Strong Equivalence and Relatives — Logically and Algebraically

Mirosław Truszczyński

Department of Computer Science
University of Kentucky

September 8, 2007
Query optimization

- Compute answers to a query \(Q \) from a knowledge base \(KB \)

 \[\text{reason from } Q \cup KB \]

- Rewrite \(Q \) into an \textit{equivalent} query \(Q' \), which can be processed more efficiently

 \[\text{reasoning from } Q' \cup KB \text{ easier} \]

- When are two queries equivalent?

 - If \(Q \cup KB \) and \(Q' \cup KB \) have the same meaning

 \textit{not quite what we want} — knowledge-base dependent

 - If \(Q \cup KB \) and \(Q' \cup KB \) have the same meaning for \textit{every} knowledge base \(KB \)

 \textit{better} — knowledge-base independent
Motivation (2)

Knowledge base rewriting

- Knowledge base — a collection of interrelated modules (say, answer-set programs)
- Knowledge base rewriting: replace one module with another without changing the meaning of the knowledge base
- When are two modules equivalent for replacement?
 - The same two basic options as above

In each scenario, it is the second option that we are after
Knowledge base rewriting

- Knowledge base — a collection of interrelated modules (say, answer-set programs)
- Knowledge base rewriting: replace one module with another without changing the meaning of the knowledge base
- When are two modules equivalent for replacement?
 - The same two basic options as above

In each scenario, it is the second option that we are after
Classical logic

- KB and Q or KB modules — FOL theories
- The meaning specified by the standard FOL semantics
- All is simple!!
- Logical equivalence is necessary and sufficient condition for the equivalence for replacement
Equivalence for replacement (2)

Logic programming

- The meaning is given by stable models (answer sets)
- **Equivalence for substitution** — for every program \(R\), programs \(P \cup R\) and \(Q \cup R\) have the same stable models
- Known as **strong equivalence**

 Lifschitz, Pearce, Valverde 2001; Lin 2002; Turner 2003; Eiter, Fink 2003; Eiter, Fink, Tompits, Woltran, 2005

- Different than logical equivalence
 - \(\{p \leftarrow \text{not}(q)\}\) and \(\{q \leftarrow \text{not}(p)\}\)
 - The same models but different meaning

- Different than **nonmonotonic** equivalence
 - \(P = \{p\}\) and \(Q = \{p \leftarrow \text{not}(q)\}\)
 - The same stable models; \(\{p\}\) is the only stable model in each case
 - But, \(P \cup \{q\}\) and \(Q \cup \{q\}\) have different stable models!
 (\(\{p, q\}\) and \(\{q\}\), respectively)
When are two programs strongly equivalent?

Se-model characterization

- A pair \((X, Y)\) of sets of atoms is an *se-model* of a program \(P\) if
 - \(X \subseteq Y\)
 - \(Y \models P\)
 - \(X \models P^Y\)

- Logic programs \(P\) and \(Q\) are strongly equivalent iff they have the same se-models

- A similar concept characterizes strong equivalence of default theories

Turner 2003
What’s behind strong equivalence?

Logics (albeit non-standard)

- Logic here-and-there

 Lifschitz, Pearce, Valverde, 2001; Lifschitz, Ferraris, 2005

- Modal logics S4F and SW5

 Cabalar 2004, MT 2007

Algebra

- Lattices, operators and fixpoints

 MT 2006
What’s behind strong equivalence?

Logics (albeit non-standard)

- Logic here-and-there

 Lifschitz, Pearce, Valverde, 2001; Lifschitz, Ferraris, 2005

- Modal logics S4F and SW5

 Cabalar 2004, MT 2007

Algebra

- Lattices, operators and fixpoints

 MT 2006
Logic here-and-there, Heyting 1930

Syntax

- Connectives: ⊥, ∨, ∧, →
- Formulas: standard extension of atoms by means of connectives
- ¬φ - shorthand for φ → ⊥
- Language \mathcal{L}_{ht}

Why important?

- Disjunctive logic programs — special theories in \mathcal{L}_{ht} change the direction of implication
- General logic programs (Ferraris, Lifschitz) = theories in \mathcal{L}_{ht} answer-set semantics extends to general logic programs and so to theories in \mathcal{L}_{ht}
Syntax

- Connectives: \bot, \lor, \land, \to
- Formulas - standard extension of atoms by means of connectives
- $\neg \varphi$ - shorthand for $\varphi \to \bot$
- Language \mathcal{L}_{ht}

Why important?

- Disjunctive logic programs — special theories in \mathcal{L}_{ht} change the direction of implication
- General logic programs (Ferraris, Lifschitz) = theories in \mathcal{L}_{ht} answer-set semantics extends to general logic programs and so to theories in \mathcal{L}_{ht}
Entailment in logic here-and-there

Ht-interpreations

- Pairs $\langle H, T \rangle$, where $H \subseteq T$ are sets of atoms
- Kripke interpretations with two worlds “here” and “there”
 - H determines the valuation for “here”
 - T determines the valuation for “there”

Kripke-model satisfiability in the world “here” \models_{ht}

- $\langle H, T \rangle \not\models_{ht} \bot$
- $\langle H, T \rangle \models_{ht} p$ if $p \in H$ (for atoms only)
- $\langle H, T \rangle \models_{ht} \varphi \land \psi$ and $\langle H, T \rangle \models_{ht} \varphi \lor \psi$ — standard recursion
- $\langle H, T \rangle \models_{ht} \varphi \rightarrow \psi$ if
 - $\langle H, T \rangle \not\models_{ht} \varphi$ or $\langle H, T \rangle \models_{ht} \psi$
 - $T \models \varphi \rightarrow \psi$ (in standard propositional logic).
- If $\langle H, T \rangle \models_{ht} \varphi$ $\langle H, T \rangle$ an ht-model of φ
- φ and ψ are ht-equivalent if they have the same ht-models
Entailment in logic here-and-there

Ht-interpretations
- Pairs $\langle H, T \rangle$, where $H \subseteq T$ are sets of atoms
- Kripke interpretations with two worlds “here” and “there”
 - H determines the valuation for “here”
 - T determines the valuation for “there”

Kripke-model satisfiability in the world “here” \models_{ht}
- $\langle H, T \rangle \not\models_{ht} \perp$
- $\langle H, T \rangle \models_{ht} p$ if $p \in H$ (for atoms only)
- $\langle H, T \rangle \models_{ht} \varphi \land \psi$ and $\langle H, T \rangle \models_{ht} \varphi \lor \psi$ — standard recursion
- $\langle H, T \rangle \models_{ht} \varphi \rightarrow \psi$ if
 - $\langle H, T \rangle \not\models_{ht} \varphi$ or $\langle H, T \rangle \models_{ht} \psi$
 - $T \models \varphi \rightarrow \psi$ (in standard propositional logic).
- If $\langle H, T \rangle \models_{ht} \varphi$ $\langle H, T \rangle$ an ht-model of φ
- φ and ψ are ht-equivalent if they have the same ht-models
Natural deduction — sequents and rules

- **Sequents** $\Gamma \Rightarrow \varphi$ — “φ under the assumptions Γ”
- **Introduction rules for \land, \lor, \rightarrow**

 $\frac{\Gamma \Rightarrow \varphi \quad \Delta \Rightarrow \psi}{\Gamma, \Delta \Rightarrow \varphi \land \psi}$

- **Elimination rules for \land, \lor, \rightarrow**

 $\frac{\Gamma \Rightarrow \varphi \quad \Delta \Rightarrow \varphi \rightarrow \psi}{\Gamma, \Delta \Rightarrow \psi}$

- **Contradiction**

 $\frac{\Gamma \Rightarrow \bot}{\Gamma \Rightarrow \varphi}$

- **Weakening**

 $\frac{\Gamma \Rightarrow \varphi}{\Gamma' \Rightarrow \varphi}$
 for all Γ', Γ s.t. $\Gamma' \subseteq \Gamma$
Proof theory (2)

Axiom schemas

<table>
<thead>
<tr>
<th>Axiom</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(AS1)</td>
<td>$\varphi \Rightarrow \varphi$</td>
</tr>
<tr>
<td>(AS2)</td>
<td>$\Rightarrow \varphi \vee \neg \varphi$ (Excluded Middle)</td>
</tr>
<tr>
<td>(AS2')</td>
<td>$\Rightarrow \neg \varphi \vee \neg \neg \varphi$ (Weak EM)</td>
</tr>
<tr>
<td>(AS2'')</td>
<td>$\Rightarrow \varphi \land (\varphi \rightarrow \psi) \land \neg \psi$ (in between (AS2) and (AS2'))</td>
</tr>
</tbody>
</table>

Logics through natural deduction

- Propositional logic: (AS1), (AS2)
- Intuitionistic logic: (AS1)
- Logic here-and-there: (AS1), (AS2'')

In particular

- φ and ψ are ht-equivalent iff $\Rightarrow \varphi \leftrightarrow \psi$ has a proof from (AS1) and (AS2'')
Proof theory (2)

Axiom schemas

(AS1) $\phi \Rightarrow \phi$

(AS2) $\Rightarrow \phi \lor \neg \phi$ (Excluded Middle)

(AS2') $\Rightarrow \neg \phi \lor \neg \neg \phi$ (Weak EM)

(AS2'') $\Rightarrow \phi \land (\phi \rightarrow \psi) \land \neg \psi$ (in between (AS2) and (AS2'))

Logics through natural deduction

Propositional logic (AS1), (AS2)

Intuitionistic logic (AS1)

Logic here-and-there (AS1), (AS2'')

In particular

ϕ and ψ are ht-equivalent iff $\Rightarrow \phi \leftrightarrow \psi$ has a proof from (AS1) and (AS2'')
Proof theory (2)

Axiom schemas

<table>
<thead>
<tr>
<th>Axiom</th>
<th>Statement</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(AS1)</td>
<td>$\varphi \Rightarrow \varphi$</td>
<td></td>
</tr>
<tr>
<td>(AS2)</td>
<td>$\Rightarrow \varphi \lor \neg \varphi$</td>
<td>(Excluded Middle)</td>
</tr>
<tr>
<td>(AS2')</td>
<td>$\Rightarrow \neg \varphi \lor \neg \neg \varphi$</td>
<td>(Weak EM)</td>
</tr>
<tr>
<td>(AS2'')</td>
<td>$\Rightarrow \varphi \land (\varphi \rightarrow \psi) \land \neg \psi$</td>
<td>(in between (AS2) and (AS2'))</td>
</tr>
</tbody>
</table>

Logics through natural deduction

- Propositional logic: (AS1), (AS2)
- Intuitionistic logic: (AS1)
- Logic here-and-there: (AS1), (AS2'')

In particular

- φ and ψ are ht-equivalent iff $\Rightarrow \varphi \leftrightarrow \psi$ has a proof from (AS1) and (AS2'')
Logic here-and-there and ASP

Equilibrium models, Pearce 1997

- $\langle T, T \rangle$ is an equilibrium model of a set A of formulas if
 - $\langle T, T \rangle \models_{ht} A$, and
 - for every $H \subseteq T$ such that $\langle H, T \rangle \models_{ht} A$, $H = T$

Key connection

- A set M of atoms is an answer set of a disjunctive logic program P (general logic program P) if and only if $\langle M, M \rangle$ is an equilibrium model for P

Strong equivalence

- Let P and Q be two (general) programs. The following conditions are equivalent:
 - P and Q are strongly equivalent
 - P and Q are ht-equivalent
 - P and Q have the same ht-models
 - $\Rightarrow P \leftrightarrow Q$ has a proof from (AS1) and (AS2'')
Equilibrium models, Pearce 1997

- \(\langle T, T \rangle \) is an equilibrium model of a set \(A \) of formulas if
 - \(\langle T, T \rangle \models_{ht} A \), and
 - for every \(H \subseteq T \) such that \(\langle H, T \rangle \models_{ht} A \), \(H = T \)

Key connection

- A set \(M \) of atoms is an answer set of a disjunctive logic program \(P \) (general logic program \(P \)) if and only if \(\langle M, M \rangle \) is an equilibrium model for \(P \)

Strong equivalence

- Let \(P \) and \(Q \) be two (general) programs. The following conditions are equivalent:
 - \(P \) and \(Q \) are strongly equivalent
 - \(P \) and \(Q \) are ht-equivalent
 - \(P \) and \(Q \) have the same ht-models
 - \(\Rightarrow P \leftrightarrow Q \) has a proof from (AS1) and (AS2′′)
Logic here-and-there and ASP

Equilibrium models, Pearce 1997

- \(\langle T, T \rangle \) is an \textit{equilibrium model} of a set \(A \) of formulas if
 - \(\langle T, T \rangle \models_{ht} A \), and
 - for every \(H \subseteq T \) such that \(\langle H, T \rangle \models_{ht} A \), \(H = T \)

Key connection

- A set \(M \) of atoms is an answer set of a disjunctive logic program \(P \) (general logic program \(P \)) if and only if \(\langle M, M \rangle \) is an equilibrium model for \(P \)

Strong equivalence

- Let \(P \) and \(Q \) be two (general) programs. The following conditions are equivalent:
 - \(P \) and \(Q \) are strongly equivalent
 - \(P \) and \(Q \) are \(ht \)-equivalent
 - \(P \) and \(Q \) have the same \(ht \)-models
 - \(\Rightarrow P \leftrightarrow Q \) has a proof from (AS1) and (AS2'')
Modal logics

The language \mathcal{L}_K

- $\phi ::= \bot \mid p \mid K\phi \mid \neg \phi \mid \phi \lor \phi \mid \phi \land \phi \mid \phi \rightarrow \phi$ (where p - an atom)

 e.g.: $a \rightarrow K(\neg b \land K(a \lor \neg b))$

Proof theory

- Modus ponens and necesitation $\frac{\phi}{K\phi}$

- Modal axioms such as:
 - K: $K(\phi \rightarrow \psi) \rightarrow (K\phi \rightarrow K\psi)$
 - T: $K\phi \rightarrow \phi$
 - 4: $K\phi \rightarrow KK\phi$
 - F: $(\phi \land \neg K\neg K\psi) \rightarrow K(\neg \phi \lor \psi)$
 - 5: $\neg K\neg K\phi \rightarrow K\phi$

- Logics determined by modal axioms
 - Modal logic $S4F$: K, T, 4, F
 - Modal logic $S5$: K, T, 4, 5
Modal logics

The language L_K

$\varphi ::= \bot \mid p \mid K\varphi \mid \neg\varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \varphi \rightarrow \varphi$ (where p - an atom)

e.g.: $a \rightarrow K(\neg b \land K(a \lor \neg b))$

Proof theory

- Modus ponens and necesitation $\varphi \quad \frac{\varphi}{K\varphi}$
- Modal axioms such as:
 - K: $K(\varphi \rightarrow \psi) \rightarrow (K\varphi \rightarrow K\psi)$
 - T: $K\varphi \rightarrow \varphi$
 - 4: $K\varphi \rightarrow KK\varphi$
 - F: $(\varphi \land \neg K\neg K\psi) \rightarrow K(\neg \varphi \lor \psi)$
 - 5: $\neg K\neg K\varphi \rightarrow K\varphi$
- Logics determined by modal axioms
 - Modal logic S4F: K, T, 4, F
 - Modal logic S5: K, T, 4, 5
Modal logics

The language \mathcal{L}_K

- $\varphi ::= \bot \mid p \mid K \varphi \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \varphi \rightarrow \varphi$ (where p - an atom)
- e.g.: $a \rightarrow K(\neg b \land K(a \lor \neg b))$

Proof theory

- Modus ponens and necesitation $\varphi \vdash K \varphi$
- Modal axioms such as:
 - K: $K(\varphi \rightarrow \psi) \rightarrow (K \varphi \rightarrow K \psi)$
 - T: $K \varphi \rightarrow \varphi$
 - 4: $K \varphi \rightarrow KK \varphi$
 - F: $(\varphi \land \neg K \neg K \psi) \rightarrow K(\neg \varphi \lor \psi)$
 - 5: $\neg K \neg K \varphi \rightarrow K \varphi$
- Logics determined by modal axioms
 - Modal logic $S4F$: K, T, 4, F
 - Modal logic $S5$: K, T, 4, 5
Modal logics (2)

Kripke semantics

- $\langle W, A, \pi \rangle$
- Classes of Kripke models characterize modal logics
- Logic S5
 - models with universal accessibility relation $\langle W, \pi \rangle$
- Logic S4F
 - S4F-interpretations: $\langle V, W, \pi \rangle$
 - $\mathcal{M}, w \models \varphi$ ($w \in V \cup W$ and $\varphi \in \mathcal{L}_K$)
 - $\mathcal{M}, w \not\models \bot$
 - $\mathcal{M}, w \models p$ if $p \in \pi(w)$ (for $p \in \text{At}$)
 - If $w \in V$, then $\mathcal{M}, w \models K\varphi$ if $\mathcal{M}, v \models \varphi$ for every $v \in V \cup W$
 - If $w \in W$, then $\mathcal{M}, w \models K\varphi$ if $\mathcal{M}, v \models \varphi$ for every $v \in W$
 - The induction over boolean connectives is standard
- $\mathcal{M} \models \varphi$ if $\mathcal{M}, w \models \varphi$, for every $w \in V \cup W$; S4F-models
Modal logics (2)

Kripke semantics

- \(\langle W, A, \pi \rangle \)
- Classes of Kripke models characterize modal logics
- Logic S5
 - models with universal accessibility relation \(\langle W, \pi \rangle \)
- Logic S4F
 - S4F-interpretations: \(\langle V, W, \pi \rangle \)
 - \(\mathcal{M}, w \models \varphi \) (\(w \in V \cup W \) and \(\varphi \in \mathcal{L}_K \))
 - \(\mathcal{M}, w \not\models \bot \)
 - \(\mathcal{M}, w \models p \) if \(p \in \pi(w) \) (for \(p \in \text{At} \))
 - If \(w \in V \), then \(\mathcal{M}, w \models K\varphi \) if \(\mathcal{M}, v \models \varphi \) for every \(v \in V \cup W \)
 - If \(w \in W \), then \(\mathcal{M}, w \models K\varphi \) if \(\mathcal{M}, v \models \varphi \) for every \(v \in W \)
 - The induction over boolean connectives is standard
 - \(\mathcal{M} \models \varphi \) if \(\mathcal{M}, w \models \varphi \), for every \(w \in V \cup W \); S4F-models
Modal logics (2)

Kripke semantics

- $\langle W, A, \pi \rangle$
- Classes of Kripke models characterize modal logics
- Logic S5
 - models with universal accessibility relation $\langle W, \pi \rangle$
- Logic S4F
 - S4F-interpretations: $\langle V, W, \pi \rangle$
 - $\mathcal{M}, w \models \varphi$ (if $w \in V \cup W$ and $\varphi \in \mathcal{L}_K$)
 - $\mathcal{M}, w \not\models \bot$
 - $\mathcal{M}, w \models p$ if $p \in \pi(w)$ (for $p \in At$)
 - If $w \in V$, then $\mathcal{M}, w \models K\varphi$ if $\mathcal{M}, v \models \varphi$ for every $v \in V \cup W$
 - If $w \in W$, then $\mathcal{M}, w \models K\varphi$ if $\mathcal{M}, v \models \varphi$ for every $v \in W$
 - The induction over boolean connectives is standard
- $\mathcal{M} \models \varphi$ if $\mathcal{M}, w \models \varphi$, for every $w \in V \cup W$; S4F-models

(S4F-models (University of Kentucky) Logics and algebra for equivalence September 8, 2007)
Modal nonmonotonic logics

Expansions

- **S** — modal (monotone) logic; \models_S
- **S-expansion** of a modal theory $I \subseteq \mathcal{L}_K$:

$$T = \{ \varphi \in \mathcal{L}_K | I \cup \{ \neg K \varphi | \varphi \in \mathcal{L}_K \setminus T \} \models_S \varphi \},$$

Nonmonotonic S4F captures (T_, 1991; Schwarz and T_, 1994)

- (Disjunctive) logic programming with the answer set semantics
- (Disjunctive) default logic
- General default logic (*Cabalar, 2004; extended by T_, 2007*)
- Logic of grounded knowledge
- Logic of minimal belief and negation as failure
- Logic of minimal knowledge and belief
- Is S4F the logic underlying nonmon reasonig?
Modal nonmonotonic logics

Expansions

- S — modal (monotone) logic; \models_S
- S-expansion of a modal theory $I \subseteq \mathcal{L}_K$:

$$T = \{ \varphi \in \mathcal{L}_K | I \cup \{ \neg K \varphi | \varphi \in \mathcal{L}_K \setminus T \} \models_S \varphi \},$$

Nonmonotonic S4F captures (T_, 1991; Schwarz and T_, 1994)

- (Disjunctive) logic programming with the answer set semantics
- (Disjunctive) default logic
- General default logic (Cabalar, 2004; extended by T_, 2007)
- Logic of grounded knowledge
- Logic of minimal belief and negation as failure
- Logic of minimal knowledge and belief
- Is S4F the logic underlying nonmon reasoning?
Is S4F the logic underlying nonmon reasoning?

I claim: yes!

- But some restrictions on the language are needed
- If $I, J \subseteq \mathcal{L}_K$ have the same S4F-models then for every $K \subseteq \mathcal{L}_K$, $I \cup T$ and $J \cup T$ have the same S4F-expansions
- The converse does not hold!

Modal defaults and modal default theories

- $\varphi ::= K\psi \mid K\varphi \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \varphi \rightarrow \varphi$
 where ψ — a propositional formula
- For modal default theories (sets of modal defaults) S4F characterizes strong equivalence!
I claim: yes!

- But some restrictions on the language are needed
- If $I, J \subseteq \mathcal{L}_K$ have the same S4F-models then for every $K \subseteq \mathcal{L}_K$, $I \cup T$ and $J \cup T$ have the same S4F-expansions
- The converse does not hold!

Modal defaults and modal default theories

- $\varphi ::= K\psi \mid K\varphi \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \varphi \rightarrow \varphi$
- where ψ — a propositional formula
- For modal default theories (sets of modal defaults) S4F characterizes strong equivalence!
First, the semantics simplifies!

Se-pairs

- $\langle L, U \rangle$ - L, U are propositional theories closed under propositional entailment
- Entailment relations $|=u$ and $|=l$ for modal defaults
- $\langle L, U \rangle |=u \varphi$
 - $\varphi = K\psi$, where ψ is propositional
 $\langle L, U \rangle |=u \varphi$ if $\psi \in U$
 - Boolean connectives standard
 - $\varphi = K\psi$, where ψ is a modal default
 $\langle L, U \rangle |=u \varphi$ if $\langle L, U \rangle |=u \psi$
- We write $\langle L, U \rangle |= \varphi$ if $\langle L, U \rangle |=l \varphi$ and $\langle L, U \rangle |=l \varphi$

- Under the restriction to modal defaults and modal default theories, se-pairs characterize the entailment relation in S4F
First, the semantics simplifies!

Se-pairs

- $\langle L, U \rangle$ - L, U are **propositional** theories closed under propositional entailment
- Entailment relations \models_u and \models_l for modal defaults

- $\langle L, U \rangle \models_l \varphi$
 - $\varphi = K \psi$, where ψ is propositional
 - $\langle L, U \rangle \models_l \varphi$ if $\psi \in L \cap U$
 - Boolean connectives standard
 - $\varphi = K \psi$, where ψ is a modal default
 - $\langle L, U \rangle \models_l \varphi$ if $\langle L, U \rangle \models_l \psi$ and $\langle L, U \rangle \models_u \psi$

- We write $\langle L, U \rangle \models \varphi$ if $\langle L, U \rangle \models_l \varphi$ and $\langle L, U \rangle \models_l \varphi$

- Under the restriction to modal defaults and modal default theories, se-pairs characterize the entailment relation in S4F
First, the semantics simplifies!

Se-pairs

- \(\langle L, U \rangle \) - \(L, U \) are **propositional** theories closed under propositional entailment
- Entailment relations \(\models_u \) and \(\models_l \) for modal defaults
- \(\langle L, U \rangle \models_l \varphi \)
 - \(\varphi = K\psi \), where \(\psi \) is propositional
 - \(\langle L, U \rangle \models_l \varphi \) if \(\psi \in L \cap U \)
 - Boolean connectives standard
 - \(\varphi = K\psi \), where \(\psi \) is a modal default
 - \(\langle L, U \rangle \models_l \varphi \) if \(\langle L, U \rangle \models_l \psi \) and \(\langle L, U \rangle \models_u \psi \)
- We write \(\langle L, U \rangle \models \varphi \) if \(\langle L, U \rangle \models_l \varphi \) and \(\langle L, U \rangle \models_l \varphi \)
- Under the restriction to modal defaults and modal default theories, se-pairs characterize the entailment relation in S4F
Further simplifications

Se-interpretations and se-models

- An se-interpretation - an se-pair $\langle L, U \rangle$ such that $L \subseteq U$
- Under the restriction to modal defaults and modal default theories, se-interpretations characterize the entailment relation in S4F
- Se-model of a modal default theory I - an se-interpretation $\langle L, U \rangle$ such that $\langle L, U \rangle \models_I I$ and $\langle L, U \rangle \models_U I$
Strong equivalence

- Let $I', I'' \subseteq L_K$ be modal DTs. The following conditions are equivalent:
 - I' and I'' are strongly equivalent ($I' \cup I$ and $I'' \cup I$ have the same S4F-expansions for every modal DT I)
 - I and I' are equivalent in the logic S4F
 - I and I' have the same se-models.

Uniform equivalence

- Modal DTs I', I'' are uniformly equivalent if for every $J \subseteq L$, $I' \cup KJ$ and $I'' \cup KJ$ have the same S4F-expansions.
- Se-models yield a characterization of uniformly equivalent modal DTs.
Properties

Strong equivalence

- Let I', $I'' \subseteq \mathcal{L}_K$ be modal DTs. The following conditions are equivalent:
 - I' and I'' are strongly equivalent ($I' \cup I$ and $I'' \cup I$ have the same S4F-expansions for every modal DT I)
 - I and I' are equivalent in the logic S4F
 - I and I' have the same se-models.

Uniform equivalence

- Modal DTs I', I'' are uniformly equivalent if for every $J \subseteq \mathcal{L}$, $I' \cup KJ$ and $I'' \cup KJ$ have the same S4F-expansions.
- Se-models yield a characterization of uniformly equivalent modal DTs.
Modal rules, modal programs

- **Modal rule:** \(\varphi ::= \text{K}p \mid \text{K}\varphi \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \varphi \rightarrow \varphi \)

 where \(p \) is a propositional atom

- A special class of modal DTs

- A simpler modal logic, SW5, can be used instead of S4F

- Simple se-interpretations: pairs \(\langle L, U \rangle \), where \(L \) and \(U \) are sets of atoms, \(L \subseteq U \)

- **SW5** — an alternative to logic **here-and-there**
 - logic **here-and-there** discovered for nonmon reasoning by Pearce 1997
 - underlies disjunctive logic programming with the answer-set semantics (Pearce 1997)
 - forms the basis for general logic programming with the answer-set semantics (Ferraris and Lifschitz 2005)
To sum up

Logic here-and-there

➤ Is the logic of strong equivalence in general logic programming
➤ Characterizes uniform equivalence in general logic programming
➤ Non-mon here-and-there = general LP \((Ferraris \text{ and Lifschitz})\)

SW5 when restricted to modal programs

➤ Extends logic here-and-there (and so does all what the other one)
➤ Connectives “classical” (but modality in the language)

S4F when restricted to modal defaults

➤ Extends SW5 (modal defaults properly extend modal programs)
➤ Captures several additional nonmonotonic logics
➤ Is the logic of strong equivalence in these formalisms
➤ Characterizes uniform equivalence
➤ As before, connectives “classical” (but modality in the language)
To sum up

Logic here-and-there
- Is the logic of strong equivalence in general logic programming
- Characterizes uniform equivalence in general logic programming
- Non-mon here-and-there = general LP \(\text{(Ferraris and Lifschitz)} \)

SW5 when restricted to modal programs
- Extends logic here-and-there (and so does all what the other one)
- Connectives “classical” (but modality in the language)

S4F when restricted to modal defaults
- Extends SW5 (modal defaults properly extend modal programs)
- Captures several additional nonmonotonic logics
- Is the logic of strong equivalence in these formalisms
- Characterizes uniform equivalence
- As before, connectives “classical” (but modality in the language)
To sum up

Logic here-and-there
- Is the logic of strong equivalence in general logic programming
- Characterizes uniform equivalence in general logic programming
- Non-mon here-and-there = general LP \(\text{(Ferraris and Lifschitz)} \)

SW5 when restricted to modal programs
- Extends logic here-and-there (and so does all what the other one)
- Connectives “classical” (but modality in the language)

S4F when restricted to modal defaults
- Extends SW5 (modal defaults properly extend modal programs)
- Captures several additional nonmonotonic logics
- Is the logic of strong equivalence in these formalisms
- Characterizes uniform equivalence
- As before, connectives “classical” (but modality in the language)
Algebra and nonmonotonic reasoning

Brief overview

- Fitting’s work on logic programming
 - Semantics - fixpoints of operators on lattices and bilattices of interpretations
- Abstract algebraic theory of fixpoints of operators and approximation mappings (Marek, Denecker, T., 2000)
- Algebraic counterparts to models, supported models and stable models, their “partial” versions and approximation semantics: Kripke-Kleene and well-founded
- Provides new semantics (ultimate semantics)
- Provides a unified view of DL and AEL
- Explains common themes in NMR research (cf. algebraic characterizations of stratification and splitting)
- Formalizes the notion of a nonmonotone inductive definition (Denecker)
Algebra and nonmonotonic reasoning

Brief overview

- Fitting’s work on logic programming
 - Semantics - fixpoints of operators on lattices and bilattices of interpretations
- Abstract algebraic theory of fixpoints of operators and approximation mappings (Marek, Denecker, T_, 2000)
- Algebraic counterparts to models, supported models and stable models, their “partial” versions and approximation semantics: Kripke-Kleene and well-founded
- Provides new semantics (ultimate semantics)
- Provides a unified view of DL and AEL
- Explains common themes in NMR research (cf. algebraic characterizations of stratification and splitting)
- Formalizes the notion of a nonmonotone inductive definition (Denecker)
Logic programming algebraically (Apt, Fitting)

<table>
<thead>
<tr>
<th>Interpretations</th>
<th>↔</th>
<th>Elements of a complete lattice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program P</td>
<td>↔</td>
<td>One-step provability operator T_P</td>
</tr>
<tr>
<td>Models of P</td>
<td>↔</td>
<td>Prefixpoints of T_P</td>
</tr>
<tr>
<td>Supported models of P</td>
<td>↔</td>
<td>Fixpoints of T_P</td>
</tr>
<tr>
<td>Stable models of P</td>
<td>↔</td>
<td>(Certain) fixpoints of T_P</td>
</tr>
</tbody>
</table>

Which fixpoints correspond to stable models?

- 2-input one-step provability mapping Ψ_P (Fitting)
- $\Psi_P(I, I) = T_P(I)$ — an approximating mapping to T_P
- Gelfond-Lifschitz operator: $GL_P(I) = \text{lfp}(\Psi_P(\cdot, I))$
- Well defined since $\Psi_P(\cdot, I)$ monotone
- Stable models — fixpoints of GL_P
What’s what or how to abstract?

Logic programming algebraically (Apt, Fitting)

<table>
<thead>
<tr>
<th>Interpretations</th>
<th>↔</th>
<th>Elements of a complete lattice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program P</td>
<td>↔</td>
<td>One-step provability operator T_P</td>
</tr>
<tr>
<td>Models of P</td>
<td>↔</td>
<td>Prefixpoints of T_P</td>
</tr>
<tr>
<td>Supported models of P</td>
<td>↔</td>
<td>Fixpoints of T_P</td>
</tr>
<tr>
<td>Stable models of P</td>
<td>↔</td>
<td>(Certain) fixpoints of T_P</td>
</tr>
</tbody>
</table>

Which fixpoints correspond to stable models?

- 2-input one-step provability mapping ψ_P (Fitting)
- $\psi_P(I, I) = T_P(I)$ — an *approximating* mapping to T_P
- Gelfond-Lifschitz operator: $GL_P(I) = \text{lfp}(\psi_P(\cdot, I))$
- Well defined since $\psi_P(\cdot, I)$ monotone
- Stable models — fixpoints of GL_P
Approximating mappings

Definition

- L – a complete lattice
- An *approximating mapping* – a mapping $A : L^2 \rightarrow L$ such that for every $x \in L$:
 - the operator $A(\cdot, x)$ is monotone, and
 - the operator $A(x, \cdot)$ is antimonotone
- If O is an operator on L such that $O(x) = A(x, x)$, then A is an *approximating mapping for O*.
Approximating mappings (2)

Intuitions

- If $x, y, z \in L$ and $x \leq z \leq y$, then (x, y) is an \textit{approximation} of z.
- If A is an approximating mapping for O and (x, y) is an approximation to z then
 \[A(x, z) \leq A(z, z) \leq A(y, z) \quad \text{and} \quad A(z, y) \leq A(z, z) \leq A(z, x). \]
- Consequently
 \[A(x, z) \leq O(z) \leq A(y, z) \quad \text{and} \quad A(z, y) \leq O(z) \leq A(z, x), \]
- That is, pairs $(A(x, z), A(y, z))$ and $(A(z, y), A(z, x))$ approximate $O(z)$.

(University of Kentucky)

Logics and algebra for equivalence
September 8, 2007 25 / 40
Approximating mappings (3)

Basic properties

- Every operator O has an approximating mapping:

$$A(x, y) = \begin{cases}
\bot & \text{if } x < y \\
O(x) & \text{if } x = y \\
\top & \text{otherwise.}
\end{cases}$$

- Approximating mappings are not unique (in general)
- If O is monotone, let $C_O(x, y) = O(x)$, for $x, y \in L$
- If O is antimonotone, let $C_O(x, y) = O(y)$, for $x, y \in L$
- In each case, C_O is an approximating mapping for O — canonical approximating mapping
Stable operator, stable fixpoints

- \(O \) — an operator on \(L \)
- \(A \) — an approximating mapping for \(O \)
- An \textit{A-stable} operator for \(O \) on \(L \) is an operator \(S_A \) on \(L \) such that for every \(y \in L \):
 \[
 S_A(y) = \text{lfp}(A(\cdot, y))
 \]
- An element \(x \in L \) is an \textit{A-stable fixpoint} of \(O \) if \(x = S_A(x) \)
- \(\text{St}(O, A_O) \) — the set of A-stable fixpoints of \(O \)

Back to LP for a moment

\[
\begin{align*}
O & \leftrightarrow T_P \\
A & \leftrightarrow \Psi_P \\
S_A & \leftrightarrow GL_P
\end{align*}
\]

Only now we do not have a single fixed approximating mapping.
Stable operator, stable fixpoints

- O — an operator on L
- A — an approximating mapping for O
- An A-stable operator for O on L is an operator S_A on L such that for every $y \in L$:
 \[S_A(y) = \text{lfp}(A(\cdot, y)) \]
- An element $x \in L$ is an A-stable fixpoint of O if $x = S_A(x)$
- $\text{St}(O, A_O)$ — the set of A-stable fixpoints of O

Back to LP for a moment

\[
\begin{align*}
O & \leftrightarrow T_P \\
A & \leftrightarrow \Psi_P \\
S_A & \leftrightarrow GL_P
\end{align*}
\]

Only now we do not have a single fixed approximating mapping
Extending lattice operators

- P and R — operators on L
- An *extension* of P with R — an operator $P \lor R$

$$(P \lor R)(x) = P(x) \lor R(x),$$

for every $x \in L$

- R — an *extending* operator
- Back to LP: if P and R are programs, then $T_{P \lor R} = T_P \lor T_R$

Key question: which stable fixpoints to consider?

- Operators P and Q must come with approximating mappings
- Extending operators R, too!
- Which approximating mappings to use for $P \lor R$ and $Q \lor R$?
- $A_P \lor A_R$ and $A_Q \lor A_R$, respectively!
Strong equivalence of operators

Extending lattice operators

- P and R — operators on L
- An extension of P with R — an operator $P \lor R$

\[(P \lor R)(x) = P(x) \lor R(x),\]

for every $x \in L$

- R — an extending operator
- Back to LP: if P and R are programs, then $T_{P \cup R} = T_P \lor T_R$

Key question: which stable fixpoints to consider?

- Operators P and Q must come with approximating mappings
- Extending operators R, too!
- Which approximating mappings to use for $P \lor R$ and $Q \lor R$?
- $A_P \lor A_R$ and $A_Q \lor A_R$, respectively!
Strong equivalence of operators

Definition

- P and Q — operators on L
- A_P and A_Q — their approximating mappings, respectively
- P and Q are strongly equivalent with respect to (A_P, A_Q) if for every operator R and every approximating mapping A_R of R,
 \[St(P \lor R, A_P \lor A_R) = St(Q \lor R, A_Q \lor A_R). \]
- $P \equiv_s Q$ w/r to (A_P, A_Q)

Problem

- When are two operators, P and Q, strongly equivalent with respect to (A_P, A_Q)?
 (where A_P and A_Q are approximating mappings for P and Q)
Strong equivalence of operators

Definition
- P and Q — operators on L
- A_P and A_Q — their approximating mappings, respectively
- P and Q are *strongly equivalent* with respect to (A_P, A_Q) if for every operator R and every approximating mapping A_R of R,

$$St(P \lor R, A_P \lor A_R) = St(Q \lor R, A_Q \lor A_R).$$

- $P \equiv_s Q \text{ w/r to } (A_P, A_Q)$

Problem
- When are two operators, P and Q, strongly equivalent with respect to (A_P, A_Q)? (where A_P and A_Q are approximating mappings for P and Q)
Se-pairs

Definition

- \(P \) — an operator on \(L \)
- \(A_P \) — an approximating mapping for \(P \)
- A pair \((x, y) \in L^2\) is an **se-pair** for \(P \) w/r to \(A_P \) if:
 - SE1: \(x \leq y \)
 - SE2: \(P(y) \leq y \)
 - SE3: \(A_P(x, y) \leq x \)
- \(SE(P, A_P) \) — the set of all se-pairs for \(P \) w/r to \(A_P \)

Generalize se-models by Turner

- Lattice of interpretations (sets of atoms)
- Operator \(T_P \) with an approximating mapping \(\Psi_P \)
 - SE1: \(X \subseteq Y \)
 - SE1: \(T_P(Y) \subseteq Y \rightarrow Y \) is a model of \(P \)
 - SE1: \(\Psi_P(X, Y) \subseteq X \rightarrow X \) is a prefixpoint of \(\Psi_P(\cdot, Y) \rightarrow X \) is a model of \(P^Y \)
Se-pairs

Definition

- \(P \) — an operator on \(L \)
- \(A_P \) — an approximating mapping for \(P \)
- A pair \((x, y) \in L^2\) is an **se-pair** for \(P \) w/r to \(A_P \) if:
 - **SE1:** \(x \leq y \)
 - **SE2:** \(P(y) \leq y \)
 - **SE3:** \(A_P(x, y) \leq x \)
- \(SE(P, A_P) \) — the set of all se-pairs for \(P \) w/r to \(A_P \)

Generalize se-models by Turner

- Lattice of interpretations (sets of atoms)
- Operator \(T_P \) with an approximating mapping \(\Psi_P \)
 - **SE1:** \(X \subseteq Y \)
 - **SE1:** \(T_P(Y) \subseteq Y \implies Y \) is a model of \(P \)
 - **SE1:** \(\Psi_P(X, Y) \subseteq X \implies X \) is a prefixpoint of \(\Psi_P(\cdot, Y) \implies X \) is a model of \(P^Y \)
Theorem

- P and Q — operators on a complete lattice L
- A_P and A_Q — approximating mappings for P and Q, respectively
- If $SE(P, A_P) = SE(Q, A_Q)$ then $P \equiv_s Q$ w/r to (A_P, A_Q)
- That is, for every operator R and every approximating mapping A_R for R, $St(P \lor R, A_P \lor A_R) = St(Q \lor R, A_Q \lor A_R)$
Converse result

It holds. But a stronger result holds, too!

- An operator R is **simple** if for some $x, y \in L$ such that $x \leq y$, we have

$$R(z) = \begin{cases} y & \text{if } x < z \\ x & \text{otherwise} \end{cases}$$

for every $z \in L$.

- Constant operators are simple (take $x = y =$ the single value of the operator)

- Simple operators are monotone

- If for every simple operator R,

 $$St(P \lor R, A_P \lor C_R) = St(Q \lor R, A_Q \lor C_R)$$

 then

 $$SE(P, A_P) = SE(Q, A_Q).$$
Characterizing strong equivalence

Theorem

- \(P \equiv_s Q \) w/r to \((A_P, A_Q)\) if and only if \(SE(P, A_P) = SE(Q, A_Q) \)
- Perhaps more interestingly ...
 - for every operator \(R \) and for every approximating mapping \(A_R \) for \(R \), \(St(P \lor R, A_P \lor A_R) = St(Q \lor R, A_Q \lor A_R) \) \((P \equiv_s Q)\)
 - iff
 - for every simple operator \(R \),
 \(St(P \lor R, A_P \lor C_R) = St(Q \lor R, A_Q \lor C_R) \)
Characterizing strong equivalence

Theorem

- $P \equiv_s Q$ w.r to (A_P, A_Q) if and only if $SE(P, A_P) = SE(Q, A_Q)$
- Perhaps more interestingly ...
- for every operator R and for every approximating mapping A_R for R, $St(P \lor R, A_P \lor A_R) = St(Q \lor R, A_Q \lor A_R)$ ($P \equiv_s Q$)
 iff
 for every simple operator R, $St(P \lor R, A_P \lor C_R) = St(Q \lor R, A_Q \lor C_R)$
Uniform equivalence (Eiter, Fink)

Definition (not much choice left, really)

- P and Q are uniformly equivalent with respect to (A_P, A_Q), $P \equiv_u Q$ w/r to (A_P, A_Q), if for every constant operator R

$$St(P \lor R, A_P \lor C_R) = St(Q \lor R, A_Q \lor C_R)$$

- In the LP setting: extensions by arbitrary sets of facts
- Relevant to query optimization in databases
Theorem

- P and Q — operators on a complete lattice L
- A_P and A_Q — approximating mappings for P and Q, respectively
- $P \equiv_u Q$ w/r to (A_P, A_Q) if and only if
 - for every $y \in L$, $P(y) \leq y$ if and only if $Q(y) \leq y$
 - for every $x, y \in L$ such that $x < y$ and $(x, y) \in SE(P, A_P)$, there is $u \in L$ such that $x \leq u < y$ and $(u, y) \in SE(Q, A_Q)$
 - for every $x, y \in L$ such that $x < y$ and $(x, y) \in SE(Q, A_Q)$, there is $u \in L$ such that $x \leq u < y$ and $(u, y) \in SE(P, A_P)$
Another characterization

Ue-pairs

- An se-pair \((x, y) \in SE(P, A_P)\) is a \emph{ue-pair} for \(P\) with respect to \(A_P\) if for every \((x', y) \in SE(P, A_P)\) such that \(x < x', x' = y\)
- \(UE(P, A_P)\)

Theorem

- \(L\) — a complete lattice such that its every subset has a maximal element
- \(P \equiv u Q\) w/r to \((A_P, A_Q)\) iff \(UE(P, A_P) = UE(Q, A_Q)\)
Another characterization

Ue-pairs

- An se-pair \((x, y) \in SE(P, A_P)\) is a *ue-pair* for \(P\) with respect to \(A_P\) if for every \((x', y) \in SE(P, A_P)\) such that \(x < x'\), \(x' = y\)

- \(UE(P, A_P)\)

Theorem

- \(L\) — a complete lattice such that its every subset has a maximal element

- \(P \equiv_u Q\) w/r to \((A_P, A_Q)\) iff \(UE(P, A_P) = UE(Q, A_Q)\)
Let P and Q be monotone operators on a complete lattice L. Then $P \equiv_s Q \text{ w/r to } (C_P, C_Q)$ iff P and Q have the same prefixpoints.

Let P and Q be monotone operators on a complete lattice L. Then $P \equiv_u Q \text{ w/r to } (C_P, C_Q)$ iff $P \equiv_s Q \text{ w/r to } (C_P, C_Q)$.

Let P and Q be antimonotone operators on a complete lattice L. Then $P \equiv_s Q \text{ w/r to } (C_P, C_Q)$ iff P and Q have the same prefixpoints and for every prefixpoint y of both P and Q, $P(y) = Q(y)$.
Our results generalize results from logic programming.

Also: imply results on equivalence for default logic and a version of autoepistemic logic (with strong expansions of Denecker, Marek and T_)

The same characterizations as those obtained through logic S4F.

Any direct connection between S4F and approximation theory?

Is there an algebraic generalization of the logic S4F?
Other classes of extending operators
- should contain constant operators but not simple operators
- one possibility (not too many come to mind): antimonotone operators

Relativized equivalence
- An operator R on L is a y-operator if it is determined by an operator on the complete lattice

$$\{x \in L : x \leq y\}$$

- By allowing only y-operators as extending operators, we obtain strong and uniform y-equivalence
- These concepts generalize corresponding notions proposed for logic programs by Eiter, Fink and Woltran
- Work on characterization theorems in progress
Thank you!