Answer-set programming: themes and challenges

Mirosław Truszczynski

University of Kentucky

NMR-04

Whistler, Canada, June 6, 2004
ASP phenomenon

- ASP emerged around 1999 and quickly became a thriving research area
 - resuscitated logic-based NMR
 - new results, many papers, new people, growing recognition
- What is it exactly and what happened?
ASP paradigm

- ASP — a declarative computational approach to knowledge representation
- More broadly — declarative programming approach for solving search problems
- Defining features:
 - high-level modeling language
 - distinct interpretation: theories encode search problems so that models represent solutions
 - uniform control: computing models
A brief history of ASP
A brief history of ASP

Emergence of LP - issue of negation

A brief history of ASP

- 1970: Emergence of LP - issue of negation
- 1980: Program completion

Key developments:
- Default logic
- Autoepistemic logic
- DL semantics for LP
- Stratification
- Stratified AE theories
- Stable-model semantics
- SLP as a KR system
- DeReS/TheoryBase
- smodels
- dlv
- ASP
A brief history of ASP

- 1970: Emergence of LP - issue of negation
- 1980: Program completion
- 1990: Default logic
- Autoepistemic logic

DL semantics for LP
- Stratification
- Stratified AE theories
- Stable-model semantics

SLP as a KR system
- DeReS/TheoryBase
- smodels
- dlv
- ASP
A brief history of ASP

emergence of LP - issue of negation

program completion

1970

1980

1990

2000

default logic

DL semantics for LP

autoepistemic logic

SLP as a KR system

DeReS/TheoryBase

smodels

dlv

ASP
A brief history of ASP

- 1970: Emergence of LP - issue of negation
- 1980: Program completion
- 1990: Stratification
- 2000: SLP as a KR system

Key developments:
- Default logic
- Autoepistemic logic
- DL semantics for LP
- Stratified AE theories
- Stable-model semantics

SLP as a KR system

DeReS/TheoryBase
smodels
dlv
ASP
A brief history of ASP

- emergence of LP - issue of negation
- program completion
- stratification
- stable-model semantics
- SLP as a KR system
- default logic
- stratified AE theories
- DL semantics for LP
- autoepistemic logic
- DeReS/TheoryBase
- smodels
- dlv
- ASP
A brief history of ASP

- 1970: emergence of LP - issue of negation
- 1980: program completion
- 1990: stratification
- 2000: SLP as a KR system

Key developments:
- Default logic
- Autoepistemic logic
- DL semantics for LP
- Stratified AE theories
- Stable-model semantics

Tools:
- smodels
- dlv
- DeReS/TheoryBase
- SLP as a KR system
A brief history of ASP

- Emergence of LP - issue of negation
- Program completion
- Default logic
- Autoepistemic logic
- DL semantics for LP
- Stratification
- Stratified AE theories
- Stable-model semantics
- SLP as a KR system
- ASP
- Smoodels
- Dlv
- DeReS/TheoryBase

Timeline:
- 1970
- 1980
- 1990
- 2000
ASP — five years later

- Exciting theoretical results
- New algorithms
- Aggregates
- New formalisms — beyond logic programming
- Emerging connections to SAT and CSP
- Successful applications
Program equivalence

- How to rewrite programs?
- How to optimize programs?
- Towards programming methodology
- Program transformations (Brass, Dix)
- Program equivalence, uniform equivalence, strong equivalence
 (Lifschitz, Pearce, Valverde; Lin; Turner; Osorio, Navarro, Arrazola; Eiter, Fink, Tompits, Woltran)
Disjunctive programs P and Q are equivalent if P and Q have the same answer sets.

Fundamental question: how to simplify (rewrite) logic programs preserving equivalence.

Programs P and Q are strongly equivalent if for every program R, answer sets of $P \cup R$ coincide with answer sets of $Q \cup R$.

- Replacing a subprogram with a strongly equivalent one preserves equivalence.

Disjunctive programs P and Q are uniformly equivalent if for every set of atoms X, answer sets of $P \cup X$ coincide with answer sets of $Q \cup X$.

- Replacing the set of rules of the program (intentional part) with a uniformly equivalent one preserves equivalence.
Strong equivalence

- A pair of sets of atoms \((X, Y)\) is an \emph{SE-model} of a DLP \(P\) if
 - \(X \subseteq Y\)
 - \(Y \models P\)
 - \(X \models P^Y\)
- Two DLPs \(P\) and \(Q\) are strongly equivalent if and only if \(SE(P) = SE(Q)\)
- Connections to the logic “here-and-there” and to the logic S4F
Uniform equivalence

- An SE-model (X, Y) of a DLP P is a **UE-model** of P if for every $(X', Y) \in SE(P)$, where $X \subseteq X' \subseteq Y$, $X' = X$ or $X' = Y$.

- UE-models are “maximal” and “almost maximal” SE-models:
 - $(X, Y) \preceq (X', Y')$ if $Y = Y'$ and $X \subseteq X'$

- Two *finite* DLPs P and Q are uniformly equivalent if and only if they have the same UE models.

- The general case is also resolved.
Most of program transformations preserve strong and uniform equivalence (TAUT, RED⁻, NONMIN, CONTRA, WGPPE); some do not (RED⁺, GPPE). Osorio, Navarro, Arrazola; Eiter, Fink, Tompits, Woltran.

Further generalizations possible (Turner - lparse programs).

Complexity is well understood (Turner; Lin; Eiter, Fink).
- Given two NLPs, deciding whether they are strongly equivalent is coNP-complete (holds, in fact, for DLPs).
- Given two DLPs, deciding whether they are uniformly equivalent is \(\Pi_2^P \)-complete.
- Given two DLPs that are head-cycle free, deciding whether they are uniformly equivalent is coNP-complete.

ASP can be used to test equivalence! (Janhunen, Oikarinen).
Let Π_n consist of:

$$p_{ijk} \leftarrow \text{not}(q_{ijk})$$
$$q_{ijk} \leftarrow \text{not}(p_{ijk})$$
$$r_1$$
$$r_k \leftarrow r_i, r_j, p_{ijk}$$

- If $P \not\subseteq NC^1/poly$ (that is, not all languages in P can be recognized by polynomial size propositional formulas)

- Then it is impossible to find a sequence of propositional formulas F_1, F_2, \ldots such that

 - for every n, the satisfying assignments for F_n are identical to the answer sets for Π_n
 - the sizes of the formulas F_n are bounded by a polynomial in n

 (Lifschitz and Razborov)

- Related to earlier work on compilability and succinctness
Native solvers
- *smodes* (Niemelä, Simons, Syrjänen, Soininen)
- *dlv* (Eiter, Leone, Mateis, Pfeifer, Scarcello, Faber, Dell’Armi, Ielpa)
- *NoMoRe* (Linke, Schaub, Anger, Konczak, Bösel)
- adapting advances in SAT — learning (Schlipf, Ward)

Direct use of SAT solvers
- compiling LPs into SAT (Ben-Eliyahu; Janhunen)
- bringing together program completion, Fages Lemma, loop formulas and SAT (Lifschitz, McCain, Turner, Erdem, Lierler, Lee; Lin, Zhao; Lierler, Maratea, Giunchiglia)
Exploit concepts of program completion and tightness

For tight logic programs supported and stable models coincide (Fages)

Supported models of a logic program are models of this program completion

Thus, computing stable models of a tight logic program can be accomplished by computing models of the completion

- \textit{cmodels} (earlier used in \textit{ccalc})
- Some additional propositional variables may be necessary when converting the completion formula into a CNF (typically, not a big problem)
- May fail for non-tight programs (a slightly more general version of the approach possible but it still does not cover all cases)
SAT — take two: loop formulas

- Dependency graph for a program P — $G(P)$
 - atoms are vertices
 - arc from p to q if there is a rule with the head p and with q in the positive body
- Loop — any strongly connected subgraph of $G(P)$
- Loop formula for a loop L
 - $R^-(L)$ — all rules about atoms in L whose edges point outside L
 - B_p — disjunction of bodies of all rules in $R^-(L)$ that define p
 - $\Phi_L = \bigvee_{p \in L} p \supset \bigvee_p B_p$
 - Informally, if at least one atom L is in a stable model, there must be an atom p in L such that at least one rule defining p must have all atoms of its positive body outside of L (is in $R^-(L)$)
- Loop theorem: M is a stable model of P if and only if it is a model of $Comp(P) \cup \{\Phi_L : L \in L(P)\}$
How to implement it?

- There may be exponentially many loops
- But one can proceed incrementally!
 1. \(T := \text{comp}(P) \)
 2. Find model \(M \) of \(T \); terminate with failure, otherwise
 3. If \(M \) is an answer set, output \(M \); terminate
 4. Otherwise, compute a loop \(L \) such that \(M \not\models \Phi_L \)
 5. \(T := T \cup \{ \Phi_L \} \); go back to step 2.
- Loops needed in (4) can be computed quickly
- In the worst case, exponentially many steps needed
- Typically, if stable models exist — much better performance
- If not — a potential problem
A way around the problem

- Do not use loop formulas at all
 - Apply a DPLL procedure for \textit{comp}(P)
 - Test each computed model \(M \) for stability
 - Continue accordingly (continue search or output the model and stop)

- Can be improved if DPLL with learning is used
 - each time \(M \) is not a stable model, learn a conflict clause
 - a conflict clause can be computed with the help of loop formulas
 - implement a scheme to forget (delete) some conflict clauses as the search goes on
The idea extends!!

- Disjunctive logic programming
 - completion
 - dependency graph, loop
 - loop formula
- Circumscription
What’s behind the success of *smodels*?

- Performance of *smodels* (including *lpars*)
- Modeling capabilities
- Both aspects strongly depend on the use of cardinality and weight constraints
- Which brings us to the next theme ... aggregates (Niemelä, Soininen, Simons; Pelov, Denecker, Bruynooghe; Dell’Armi, Faber, Ielpa, Leone, Pfeifer)
Abstract constraints

- At — a fixed set of propositional atoms
- Abstract constraint — a collection of subsets of At
 - $even = \{X \subseteq At : |X| \text{ is even}\}$
 - “At least k” constraint: $\{X : X \subseteq At; \ k \leq |X|\}$
- An abstract constraint atom — an expression $C(X)$, where
 - C is an abstract constraint
 - X is a finite subset of At — the scope of $C(X)$
- A rule with abstract constraint atoms:

$$H \leftarrow A_1, \ldots, A_m, \text{not}(B_1), \ldots, \text{not}(B_n)$$
When does it all make sense?

- $C(X)$ is monotone if C is closed under superset
- $C(X)$ is consistent if for some $Y \subseteq X$, $Y \in C$
- For programs built of monotone and consistent atoms!
- Rules of such programs work as “inference rules”
- If the body of a rule has been derived, the rule provides support for deriving a set of atoms that satisfies its head
- Models of a program do not correspond to sets of atoms that can be “derived” from (“justified” on the basis of) the program
- Restricted classes of models needed
- The approach we take exploits properties of operators on lattices and resembles that used in normal logic programming
 - supported models as fixpoints of the one-step provability operator
 - stable models as fixpoints of a “derived” operator
- There are essential differences, though — operators are non-deterministic!!
What we get

- Proper generalization of normal logic programs (uniform with respect to models, supported models and stable models)
- Under simple transformations — generalization of logic programs with weight constraints
 - basis for the theory of such programs
- Can be further generalized to the language of nondeterministic operators on complete lattices and their fixpoints
- Does the approximation theory generalize?
Languages for ASP — beyond logic programming

- Predicate logic extended with (limited) CWA (East, MT)
- Logic ESO — existential fragment of second order logic (Cadoli, Mancini, Schaerf)
Data

\[\text{vtx}(v). \quad \text{for every } v \in V \]
\[\text{edge}(v, w). \quad \text{for every } \{v, w\} \in E \]

Program

\[\text{pred invc(vtx).} \]
\[\text{var } X. \]

\[\{\text{invc}(X)[X] : \text{vtx}(X)\}k. \]
\[\text{edge}(X, Y) \rightarrow \text{invc}(X) \lor \text{invc}(Y). \]
Logic PS+ — *Psgrnd/aspps* system

- Grounding — *psgrnd*
- Solving — *aspps*
- Effective local-search methods — *wsat*(cc)
- Easy to use off-the-shelf SAT and PB-SAT solvers
- Issues of equivalence and program modularity — straightforward
- The same expressive power as that of SLP (class NPMV)
- But, can predicate logic approaches be competitive on KR applications?
 - negation-as-failure?
 - transitive closure
Applications

► Knowledge representation
 • reasoning about action, planning and diagnosis — ASP particularly appropriate (Giunchiglia, Lee, Lifschitz, McCain, Turner; Baral; Gelfond; Faber, Leone, Pfeifer, Polleres)
 • qualitative decision theory — elicitation of and reasoning about preferences (Brewka; Eiter, Brewka; Delgrande, Schaub, Tompits; Gelfond, Son; Inoue, Sakama; Brewka, Niemelä, MT)
 • representing preferences, specifying orders on answer sets
 • ASP as a uniform computational tool
 • relation to CP-network approach

► Product configuration (Soininen, Sulonen, Tiihonen, Niemelä)
 • smodels as a computational engine
 • Variantum — a recent spin-off
Applications

- Bounded model checking
 - linear-time logic compiled into a linear-size logic program
 Heljanko, Niemelä
 - built-in transitive closure is crucial!
- Combinatorics — computing van der Waerden numbers (Dransfield, Marek, Liu, MT)
 - $W(2, 6) \geq 342$
Propose models of random logic programs with constraints
 - must lead to a “hard” region

Possibly already solved in the case of normal logic programs (Lin and Zhao)
 - \(k\text{-LP}(n, m) \) — rules of length \(k \), \(n \) atoms, \(m \) rules
 - randomly select an atom for the head
 - randomly select \(k - 1 \) different atoms for the body
 - negate each with probability 0.5
 - if the rule is new — include it
 - repeat to get \(m \) rules

Establish bounds on the location of the hard region
Establish a formal theory of non-deterministic operators on lattices; generalize approximation theory to that setting (towards an abstract treatment of programs with aggregates)
Importance of transitive closure

- What is really behind the effectiveness of LP-based ASP?
- Is it default negation or transitive closure? Or both?
- My guess: it is transitive closure!
Algorithms

- Design native local-search methods to compute stable models (seems difficult; work by Dimopoulos and Sideris not conclusive)

- Develop new generation of complete algorithms for computing stable models with aggregates
 - better implementation of unit propagation (wfs in linear time?)
 - stronger propagation methods (ultimate wfs?)
 - dynamic backtracking, backjumping
 - branching heuristics (which heuristics, when they work and why)
 - conflict-clause learning

- Exploit program structure to enhance processing
 - one of features of ASP that SAT does not have
Computational benchmarks

- $S(5)$ and $W(5, 3)$
 - $S(5) \geq 160; W(5, 3) \geq 125$
 - are they equalities?

- Wire-routing on 50×50 grids with obstacles and with 30 terminal pairs

- 15-puzzle problem with plans of length 40 and more

- Random logic programs with 500 atoms selected from the hard region

- All SAT benchmarks
Programming support

- Build programming interfaces
 - support for modeling, debugging and optimizing programs
 - integration with other programming environments
Bringing together SAT and ASP

- SAT
 - fine-tuned data structures (watched literals)
 - learning
 - local-search methods, ...

- ASP
 - modeling languages
 - default negation, transitive closure
 - stronger propagation techniques

- More cross-fertilization needed

- ASPARAGUS — towards objective experimentation and benchmarking
Thank you!