: graphics.GraphWin(title, width, height)
F Or just graphics.GraphWin() (“Graphics Window”, 200 × 200).

I Call the constructor, save the new object in a variable:
window = graphics.GraphWin("115 Program", 600, 400)

F We’ll need it later!

The window usually closes when the program exits.
I Keep it open by waiting for a click:

win.getMouse()
F More about getMouse later. . .

I Close on exit doesn’t always work in the IDE
F . . . or when the program crashes.
F Can eat up lots of system resources and even require a reboot!

I Be safe by calling win.close()

Neil Moore (UK CS) CS 115 Lecture 6 Fall 2015 5 / 16



Drawing graphics objects

Let’s make a line going from the upper left to lower right.
To do that, we use the Line class.

Constructor: graphics.Line(point1, point2)

What’s a “point”? Another class!
I Constructor: graphics.Point(x, y) (x and y are floats)

F By default, (0, 0) is the upper left.
F Upside-down compared to math!

I Can use a constructor (any expression) as an argument:
from graphics import Line, Point

diagonal = Line(Point(0, 0), Point(600, 400))

Making the line doesn’t actually draw it!
I One more step: tell it to draw in the window:

diagonal.draw(window)
I Why? Programs can have multiple windows!
I . . . or you might want to set the color first.

Neil Moore (UK CS) CS 115 Lecture 6 Fall 2015 6 / 16



Methods

What’s up with that diagonal.draw(window)?

draw is a method of the Line class.
I A method is like a function that works on an object.
I “Something the object can do.”
I In OOP, methods are how our program interacts with objects.

Syntax: obj.method(arguments)
I obj is an object (usually a variable).
I method is the name of the method.

Semantics: Calls the function “method” in obj’s class,
sending it obj as the object to work on.

Methods can return values just like ordinary functions:
x = point.getX()

The draw method does not return anything (like print).
diagonal.draw(win)

Neil Moore (UK CS) CS 115 Lecture 6 Fall 2015 7 / 16



More shapes: circles

The Circle class represents a circle (unsurprisingly)

What information is needed to draw a circle?
I Center – a Point.
I Radius – a number (distance from center to edge).

eye = Circle(Point(250, 250), 200)
I Center is at (250, 250)
I Radius 200: top is at (y = 50), bottom at (y = 450).

As with Line, we have to draw the circle to display it:
eye.draw(win)

Neil Moore (UK CS) CS 115 Lecture 6 Fall 2015 8 / 16



Rectangles

We could draw a rectangle already using four Lines.

But there’s an easier way. . .
I (and we’ll see another benefit shortly).

What information do we need to draw a rectangle?
I Four corners?
I We really only need two opposite corners

F The graphics libraries can figure out the other two.

box = Rectangle(Point(50, 100), Point(250, 350))
I What is the width? (250 − 50) = 200
I Height? (350 − 100) = 250
I We gave the upper-left and lower-right, but didn’t have to:

box = Rectangle(Point(250, 100), Point(50, 350))

Neil Moore (UK CS) CS 115 Lecture 6 Fall 2015 9 / 16



Polygons

We can also make a general polygon shape:
I Any number of sides, at any angle.
I How could we specify that?
I List the vertices (corners)!

tri = Polygon(Point(100, 100), Point(300, 100),
Point(200, 250))

I tri would be a triangle (three points).
F You can have any number of points.

I Draws a line from the first point to the second.
I Then the second to the third.
I Finally, from the last point back to the first.
I Order matters!

F Maybe not for a triangle, but with four or more points it does.
F Rectangle vs. bowtie.

Neil Moore (UK CS) CS 115 Lecture 6 Fall 2015 10 / 16



Ovals

An oval is a stretched-out circle.

How could we specify an oval?
I Several possibilities: center and two radii, two foci, . . .

The graphics library uses a bounding box.
I Class Oval.
I Constructor takes two Point arguments.

F The corners of a rectangle (the bounding box).
F The oval will fit in the box as tightly as possible.
F Doesn’t actually draw the bounding box!

ov = Oval(Point(100, 200), Point(400, 300))

ov.draw(win)

Neil Moore (UK CS) CS 115 Lecture 6 Fall 2015 11 / 16



Images

The graphics library can draw images.
I Supports GIF format (not JPEG!)
I Give the position and a filename:

pic = Image(Point(250, 250), "pic.gif")
I The image will be centered at (250, 250).
I It will be loaded from the file pic.gif.

F Looks in the same directory as the program.
F You can instead give an absolute path with a directory name.
F Whoever runs your program needs the image file too!

Have to use pic.draw(win) to display it.

Neil Moore (UK CS) CS 115 Lecture 6 Fall 2015 12 / 16



More methods

So far we’ve seen one method for graphics shapes.

obj.draw(win)

There are several more.

obj.setWidth(pixels)
I Change the width of the shape’s lines.
I Usually do this before calling draw.

obj.move(dx, dy)
I Moves the shape by dx in the x axis, dy in the y axis.
I Added to the original coordinates.
I Can do this even after drawing the shape—animation!

obj.undraw()
I Erases the shape, which disappears immedately.
I Anything “underneath” comes back!

Neil Moore (UK CS) CS 115 Lecture 6 Fall 2015 13 / 16



Color methods

Shapes have two different colors: the fill and outline.
I The fill color is used for the “inside” of the shape.

box.setFill(’blue’)

F Specify the color name as a string.
F Points and lines don’t have an inside.
F This is why Rectangle and Polygon are more than just Lines.

I The outline color is used for the border.
line.setOutline(’red’)

F For a Line or Point, that’s the whole thing.

I The window as a whole has a background color.
win.setBackground(’yellow’)

The color names can be a bit obscure (“firebrick”? “purple4”?)
I http://www.tcl.tk/man/tcl8.5/TkCmd/colors.htm
I http://wiki.tcl.tk/37701
I Or specify red-green-blue values:

line.setOutline(color rgb(255, 128, 0)) # orange

Neil Moore (UK CS) CS 115 Lecture 6 Fall 2015 14 / 16

http://www.tcl.tk/man/tcl8.5/TkCmd/colors.htm
http://wiki.tcl.tk/37701


Recap: object-oriented programming terminology

Object: A thing that can be stored in a variable.

Class: A type that represents a particular kind of thing.
I A template for making objects of that type.
I GraphWin, Line, str, . . . are classes.
I The object "Hello" belongs to the class str.

Constructor: A function that creates an object belonging to a class.
I Has the same name as the class.
I Uses the class template to “stamp out” a new object.
I Point(100, 100) is a constructor call.

Method: A function that belongs to an object and does something to
or with the object.

I In myline.draw(win), draw is a method of the Line class.
F (not of the GraphWin class!)

I Methods are defined by classes and work on any object of that class.

Neil Moore (UK CS) CS 115 Lecture 6 Fall 2015 15 / 16



Next time

More graphics.

Making decisions: if statements.

Neil Moore (UK CS) CS 115 Lecture 6 Fall 2015 16 / 16


