Theoretical Foundations of Logic Programming

Mirosław Truszczyński

Department of Computer Science
University of Kentucky

July 24-27, 2008
Some logic terminology

Language

- **Constant, variable, function and predicate** symbols
- **Terms**: strings built recursively from constant, variable and function symbols
 - $c, X, f(c, X), f(f(c, X), f(X, f(X, c)))$
- **Atoms**: built of predicate symbols and terms
 - $p(X, c, f(a, Y))$
Horn logic programming

Horn clause

- \(p \leftarrow q_1, \ldots, q_k \)
 - where \(p, q_i \) are atoms
- Clauses are *universally* quantified
 - special sentences
- Intuitive reading: if \(q_1, \ldots, q_k \) then \(p \)

Horn program

- A collection of Horn clauses
Horn logic programming

Horn clause

- $p \leftarrow q_1, \ldots, q_k$
 - where p, q_i are atoms
- Clauses are *universally* quantified
 - special sentences
- Intuitive reading: if q_1, \ldots, q_k then p

Horn program

- A collection of Horn clauses
More terminology

Herbrand model

- **Ground terms**: no variable symbols
- **Herbrand universe**: collection of all ground terms
- **Ground atoms**: atoms built of predicate symbols and ground terms

 \[p(a, c, f(a, a)) \]

- **Herbrand base**: collection of all ground atoms
- **Herbrand model**: subset of an Herbrand base
Given by Herbrand models

\[\text{grnd}(P): \text{the set of all ground instances of clauses in } P \]

Thus, no difference between \(P \) and \(\text{grnd}(P) \)

Key question:

which ground facts hold in every Herbrand model of \(P \)?

Sufficient to restrict to Herbrand models contained in \(HB(P) \)

- Herbrand universe of \(P \), \(HU(P) \)
 (if no constant symbols in \(P \), a single constant symbol introduced)
- Herbrand base of \(P \), \(HB(P) \)
- Ground atoms not in \(HB(P) \) are not true in all Herbrand models
Least Herbrand model

- Every Horn program P has a **least** Herbrand model $LM(P)$
 - the intersection of a set of Herbrand models of a Horn program is a Herbrand model of the program
 - $HB(P)$ is an Herbrand model of P
 - the intersection of all models is a least Herbrand model (and it is contained in $HB(P)$)

- **Single** intended Herbrand model
 - For a *ground* t, $P \models p(t)$ if and only if $p(t) \in LM(P)$
 - For *ground* t, if $P \not\models p(t)$, **defeasibly** conclude $\neg p(t)$
 - Closed World Assumption (CWA)
Computing with Horn programs

What do they specify, what can they express?

- A Horn program P specifies a subset X of the Herbrand universe for P, $HU(P)$, if for some predicate symbol p occurring in P we have:

 $$X = \{ t \in HU(P) : p(t) \in LM(P) \}$$

- Finite Horn programs specify precisely the r.e. sets and relations

Reachability — an example

Program P

\[
\begin{align*}
&\text{arc}(a, b).
&\text{arc}(b, c).
&\text{arc}(d, c).

&\text{reach}(X, X).
&\text{reach}(X, Y) \leftarrow \text{arc}(X, Z), \text{reach}(Z, Y).
\end{align*}
\]
Reachability — an example

\(HU(P), HB(P), \text{ground}(P) \)

- \(HU(P) = \{a, b, c, d\} \)
- \(HB(P) = \{\text{arc}(a, a), \text{arc}(a, b), \ldots, \text{reach}(a, a), \ldots\} \)
- \(\text{ground}(P) : \)

 \[
 \begin{align*}
 \text{arc}(a, b), \quad \text{arc}(b, c), \quad \text{arc}(d, c), \\
 \text{reach}(a, a), \quad \text{reach}(b, b), \quad \text{reach}(c, c), \quad \text{reach}(d, d), \\
 \text{reach}(a, a) & \leftarrow \text{arc}(a, a), \text{reach}(a, a), \\
 \text{reach}(a, b) & \leftarrow \text{arc}(a, b), \text{reach}(b, a), \\
 \ldots & \\
 \text{reach}(c, b) & \leftarrow \text{arc}(c, d), \text{reach}(d, b), \\
 \ldots
 \end{align*}
 \]
Reachability — an example

Least model

- \(\text{arc}(a, b), \text{arc}(a, c), \text{arc}(d, c) \)
- \(\text{reach}(a, a), \text{reach}(b, b), \text{reach}(c, c), \text{reach}(d, d) \)
- \(\text{reach}(a, b), \text{reach}(a, c), \text{reach}(d, c), \text{reach}(a, c) \)

What’s computed?

- Assume \(\text{reach} \) is the distinguished “solution” predicate
- \(\{(a, a), (b, b), (c, c), (d, d), (a, b), (a, c), (d, c), (a, c)\} \)
Reachability — an example

Least model

- $arc(a, b)$, $arc(a, c)$, $arc(d, c)$
- $reach(a, a)$, $reach(b, b)$, $reach(c, c)$, $reach(d, d)$
- $reach(a, b)$, $reach(a, c)$, $reach(d, c)$, $reach(a, c)$

What’s computed?

- Assume $reach$ is the distinguished “solution” predicate
- $\{(a, a), (b, b), (c, c), (d, d), (a, b), (a, c), (d, c), (a, c)\}$
Possible issues?

- Function symbols necessary!
- List constructor \([\cdot|\cdot] \) used to define higher-order objects
- Terms - basic data structures
- Queries (goals):
 - ?p(t) - is \(p(t) \) entailed?
 - ?p(X) - for what ground \(t \), is \(p(t) \) entailed?
- Proofs provide answers
- SLD-resolution
- Unification - basic mechanism to manipulate data structures
- Extensive use of recursion
- Leads to Prolog
Example

Manipulating lists: append and reverse

\[
\text{append}([], X, X).
\]
\[
\text{append}([X|Y], Z, [X|T]) \leftarrow \text{append}(Y, Z, T).
\]

\[
\text{reverse}([], []).
\]
\[
\text{reverse}([X|Y], Z) \leftarrow \text{append}(U, [X], Z), \text{reverse}(Y, U).
\]

- both relations defined recursively
- terms represent complex objects: lists, sets, ...
Example, cont’d

Playing with *reverse*

- Problem: reverse list \([a, b, c]\)
 - Ask query ? – *reverse*([\(a, b, c\)], \(X\)).
 - A proof of the query yields a substitution: \(X = [c, b, a]\)
 - The substitution constitutes an answer
- Query ? – *reverse*([\(a\|X\)], [\(b, c, d, a\)]) returns \(X = [d, c, b]\)
- Query ? – *reverse*([\(a\|X\)], [\(b, c, d, b\)]) returns no substitutions (there is no answer)
Observations

- **Techniques to search for proofs — the key**
- Understanding of the resolution mechanism is important.
- It may make a difference which logically equivalent form is used:
 - $\text{reverse}([X|Y], Z) \leftarrow \text{append}(U, [X], Z), \text{reverse}(Y, U)$.
 - $\text{reverse}([X|Y], Z) \leftarrow \text{reverse}(Y, U), \text{append}(U, [X], Z)$.
- Termination vs. non-termination for query:
 - $? \leftarrow \text{reverse}([a|X], [b, c, d, b])$
- **Is it truly knowledge representation?**
 - is it truly declarative?
 - implementations are not!
- **Nonmonotonicity quite restricted**
Negation in the body

Why negation?

- Natural linguistic concept
- Facilitates knowledge representation (declarative descriptions and definitions)
- Needed for modeling convenience
- Clauses of the form:
 \[p(\bar{X}) \leftarrow q_1(\bar{X}_1), \ldots, q_k(\bar{X}_k), \text{not } r_1(\bar{Y}_1), \ldots, \text{not } r_l(\bar{Y}_l) \]
- Things get more complex!
Observations

- Still Herbrand models
- Still restricted to $HB(P)$
- But — usually no least Herbrand model!
- Program

 \[
 a \leftarrow \text{not } b \\
 b \leftarrow \text{not } a
 \]

 has two \textbf{minimal} Herbrand models: $M_1 = \{a\}$ and $M_2 = \{b\}$.
- Identifying a \textbf{single} intended model a major issue
Great Logic Programming Schism

- **Single intended model approach**
 - continue along the lines of Prolog
- **Multiple intended model approach**
 - branch into answer-set programming
Single intended model approach

“Better” Prolog

- Extensions of Horn logic programming
 - Perfect semantics of stratified programs
 - 3-val well-founded semantics for (arbitrary) programs
- Top-down computing based on unification and resolution
- XSB – David Warren at SUNY Stony Brook
- Will come back to it
Multiple intended models

Answer-set programming

- Semantics assigns to a program not one but many intended models!
 - for instance, all stable or supported models (to be introduced soon)
- How to interpret these semantics?
 - skeptical reasoning: a ground atom is cautiously entailed if it belongs to all intended models
 - intended models represent different possible states of the world, belief sets, solutions to a problem
- Nonmonotonicity shows itself in an essential way
 - as in default logic
Preliminary observations and comments

- Logic programs with negation
- Still interested only in Herbrand models
- Thus, enough to consider propositional case
- Supported model semantics
- Stable model semantics
- Connection to propositional logic (Clark’s completion, tightness, loop formulas)
- Kripke-Kleene and well-founded semantics
- Strong and uniform equivalence
Syntax

- Propositional language over a set of atoms At (possibly infinite)
- Clause r

 $$a ← b_1, \ldots, b_m, not\ c_1, \ldots, not\ c_n$$

 - a, b_i, c_j are atoms
 - a is the head of the clause: $hd(r)$
 - literals $b_i, not\ c_j$ form the body of the rule: $bd(r)$
 - $\{b_1, \ldots, b_m\}$ - positive body $bd^+(r)$
 - $\{c_1, \ldots, c_n\}$ - negative body $bd^-(r)$
One-step provability operator

Basic tool in LP

van Emden, Kowalski 1976

- Operator on interpretations (sets of atoms)
 - \(T_P(I) = \{ \text{hd}(r) : I \models bd(r) \} \)
- If \(P \) is Horn, \(T_P \) is monotone
 - Let \(I \subseteq J \)
 - Let \(bd(r) = b_1, \ldots, b_m \) (no negation!)
 - If \(I \models bd(r) \) then \(J \models bd(r) \)
 - Thus, \(T_P(I) \subseteq T_P(J) \)
 - Least fixpoint of \(T_P \) exists and coincides with the least Herbrand model of \(P \)
- In general, not the case (due to negation)
 - \(\emptyset \models \textit{not } a \)
 - but \(\{ a \} \not\models \textit{not } a \)
Definition and some observations

- $M \subseteq \text{At}$ is a **supported** model of P if $T_P(M) = M$
- Supported models are indeed models
 - let $M \models bd(r)$
 - then $hd(r) \in T_P(M)$
 - and so, $hd(r) \in M$
- Supported models are subsets of $\text{At}(P)$ (the Herbrand base of P)
- Thus, they are Herbrand models
Supported models - example

<table>
<thead>
<tr>
<th>Program</th>
<th>$p \leftarrow \text{not } q$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>One supported model:</td>
<td>$M_1 = {p}$</td>
</tr>
<tr>
<td>$M_2 = {q}$ - not supported (but model)</td>
<td></td>
</tr>
<tr>
<td>p “follows”</td>
<td></td>
</tr>
<tr>
<td>If q included in the program (more exactly: a rule $q \leftarrow$)</td>
<td></td>
</tr>
<tr>
<td>Just one supported model:</td>
<td>$M_1 = {q}$.</td>
</tr>
<tr>
<td>p does not ‘follow’</td>
<td></td>
</tr>
<tr>
<td>nonmonotonicity</td>
<td></td>
</tr>
</tbody>
</table>
Two supported models: $M_1 = \emptyset$ and $M_2 = \{p\}$

The second one is self-supported (circular justification)

A problem for KR
Clark’s completion

Rules as implications

- $bd^\wedge(r)$ the conjunction of all literals in the body of r
 with all not c replaced with $\neg c$
- $\text{cmpl}(P) = \{ bd^\wedge(r) \rightarrow hd(r) : r \in P \}$
Clark’s completion

Rules as definitions

- **Notation:** $\text{def}_P(a) = \bigvee \{ bd^\wedge(r) : \text{hd}(r) = a \}$
- **Note:** if a not the head of any rule in P, $\text{def}_P(a) = \bot$
- $\text{cmpl} \rightarrow(P) = \{ a \rightarrow \text{def}_P(a) : a \in \text{At} \}$
- $\text{cmpl}(P) = \text{cmpl} \leftarrow(P) \cup \text{cmpl} \rightarrow(P)$
- **Note:** if $a \notin \text{At}(P)$, $\text{cmpl}(P) \models \neg a$
Clark’s completion

Example

\[a \leftarrow b, \text{not } c \]
\[a \leftarrow d \]
\[b \leftarrow a \]

- \(\text{def}(a) = (b \land \neg c) \lor d \)
- \(\text{def}(b) = a \)
- \(\text{def}(c) = \bot \)
- \(\text{cmpl} \leftarrow = \{ b \land \neg c \rightarrow a; d \rightarrow a; a \rightarrow b \} = \{(b \land \neg c) \lor d \rightarrow a; a \rightarrow b \} \)
- \(\text{cmpl} \leftarrow = \{ \text{def}(a) \rightarrow a; \text{def}(b) \rightarrow b; \text{def}(c) \rightarrow c \} \)
- \(\text{cmpl} \rightarrow = \{ a \rightarrow \text{def}(a); b \rightarrow \text{def}(b); c \rightarrow \text{def}(c) \} \)
- \(\text{cmpl} = \{ a \leftrightarrow \text{def}(a); b \leftrightarrow \text{def}(b); c \leftrightarrow \text{def}(c) \} \)
- \(\text{cmpl} \) has two models: \(\emptyset \) and \(\{a, b\} \)
Clark’s completion

A set $M \subseteq At$ is a supported model of a program P if and only if M is a model (in a standard sense) of $cmpl(P)$

- Connection to SAT
- Allows us to use SAT solvers to compute supported models of P
Connection to supported models — proof

\[M \overset{\text{— supported model of } P}{=} T_P(M) \]

- Let \(a \in M \Rightarrow \exists r \in P \text{ st: } hd(r) = a \text{ and } M \models bd(r) \)
- \(\Rightarrow M \models bd^\wedge(r), \quad M \models \text{def}(a) \text{ and } M \models a \leftrightarrow \text{def}(a) \)
- Let \(a \notin M \Rightarrow \forall r \in P \text{ st: } hd(r) = a, \quad M \not\models bd(r) \)
- \(\Rightarrow M \not\models \text{def}(a) \text{ and } M \models a \leftrightarrow \text{def}(a) \)

Conversely: let \(M \models \text{cmpl}(P) \)

- \(\Rightarrow M \models P \text{ and so, } T_P(M) \subseteq M \)
- Let \(a \in M \Rightarrow M \models \text{def}(a) \)
- \(\Rightarrow \exists r \in P \text{ st: } M \models bd^\wedge(r) \)
- \(\Rightarrow M \models bd(r) \text{ and } a \in T_P(M) \Rightarrow M \subseteq T_P(M) \)
- Thus, \(M = T_P(M) \text{ and } M \text{ supported} \)
Connection to supported models — proof

Proof

Let $a \in M$ \implies \exists r \in P \text{ st: } hd(r) = a \text{ and } M \models bd(r)$

\implies M \models bd(r), \text{ and } M \models def(a)$

Let $a \notin M \implies \forall r \in P \text{ st: } hd(r) = a, \text{ and } M \not\models bd(r)$

\implies M \not\models def(a)$

Conversely: let $M \models cmpl(P)$

\implies M \models P \text{ and so, } T_P(M) \subseteq M$

Let $a \in M \implies M \models def(a)$

$\exists r \in P \text{ st: } M \models bd(r)$

\implies M \models bd(r)$

Thus, $M = T_P(M)$ and M supported
Stable model semantics

<table>
<thead>
<tr>
<th>Supported models of interest, but ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Some supported models based on circular arguments</td>
</tr>
<tr>
<td>▶ $p \leftarrow p$</td>
</tr>
<tr>
<td>▶ ${p}$ is supported model (circular argument)</td>
</tr>
<tr>
<td>▶ Some more stringent bases for selecting intended models needed</td>
</tr>
</tbody>
</table>
Stable model semantics

Gelfond-Lifschitz reduct

- P — logic program
- M — set of atoms
- \textbf{Reduct} P^M
 - for each $a \in M$ remove rules with $\text{not } a$ in the body
 - remove literals $\text{not } a$ from all other rules
Stable model semantics

Definition through reduct

- Reduct P^M is a Horn program
- It has the least model $LM(P^M)$
- M is a stable model of P if

$$M = LM(P^M)$$
Stable model semantics

And now through Gelfond-Lifschitz operator

- $GL_P(M) = LM(P^M)$
- M is a stable model if and only if $M = GL_P(M)$
- GL_P is antimonotone
- For $M \subseteq N$: $GL_P(N) \subseteq GL_P(M)$
Multiple stable models

\[
\begin{align*}
 p & \leftarrow q, \text{not } s \\
 r & \leftarrow p, \text{not } q, \text{not } s \\
 s & \leftarrow \text{not } q \\
 q & \leftarrow \text{not } s
\end{align*}
\]

- Two stable models: \(M_1 = \{p, q\} \) and \(M_2 = \{s\} \)

No stable models

\[
\begin{align*}
 p & \leftarrow \text{not } p
\end{align*}
\]

- No stable models!!
Stable models — examples

Multiple stable models

\[p \leftarrow q, \text{not } s \]
\[r \leftarrow p, \text{not } q, \text{not } s \]
\[s \leftarrow \text{not } q \]
\[q \leftarrow \text{not } s \]

- Two stable models: \(M_1 = \{p, q\} \) and \(M_2 = \{s\} \)

No stable models

\[p \leftarrow \text{not } p \]

- No stable models!!
Stable models — properties

Stable models are models!

- Let M be a stable model
- M is a model of all rules that are removed from the program when forming the reduct
- M is a model of every rule that contributes to the reduct
- Indeed, each such rule is subsumed by a rule in the reduct and M satisfies all rules in the reduct
Stable models — properties

Stable models are minimal models!

- Let N be a stable model and M a model s.t. $M \subseteq N$
- Then
 $$N = GL_p(N) \subseteq GL_p(M) \subseteq M$$
- Thus, $N \subseteq M$ and so $N = M$
- The minimality of N follows
- Stable models form an antichain!
Lemma: If M model of P, $GL_P(M) \subseteq M$

- Since M model of P, then M is a model of P^M
- $a \leftarrow b_1, \ldots, b_m$ - a rule in reduct
- $a \leftarrow b_1, \ldots, b_m, \text{not } c_1, \ldots, \text{not } c_n$ - the original rule in P
- M satisfies the latter, and it satisfies every $\text{not } c_i$ (as $c_i \not\in M$)
- Thus, M satisfies the reduct rule
Stable models — properties

Connection to supported models

- If M is a stable model of P then it is a supported model of P
- Let M be a stable model of P
- Then M model of P and so, $T_P(M) \subseteq M$
- $r = a \leftarrow b_1, \ldots, b_m, \text{not } c_1, \ldots, \text{not } c_n$ - a rule in P such that $M \models bd(r)$
- Then $r' = a \leftarrow b_1, \ldots, b_m$ belongs to the reduct P^M
- And $M \models bd(r')$
- Since M is a model of P^M, $a \in M$
- Hence, $T_P(M) \subseteq M$ and so, $M = T_P(M)$
- That is, M is supported!!
But ...

- The converse not true, in general (as it should not be)

Counterexample

- $p \leftarrow p$
- $\{p\}$ is supported but not stable
- Positive dependency of p on itself is a problem
But ...

- The converse not true, in general (as it should not be)

Counterexample

- $p \leftarrow p$
- $\{p\}$ is supported but not stable
- Positive dependency of p on itself is a problem
Fages Lemma

Positive dependency graph $G^+(P)$

- Atoms of P are vertices
- (a, b) is an edge in $G^+(P)$ if for some $r \in P$: $hd(r) = a$, $b \in bd^+(r)$

Tight programs

- P is tight if $G^+(P)$ is acyclic
- Alternatively, if there is a labeling of atoms with non-negative integers $\lambda(a)$ s.t.
- for every rule $r \in P$

$$\lambda(hd(r)) > \max\{\lambda(b) : b \in bd^+(r)\}$$

- Connection to topological ordering of positive dependency graphs
Fages Lemma

Positive dependency graph $G^+(P)$

- Atoms of P are vertices
- (a, b) is an edge in $G^+(P)$ if for some $r \in P$: $hd(r) = a$, $b \in bd^+(r)$

Tight programs

- P is tight if $G^+(P)$ is **acyclic**
- Alternatively, if there is a labeling of atoms with non-negative integers ($a \mapsto \lambda(a)$) s.t.
 - for every rule $r \in P$
 \[
 \lambda(hd(r)) > \max\{\lambda(b) : b \in bd^+(r)\}
 \]
- Connection to topological ordering of positive dependency graphs
The statement — finally

- If P is tight then every supported model is stable
- Intuitively, circular support not possible
Fages Lemma — example

Program P

\[
\begin{align*}
p & \leftarrow q, \text{not } s \\
r & \leftarrow p, \text{not } q, \text{not } s \\
s & \leftarrow \text{not } q \\
q & \leftarrow \text{not } s
\end{align*}
\]

Graph $G^+(P)$

P is tight

- \{p, q\} and \{s\} are supported models of P
 - $T_P(\{p, q\}) = \{p, q\}$
 - $T_P(\{s\}) = \{s\}$
- Thus, they are stable (which we verified directly earlier)
Fages Lemma — example

Program P

\[
\begin{align*}
 p & \leftarrow q, \text{not } s \\
 r & \leftarrow p, \text{not } q, \text{not } s \\
 s & \leftarrow \text{not } q \\
 q & \leftarrow \text{not } s
\end{align*}
\]

Graph $G^+(P)$

P is tight

- \{p, q\} and \{s\} are supported models of P
 - $T_P(\{p, q\}) = \{p, q\}$
 - $T_P(\{s\}) = \{s\}$

- Thus, they are stable (which we verified directly earlier)
Fages Lemma — example

Program P

$p \leftarrow q, \neg s$
$r \leftarrow p, \neg q, \neg s$
$s \leftarrow \neg q$
$q \leftarrow \neg s$

Graph $G^+(P)$

p q

P is tight

- $\{p, q\}$ and $\{s\}$ are supported models of P
 - $T_P(\{p, q\}) = \{p, q\}$
 - $T_P(\{s\}) = \{s\}$
- Thus, they are stable (which we verified directly earlier)
Proof

- Let P be tight and M be its supported model.
- Then M is a model of P^M.
- Let N be a model of P^M.
- Claim: for every k, if $a \in M$ and $\lambda(a) < k$, then $a \in N$.
- Holds for $k = 0$ (trivially).
- Let $a \in M$ and $\lambda(a) = k$.
- Since M supported, there is $r \in P$ such that $a = hd(r)$ and $M \models bd(r)$.
- In particular, $bd^+(r) \subseteq M$ and so, $bd^+(r) \subseteq N$ (by I.H.).
- Since $M \models bd(r)$, M contributes to the reduct.
- Since N is a model of P^M, $a \in N$.
- It follows that $M = LM(P^M)$.
Relativized tightness

- Let $X \subseteq \text{At}(P)$
- P is tight on X if the program consisting of rules r such that $\text{bd}^+(r) \subseteq X$ is tight

Generalization

- If P is tight on X and M is a supported model of P such that $M \subseteq X$, then M is stable
A generalization

Erdem and Lifschitz, 2000

Relativized tightness

- Let $X \subseteq At(P)$
- P is tight on X if the program consisting of rules r such that $bd^+(r) \subseteq X$ is tight

Generalization

- If P is tight on X and M is a supported model of P such that $M \subseteq X$, then M is stable
Generalized Fages Lemma — example

Program P

\[
\begin{align*}
p & \leftarrow q, \text{not } s \\
r & \leftarrow p, \text{not } q, \text{not } s \\
s & \leftarrow \text{not } q \\
q & \leftarrow \text{not } s \\
p & \leftarrow r
\end{align*}
\]

Graph $G^+(P)$

P is not tight

- $\{p, q\}$ and $\{s\}$ are still supported models of P
 - $T_P(\{p, q\}) = \{p, q\}$
 - $T_P(\{s\}) = \{s\}$
- Since P is tight on each of them, they are stable
Generalized Fages Lemma — example

Program P

\[
\begin{align*}
p & \leftarrow q, \neg s \\
r & \leftarrow p, \neg q, \neg s \\
s & \leftarrow \neg q \\
q & \leftarrow \neg s \\
p & \leftarrow r
\end{align*}
\]

Graph $G^+(P)$

P is not tight

- $\{p, q\}$ and $\{s\}$ are still supported models of P
 - $T_P(\{p, q\}) = \{p, q\}$
 - $T_P(\{s\}) = \{s\}$

- Since P is tight on each of them, they are stable
Generalized Fages Lemma — example

Program P

\[
\begin{align*}
p & \leftarrow q, \text{not } s \\
r & \leftarrow p, \text{not } q, \text{not } s \\
s & \leftarrow \text{not } q \\
q & \leftarrow \text{not } s \\
p & \leftarrow r
\end{align*}
\]

Graph $G^+(P)$

P is not tight

- \{p, q\} and \{s\} are still supported models of P
 - $T_P(\{p, q\}) = \{p, q\}$
 - $T_P(\{s\}) = \{s\}$
- Since P is tight on each of them, they are stable
Loops and loop formulas

Lin and Zhao, 2002

External support formula for $Y \subseteq At(P)$

- For a rule r:
 - $bd^\wedge(r)$ the conjunction of all literals in the body of r

 with all not c replaced with $\neg c$
 - $ES_P(Y)$ the disjunction of $bd^\wedge(r)$ for all $r \in P$ st:
 - $hd(r) \in Y$
 - $bd^+(r) \cap Y = \emptyset$
- For finite programs: well-formed formulas
- Hence, will assume finiteness

Observations

- $ES_P(\emptyset) = \top$
- $ES_P(\{a\}) = def_P(a)$

 cf. Clark’s completion
External support formula for $Y \subseteq At(P)$

- For a rule r:
 - $bd^\wedge(r)$ the conjunction of all literals in the body of r with all not c replaced with $\neg c$
 - $ES_P(Y)$ the disjunction of $bd^\wedge(r)$ for all $r \in P$ st:
 - $hd(r) \in Y$
 - $bd^+(r) \cap Y = \emptyset$

- For finite programs: well-formed formulas
- Hence, will assume finiteness

Observations

- $ES_P(\emptyset) = \top$
- $ES_P(\{a\}) = \text{def}_P(a)$
 - cf. Clark’s completion
A characterization of stable models

for finite programs, the following conditions are equivalent

- X is a stable model of P
- X is a model of $\text{cmpl}(P) \cup \{ Y^\land \rightarrow ES_P(Y) : Y \subseteq \text{At}(P) \}$
- X is a model of $\text{cmpl}(P) \cup \{ Y^\lor \rightarrow ES_P(Y) : Y \subseteq \text{At}(P) \}$
- OK to replace $\text{cmpl}(P)$ with $\text{cmpl}(P)$
 - $\text{cmpl}(P) \subseteq \{ Y^\land \rightarrow ES_P(Y) : Y \subseteq \text{At}(P) \}$
 - $\text{cmpl}(P) \subseteq \{ Y^\lor \rightarrow ES_P(Y) : Y \subseteq \text{At}(P) \}$
Loops

Definition

- A loop is a set $Y \subseteq At(P)$ that induces in $G^+(P)$ a strongly connected subgraph.
- In particular, all singleton sets are loops.
Program P

- $p \leftarrow q, \text{not } r$
- $q \leftarrow p$
- $r \leftarrow \text{not } p$

Graph $G^+(P)$

- $\{p\}$, $\{q\}$, $\{r\}$, $\{p, q\}$ are loops
- $\{p, q, r\}$ is not!
Loops — example

Program P

\[
\begin{align*}
p & \leftarrow q, \text{not } r \\
q & \leftarrow p \\
r & \leftarrow \text{not } p
\end{align*}
\]

Graph $G^+(P)$

- $\{p\}$, $\{q\}$, $\{r\}$, $\{p, q\}$ are loops
- $\{p, q, r\}$ is not!
Loop Theorem

For finite programs, the following conditions are equivalent:

- X is a stable model of P
- X is a model of $\text{cmpl}^{-}(P) \cup \{ Y^\lor \rightarrow ES_P(Y): Y \text{ – a loop} \}$
- X is a model of $\text{cmpl}^{-}(P) \cup \{ Y^\land \rightarrow ES_P(Y): Y \text{ – a loop} \}$

- OK to replace $\text{cmpl}^{-}(P)$ with $\text{cmpl}(P)$
 - Singleton sets are loops!
Loop Theorem

Let X be a stable model of P

- $\Rightarrow X \models P \Rightarrow X \models P^X$
- $X \models P \Rightarrow X \models \text{cmpl} \leftarrow (P)$
- Let Y be a loop st: $X \models Y^\lor \Rightarrow X \cap Y \neq \emptyset$
- Let $a \in Y$ be the “first” element of Y in X
 recall that $X = LM(P^X)$
- $\Rightarrow \exists r \in P \text{ st: } a = \text{hd}(r), \ bd^+(r) \cap Y = \emptyset$
- $\Rightarrow bd^\lor(r)$ is a disjunct of $ES_P(Y)$
- Also: $bd^+(r) \subseteq X$ and $bd^-(r) \cap X = \emptyset \Rightarrow X \models bd^\lor(r)$
- $\Rightarrow X \models ES_P(Y) \Rightarrow X \models Y^\lor \rightarrow ES_P(Y)$
- No difference if Y^\lor replaced with Y^\land
Loop Theorem

Let $X \models \text{cmp} \leftarrow (P) \cup \{ Y^\uparrow \rightarrow ES_P(Y) : Y \text{ a loop} \}$

- $X \models P \Rightarrow X \models P^X$
- Let $X' = LM(P^X) \Rightarrow X' \subseteq X$
- Let $X \setminus X' \neq \emptyset$
- Consider subgraph H of $G(P)$ induced by $X \setminus X'$
- Let Y be a “terminal” strongly connected component of H
 no edge in H starts in Y and ends outside of Y
Let $X \models \text{cmpl}^\leftarrow(P) \cup \{Y^\uparrow \rightarrow ES_P(Y) : Y \text{ -- a loop}\}$

- $\Rightarrow X \models P \Rightarrow X \models P^X$
- Let $X' = LM(P^X) \Rightarrow X' \subseteq X$
- Let $X \setminus X' \neq \emptyset$
- Consider subgraph H of $G(P)$ induced by $X \setminus X'$
- Let Y be a “terminal” strongly connected component of H
 - no edge in H starts in Y and ends outside of Y
Loop Theorem

Proof, cont’d

- \(X \models Y^\wedge \rightarrow ES_P(Y) \) (also: \(X \models Y^\vee \rightarrow ES_P(Y) \))
- Since \(Y \subseteq X \): \(\Rightarrow X \models ES_P(Y) \)
- \(\Rightarrow \exists r \in P \text{ st: } hd(r) \in Y, \ bd^+(r) \cap Y = \emptyset, \ X \models bd^+(r) \)
- \(\Rightarrow bd^+(r) \subseteq X \) and \(r^X \in P^X \)
- Since \(Y \) terminal and \(bd^+(r) \cap Y = \emptyset \): \(\Rightarrow bd^+(r) \subseteq X' \)
 - if \(a \in bd^+(r) \): \(a \in X \)
 - \((hd(r), a)\) edge in \(G^+(P) \)
 - if \(a \in X \setminus X' \): \((hd(r), a)\) edge in \(H \)
 - \(\Rightarrow a \in Y \), contradiction
 - \(\Rightarrow a \in X' \)
- Since \(X' \models P^X \): \(\Rightarrow X' \models r^X \)
- \(\Rightarrow hd(r) \in X' \)
- Since \(X' \cap Y = \emptyset \): \(\Rightarrow \) contradiction
Some programs have no stable nor supported models

- Sufficient conditions for the existence of stable models
- 4-val supported and stable models
Sufficient conditions

General dependency graph $G(P)$

- Atoms of P are vertices
- (a, b) is an edge in P if for some $r \in P$: $\text{hd}(r) = a$, $b \in \text{bd}(r)$
- If $b \in \text{bd}^+(r)$ — edge is positive
- If $b \in \text{bd}^-(r)$ — edge is negative

A propositional program P is

- Call-consistent: if $G(P)$ has no odd cycles (cycles with an odd number of negative edges)
- Stratified: if $G(P)$ has no paths with infinitely many negative edges
 - in particular, no cycles with a negative edge (for finite programs both conditions are equivalent)
Sufficient conditions

General dependency graph \(G(P) \)

- Atoms of \(P \) are vertices
- \((a, b)\) is an edge in \(P \) if for some \(r \in P: \) \(\text{hd}(r) = a, b \in \text{bd}(r) \)
- If \(b \in \text{bd}^+(r) \) — edge is **positive**
- If \(b \in \text{bd}^-(r) \) — edge is **negative**

A propositional program \(P \) is

- **Call-consistent:** if \(G(P) \) has no odd cycles (cycles with an odd number of negative edges)
- **Stratified:** if \(G(P) \) has no paths with infinitely many negative edges
 - in particular, no cycles with a negative edge (for finite programs both conditions are equivalent)
Sufficient conditions

Results

- If a finite logic program is call-consistent, it has a stable model
- If a program is stratified it has a unique stable model
Splitting

- Let P and Q be programs such that P does not contain any of the head atoms of Q

 “Q above P”

- A set M is a stable model of $P \cup Q$ iff there is a stable model N of P such that M is a stable model of $Q \cup N$
Splitting Theorem

Proof: (\Rightarrow) Let $M \in \text{StM}(P \cup Q)$

- $N := M \cap \text{At}(P)$
- $P^N = P^M$ (as $(M \setminus N) \cap \text{At}(P) = \emptyset$)
- $M \models P \Rightarrow M \models P^M \Rightarrow M \models P^N$
- $\Rightarrow N \models P^N$ (as $(M \setminus N) \cap \text{At}(P) = \emptyset$)
- Let $N' \subseteq N$ be st: $N' \models P^N$
- $\Rightarrow N' \models P^M \Rightarrow N' \cup (M \setminus N) \models P^M$
- Let $r \in Q^M$ be st: $N' \cup (M \setminus N) \models \text{bd}(r)$
- $\Rightarrow M \models \text{bd}(r) \Rightarrow M \models \text{hd}(r)$ (as $M \models Q$ and so, $M \models Q^M$)
- $\Rightarrow \text{hd}(r) \in M \Rightarrow \text{hd}(r) \in M \setminus N \Rightarrow \text{hd}(r) \in N' \cup (M \setminus N)$
- $\Rightarrow N' \cup (M \setminus N) \models Q^M \Rightarrow N' \cup (M \setminus N) \models (P \cup Q)^M$
- $\Rightarrow N' \cup (M \setminus N) = M \Rightarrow N' = N \Rightarrow N = \text{LM}(P^N)$
- $\Rightarrow N \in \text{StM}(P)$
Next, we show that $M \in StM(Q \cup N)$

- Recall: $N = M \cap At(P)$ \Rightarrow $N \subseteq M$
- Also: $M \models Q$ \Rightarrow $M \models Q^M \cup N = (Q \cup N)^M$
- Let $M' \subseteq M$ be st: $M' \models (Q \cup N)^M$
- \Rightarrow $N \subseteq M'$ $M' \models Q^M$
- Recall: $N \models P^N$ and so $N \models P^M$ (as $P^M = P^N$)
- \Rightarrow $M' \models P^M$ \Rightarrow $M' \models (P \cup Q)^M$
- Recall: $M = LM((P \cup Q)^M)$ \Rightarrow $M = M'$
- \Rightarrow $M = LM((P \cup N)^M)$ \Rightarrow $M \in StM(Q \cup N)$
Splitting Theorem

Conversely: $M \in StM(Q \cup N)$ and $N \in StM(P)$

- $\Rightarrow M \models Q$, $N \subseteq M$, $M \subseteq \text{hd}(Q) \cup N$
- $\Rightarrow M \cap \text{At}(P) = N \Rightarrow M \models P$
- $\Rightarrow M \models P \cup Q \Rightarrow M \models (P \cup Q)^M$
- Let $M' \subseteq M$ be st: $M' \models (P \cup Q)^M$
- $N' := M' \cap \text{At}(P)$
- $\Rightarrow M' \models P^M \Rightarrow N' \models P^M \Rightarrow N' \models P^N$
- $\Rightarrow N' = N \Rightarrow N' \subseteq M' \Rightarrow M' \models Q^M \cup N = (Q \cup N)^M$
- $\Rightarrow M' = M \Rightarrow M = LM((Q \cup N)^M \Rightarrow M \in StM(P \cup Q)$
Stratification

Equivalent definition in the finite case

- **P stratified** if
 - \(\text{hd}(P) \cap \text{bd}^-(P) = \emptyset \), or
 - \(P = P_1 \cup P_2 \), where \(P_2 \) stratified, \(\text{hd}(P_1) \cap (\text{bd}^-(P_1) \cup \text{At}(P_2)) = \emptyset \)

Finite stratified programs have a unique stable model

- Induction
- Basis: exident
- Inductive step: \(P_2 \) has a unique stable model, say \(N \)
- Clearly, \(P_1 \cup N \) has a unique stable model, too
- Apply splitting theorem
What do I mean?

- Logic allows us to manipulate theories
- Tautologies can be added or removed without changing the meaning
- Consequences of formulas in theories can be added or removed without changing the meaning
 - \(\{p, p \rightarrow q\} \) the same as \(\{p, p \rightarrow q, q\} \)
 - one can always be replaced with another (within any larger context)
- Equivalence for replacement — logical equivalence necessary and sufficient
- Is there a logic which captures such manipulation with theories in nonmonotonic systems?
Query optimization

- Compute answers to a query Q (program) from a knowledge base KB (another program)

 \[
 \text{reason from } Q \cup KB
 \]

- Rewrite Q into an equivalent query Q', which can be processed more efficiently

 \[
 \text{reasoning from } Q' \cup KB \text{ easier}
 \]

- When are two queries equivalent?

 - If $Q \cup KB$ and $Q' \cup KB$ have the same meaning

 \[
 \text{not quite what we want — knowledge-base dependent}
 \]

 - If $Q \cup KB$ and $Q' \cup KB$ have the same meaning for every knowledge base KB

 \[
 \text{better — knowledge-base independent}
 \]
Towards modular logic programming

Equivalence of programs

P and Q are equivalent if they have the same models

Nonmonotonic equivalence of programs

P and Q are stable-equivalent if they have the same stable models
Towards modular logic programming

Equivalence of programs

- \(P \) and \(Q \) are equivalent if they have the same models

Nonmonotonic equivalence of programs

- \(P \) and \(Q \) are stable-equivalent if they have the same stable models
Towards modular logic programming

Equivalence for replacement

- **Equivalence for replacement** — for every program R, programs $P \cup R$ and $Q \cup R$ have the same stable models

- Commonly known as **strong equivalence**

 Lifschitz, Pearce, Valverde 2001; Lin 2002; Turner 2003; Eiter, Fink 2003; Eiter, Fink, Tompits, Woltran, 2005; T 2006; Woltran 2008

- Different than equivalence

 - $\{p \leftarrow not q\}$ and $\{q \leftarrow not p\}$
 - The same models but different meaning

- Different than stable-equivalence

 - $P = \{p\}$ and $Q = \{p \leftarrow not q\}$
 - The same stable models; $\{p\}$ is the only stable model in each case
 - But, $P \cup \{q\}$ and $Q \cup \{q\}$ have different stable models! ($\{p, q\}$ and $\{q\}$, respectively)
When are two programs strongly equivalent?

Se-model characterization

- A pair \((X, Y)\) of sets of atoms is an se-model of a program \(P\) if
 - \(X \subseteq Y\)
 - \(Y \models P\)
 - \(X \models P^Y\)
- \(SE(P)\) set of se-models of \(P\)
- Logic programs \(P\) and \(Q\) are strongly equivalent iff they have the same se-models \((SE(P) = SE(Q))\)
 - A similar concept characterizes strong equivalence of default theories
 - *Turner 2003*
When are two programs strongly equivalent?

Lemma 1: \(SE(P) = SE(Q) \implies StM(P) = StM(Q) \)

- \(Y \in StM(P) \implies Y \models P \) and \(Y \models P^Y \)
- \(\implies (Y, Y) \in SE(P) \implies (Y, Y) \in SE(Q) \)
- \(\implies Y \models Q^Y \)
- If \(Z \subseteq Y \) and \(Z \models Q^Y \) \(\implies (Z, Y) \in SE(Q) \)
- \(\implies (Z, Y) \in SE(P) \)
- \(\implies Z \models P^Y \implies Z = Y \) (as \(Y = LM(P^Y) \))
- \(\implies Y = LM(Q^Y) \implies Y \in StM(Q) \)
When are two programs strongly equivalent?

Lemma 2: \(SE(P \cup R) = SE(P) \cap SE(R) \)

- \((X, Y) \in SE(P \cup R) \text{ iff}\)
- \(X \subseteq Y \text{ and } Y \models P \cup R \text{ and } X \models (P \cup R)^Y = P^Y \cup R^Y \text{ iff}\)
- \(X \subseteq Y \text{ and } (Y \models P \text{ and } Y \models R) \text{ and } (X \models P^Y \text{ and } X \models R^Y) \text{ iff}\)
- \((X \subseteq Y, Y \models P, X \models P^Y), \text{ and}\)
 \((X \subseteq Y, Y \models R, X \models R^Y) \text{ iff}\)
- \((X, Y) \in SE(P) \text{ and } (X, Y) \in SE(R) \text{ iff}\)
- \((X, Y) \in SE(P) \cap SE(R) \)
When are two programs strongly equivalent?

SE(P) = SE(Q) ⇒ P and Q are strongly equivalent

- By Lemma 2, for every R:
 \[SE(P \cup R) = SE(P) \cap SE(R) = SE(Q) \cap SE(R) = SE(PQ \cup R) \]
- By Lemma 1, \(StM(P \cup R) = StM(Q \cup R) \)

P and Q are strongly equivalent ⇒ SE(P) = SE(Q)

- Let \((X, Y) \in SE(P) \setminus SE(Q)\):
 \((X, Y) \in SE(P)\) and \((X, Y) \notin SE(Q)\)
 \[\Rightarrow Y \models P^Y \Rightarrow Y = LM(P^Y \cup Y) \]
- Since \(P^Y \cup Y = (P \cup Y)^Y \), \(Y = LM((P \cup Y)^Y) \) \(\Rightarrow Y \in StM(P \cup Y) \)
 \[\Rightarrow Y \in StM(Q \cup Y) \Rightarrow Y \models Q \]
- \(\Rightarrow X \not\models Q^Y \)
When are two programs strongly equivalent?

\[SE(P) = SE(Q) \implies P \text{ and } Q \text{ are strongly equivalent} \]

- By Lemma 2, for every \(R \):
 \[SE(P \cup R) = SE(P) \cap SE(R) = SE(Q) \cap SE(R) = SE(PQ \cup R) \]

- By Lemma 1, \(StM(P \cup R) = StM(Q \cup R) \)

\[P \text{ and } Q \text{ are strongly equivalent} \implies SE(P) = SE(Q) \]

- Let \((X, Y) \in SE(P) \setminus SE(Q)\): \((X, Y) \in SE(P)\) and \((X, Y) \notin SE(Q)\)
 \[\implies Y \models P^Y \implies Y = LM(P^Y \cup Y) \]

- Since \(P^Y \cup Y = (P \cup Y)^Y \), \(Y = LM((P \cup Y)^Y) \implies Y \in StM(P \cup Y) \)
 \[\implies Y \in StM(Q \cup Y) \implies Y \models Q \]

\[\implies X \not\models Q^Y \]
When are two programs strongly equivalent?

\[(X, Y) \in SE(P), (X, Y) \not\in SE(Q), Y \models Q, X \not\models Q^Y\]

- Define \(R = X \cup \{y \leftarrow y' \mid y, y' \in Y \setminus X\}\)
- \(\Rightarrow Y \models Q \cup R\) and \(Y \models (Q \cup R)^Y\)
- Let \(Z \subseteq Y\) st: \(Z \models (Q \cup R)^Y\) \(\Rightarrow Z \models Q^Y \cup R\)
- \(\Rightarrow Z \models Q^Y\) \(\Rightarrow X \neq Z\)
- Since \(Z \models R\), \(X \subseteq Z\) \(\Rightarrow \exists y \in Y \setminus X\) st: \(y \in Z\)
- Since \(Z \models R\), \(Y \setminus X \subseteq Z\)
- \(\Rightarrow Y \subseteq Z\) \(\Rightarrow Z = Y\)
- \(\Rightarrow Y \in StM(Q \cup R)\) \(\Rightarrow Y \in StM(P \cup R)\)
- \(\Rightarrow Y = LM(P \cup R)^Y\)
- Since \(X \models P^Y \cup R = (P \cup R)^Y\), \(X = Y\)
- \(\Rightarrow Y \not\models Q^Y\) \(\Rightarrow Y \not\models Q\), a contradiction
An interesting variant

Uniform equivalence

- Programs P and Q are uniformly equivalent if for every set D of facts (rules with empty body) $P \cup D$ and $Q \cup D$ have the same stable models
- Relevant for DB query optimization
- Different than other types of equivalence discussed here
When are two programs uniformly equivalent?

Se-model characterization

- Programs P and Q are uniformly equivalent iff
 - for every $Y \subseteq At$, Y is a model of P if and only if Y is a model of Q
 - for every $(X, Y) \in SE(P)$ such that $X \subseteq Y$, there is $U \subseteq At$ such that $X \subseteq U \subseteq Y$ and $(U, Y) \in SE(Q)$
 - for every $(X, Y) \in SE(Q)$ such that $X \subseteq Y$, there is $U \subseteq At$ such that $X \subseteq U \subseteq Y$ and $(U, Y) \in SE(P)$
When are two programs uniformly equivalent?

Ue-model characterization

- A pair \((X, Y)\) of sets of atoms is a \textit{ue-model} of a program \(P\) if it is an se-model of \(P\) and
- For every se-model \((X', Y)\) such that \(X \subseteq X'\), \(X' = X\) or \(X' = Y\)
- \textbf{Finite} logic programs \(P\) and \(Q\) are uniformly equivalent \textit{iff} they have the same ue-models

\textit{Eiter and Fink, 2003}
Formulas

- **Base**: atoms and the symbol \bot ("false")
- **Connectives** \land, \lor and \rightarrow
- **Shortcuts**
 - $\neg F ::= F \rightarrow \bot$
 - $\top ::= \bot \rightarrow \bot$
 - $F \leftrightarrow G ::= (F \rightarrow G) \land (G \rightarrow F)$
General logic programs

Positive and negative occurrences of atoms in formulas

- An occurrence of a in F is **positive**, if the # of implications with this occurrence of a in antecedent is even
- Otherwise, it is **negative**
- An occurrence of a in F is **strictly positive** if no implication contains this occurrence of a in the antecedent
 - $\neg F$ (that is, $F \rightarrow \bot$) has no strict occurrences of any atom.
- A **head** atom (of a formula) an atom with at least one strictly positive occurrence
- In $(\neg p \rightarrow q) \rightarrow (p \lor \neg q)$:
 - the first occurrence of p is negative
 - the second occurrence of p is strictly positive
 - both occurrences of q are negative
Stable-model semantics

Reduct of a formula F with respect to a set X of atoms

- The formula F^X obtained by replacing in F each maximal subformula of F that is not satisfied by X with \bot

Example: $F = (\neg p \rightarrow q) \land (\neg q \rightarrow p)$ and $X = \{p\}$

- $\neg p = p \rightarrow \bot$, and $X \models \neg p \rightarrow q$
- Thus: $\neg p$ is a maximal subformula not satisfied by X
- $\neg q = q \rightarrow \bot$, $X \not\models q$, $X \models \neg q$
- Thus, q is a maximal subformula not satisfied by X
- Thus: $F^X = (\bot \rightarrow q) \land ((\bot \rightarrow \bot) \rightarrow p)$
- Classically equivalent to p
Stable-model semantics

Reduct of a formula F with respect to a set X of atoms

- The formula F^X obtained by replacing in F each maximal subformula of F that is not satisfied by X with \bot

Example: $F = (\neg p \rightarrow q) \land (\neg q \rightarrow p)$ and $X = \{p\}$

- $\neg p = p \rightarrow \bot$, and $X \models \neg p \rightarrow q$
- Thus: $\neg p$ is a maximal subformula not satisfied by X
- $\neg q = q \rightarrow \bot$, $X \not\models q$, $X \models \neg q$
- Thus, q is a maximal subformula not satisfied by X
- Thus: $F^X = (\bot \rightarrow q) \land ((\bot \rightarrow \bot) \rightarrow p)$
- Classically equivalent to p
Stable-model semantics

To facilitate computation of the reduct

- $\bot^X = \bot$
- For a an atom, if $a \in X$, $a^X = a$; otherwise, $a^X = \bot$
- If $X \models F \circ G$, $(F \circ G)^X = F^X \circ G^X$; otherwise, $(F \circ G)^X = \bot$ (\circ stands for any of \land, \lor, \to)
- If $X \models F$, $(\neg F)^X = \bot$; otherwise, $(\neg F)^X = (F \to \bot) = (\bot \to \bot) = \top$
Stable-model semantics

Definition

A set X of atoms is a *stable model* of a formula F if X is a minimal model of F.

Example: $F = (\neg p \rightarrow q) \land (\neg q \rightarrow p)$, $X = \{p\}$

- $F^X = (\bot \rightarrow q) \land ((\bot \rightarrow \bot) \rightarrow p)$ (which is equivalent to p)
- X is a minimal model of F^X, so a stable model.

Example: $F = (\neg p \rightarrow q) \land (\neg q \rightarrow p)$, $X = \{p, q\}$

- $F^X = (\bot \rightarrow q) \land (\bot \rightarrow p)$ (which is equivalent to \top)
- X is not a minimal model of F^X, so not a stable model.
Stable-model semantics

Definition

- A set X of atoms is a **stable model** of a formula F if X is a minimal model of F

Example: $F = (\neg p \rightarrow q) \land (\neg q \rightarrow p)$, $X = \{p\}$

- $F^X = (\bot \rightarrow q) \land ((\bot \rightarrow \bot) \rightarrow p)$ (which is equivalent to p)
- X is a minimal model of F^X, so a stable model

Example: $F = (\neg p \rightarrow q) \land (\neg q \rightarrow p)$, $X = \{p, q\}$

- $F^X = (\bot \rightarrow q) \land (\bot \rightarrow p)$ (which is equivalent to \top)
- X is not a minimal model of F^X, so not a stable model
Stable-model semantics

Definition

- A set X of atoms is a **stable model** of a formula F if X is a minimal model of F.

Example: $F = (\neg p \rightarrow q) \land (\neg q \rightarrow p)$, $X = \{p\}$

- $F^X = (\bot \rightarrow q) \land ((\bot \rightarrow \bot) \rightarrow p)$ (which is equivalent to p)
- X is a minimal model of F^X, so a stable model

Example: $F = (\neg p \rightarrow q) \land (\neg q \rightarrow p)$, $X = \{p, q\}$

- $F^X = (\bot \rightarrow q) \land (\bot \rightarrow p)$ (which is equivalent to \top)
- X is not a minimal model of F^X, so not a stable model
Stable-model semantics

Properties

- If X is a stable model of a formula F then X consists of head atoms of F
- A least model of a Horn formula (conjunction of definite Horn clauses given as implications) is a unique stable model of the theory
- A set X is a stable model of a formula $F \land \neg G$ if and only if X is a stable model of F and $X \models \neg G$
Strong equivalence

- Formulas F and F' are strongly equivalent if for every formula G, $F \land G$ and $F' \land G$ have the same stable models.
- (X, Y) is an se-model of F if $Y \subseteq \text{At}$, $X \subseteq Y$, $Y \models F$ and $X \models F^Y$.
- The following conditions are equivalent:
 - Formulas F and G are strongly equivalent.
 - For every set X of atoms, F^X and G^X are equivalent in classical logic.
 - F and G have the same se-models.
 - F and G are equivalent in the logic here-and-there (details later).
Splitting

- Let F and G be formulas such that F does not contain any of the head atoms of G.
- A set X is a stable model of $F \land G$ iff there is a stable model Y of F such that X is a stable model of $G \land \land Y$.
Multivalued semantics

2-input one-step operator Φ_P

- Given two interpretations I and J
 \[
 \Phi_P(I, J) = \{ \text{hd}(r) : r \in P, \ bd^+(r) \subseteq I, \ bd^-(r) \cap J = \emptyset \}\n \]
- $\Phi_P(\cdot, J)$ monotone
 - $I \subseteq I' \Rightarrow \Phi_P(I, J) \subseteq \Phi_P(I', J)$
- $\Phi_P(I, \cdot)$ antimonotone
 - $J \subseteq J' \Rightarrow \Phi_P(I, J') \subseteq \Phi_P(I, J)$
- $\Phi_P(I, I) = \mathcal{T}_P(I)$
Multivalued semantics: 4-val interpretations

Pairs \((I, J)\) of 2-val interpretations

- Atoms in \(I\) are **known** and atoms in \(J\) are **possible**
- Give rise to 4 truth values
 - If \(a \in I \cap J\), \(a\) is **true**
 - If \(a \notin I \cup J\), \(a\) is **false**
 - If \(a \in J \setminus I\), \(a\) is **unknown**
 - If \(a \in I \setminus J\), \(a\) is **overdefined** (inconsistent)
- \((I, J)\) **consistent** if \(I \subseteq J\)

Alternatively

- Functions \(val\) from \(At\) to \(\{t, f, u, i\}\)
- \(I := \{a \mid val(a) = t \text{ or } val(a) = i\}\)
- \(J := \{a \mid val(a) = t \text{ or } val(a) = u\}\)
Multivalued semantics: 4-val interpretations

<table>
<thead>
<tr>
<th>Pairs (I, J) of 2-val interpretations</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Atoms in I are known and atoms in J are possible</td>
</tr>
<tr>
<td>▶ Give rise to 4 truth values</td>
</tr>
<tr>
<td>▶ If $a \in I \cap J$, a is true</td>
</tr>
<tr>
<td>▶ If $a \notin I \cup J$, a is false</td>
</tr>
<tr>
<td>▶ If $a \in J \setminus I$, a is unknown</td>
</tr>
<tr>
<td>▶ If $a \in I \setminus J$, a is overdefined (inconsistent)</td>
</tr>
<tr>
<td>▶ (I, J) consistent if $I \subseteq J$</td>
</tr>
</tbody>
</table>

Alternatively

<table>
<thead>
<tr>
<th>Functions val from At to ${t, f, u, i}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ $I := {a \mid val(a) = t \text{ or } val(a) = i}$</td>
</tr>
<tr>
<td>▶ $J := {a \mid val(a) = t \text{ or } val(a) = u}$</td>
</tr>
</tbody>
</table>
Multivalued semantics

4-val one-step provability operator

- \(\mathcal{I}_P(I, J) = (\Phi_P(I, J), \Phi_P(J, I)) \)

- Precision (information) ordering:
 \((I, J) \leq_i (I', J') \) - if \(I \subseteq I' \) and \(J' \subseteq J \)

- \(\mathcal{I}_P \) monotone wrt \(\leq_i \)

- \((I, J) \leq_i (I', J') \) \(\Rightarrow \) \(\mathcal{I}_P(I, J) \leq_i \mathcal{I}_P(I', J') \)
 - We have: \(I \subseteq I' \) and \(J' \subseteq J \)
 - \(\Phi_P(I, J) \subseteq \Phi_P(I', J) \) (monotonicity of \(\Phi_P(\cdot, J) \))
 - \(\Phi_P(I, J') \subseteq \Phi_P(I, J) \) (antimonotonicity of \(\Phi_P(I, \cdot) \))

\((I, J)\) consistent \(\Rightarrow \) \(\mathcal{I}_P(I, J)\) consistent

- Let \(I \subseteq J \)
 - \(\Rightarrow \) \(\Phi_P(I, J) \subseteq \Phi_P(I, I) \subseteq \Phi_P(J, I) \)
Multivalued semantics

4-val one-step provability operator

- \(\mathcal{I}_P(I, J) = (\Phi_P(I, J), \Phi_P(J, I)) \)
- Precision (information) ordering:
 \((I, J) \leq_i (I', J') \) - if \(I \subseteq I' \) and \(J' \subseteq J \)
- \(\mathcal{I}_P \) monotone wrt \(\leq_i \)
- \((I, J) \leq_i (I', J') \) \(\Rightarrow \) \(\mathcal{I}_P(I, J) \leq_i \mathcal{I}_P(I', J') \)
 - We have: \(I \subseteq I' \) and \(J' \subseteq J \)
 - \(\Phi_P(I, J) \subseteq \Phi_P(I', J) \) (monotonicity of \(\Phi_P(\cdot, J) \))
 - \(\Phi_P(I, J') \subseteq \Phi_P(I, J) \) (antimonotonicity of \(\Phi_P(I, \cdot) \))

\((I, J) \) consistent \(\Rightarrow \) \(\mathcal{I}_P(I, J) \) consistent

- Let \(I \subseteq J \)
- \(\Rightarrow \) \(\Phi_P(I, J) \subseteq \Phi_P(I, I) \subseteq \Phi_P(J, I) \)
4-val supported models

Recall: \(\mathcal{I}_P(I, J) = (\Phi_P(I, J), \Phi_P(J, I)) \) and \(T_P(I) = \Phi_P(I, I) \)

- \((I, J)\) is a 4-val supported model of \(P \) if \((I, J) = \mathcal{I}_P(I, J)\)
- \((I, I)\) is a 4-val supported model \textit{iff} \(I \) is a supported model
 - \((I, I) = \mathcal{I}_P(I, I) \text{ iff } (I, I) = (\Phi_P(I, I), \Phi_P(I, I)) = (T_P(I), T_P(I))\)
- The least 4-val supported model exists!
 - \(\mathcal{I}_P \) is monotone and so has the least (wrt \(\leq_i \)) fixpoint
 - Moreover, it is consistent!
- Kripke-Kleene (Fitting) fixpoint or semantics: \((KK^t(P), KK^p(P))\)
4-val Gelfond-Lifschitz operator

\[\mathcal{GL}_P(I, J) = (\mathcal{GL}_P(J), \mathcal{GL}(I)) \]

Also monotone wrt \(\leq_i \)

\((I, J)\) is a 4-val stable model if \(\mathcal{GL}_P(I, J) = (I, J) \)

\(M \) is a stable model of \(P \) if and only if \((M, M)\) is a 4-val stable model of \(P \)

The least fixpoint of \(\mathcal{GL} \) exists!! (by monotonicity)

And is consistent

- if \(I \subseteq J \) then: \(\mathcal{GL}_P(J) \subseteq \mathcal{GL}(I) \) (antimonotonicity)

Well-founded fixpoint (semantics): \((WF^t(P), WF^p(P))\)

For every stable model \(M \) of \(P \)

\[WF^t(P) \subseteq M \subseteq WF^p(P) \]
Syntax

- **Connectives:** \(\bot, \lor, \land, \rightarrow \)
- **Formulas** - standard extension of atoms by means of connectives
 - \(\neg \varphi \) - shorthand for \(\varphi \rightarrow \bot \)
 - \(\varphi \leftrightarrow \psi \) - shorthand for \((\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi) \)
- **Language** \(\mathcal{L}_{ht} \)
Why important?

- Disjunctive logic programs — special theories in L_{ht}
 - $a_1 | \ldots | a_k \leftarrow b_1, \ldots, b_m, \text{not } c_1, \ldots, \text{not } c_n$
 - $b_1 \land \ldots \land b_m \land \neg c_1 \land \ldots \land \neg c_n \rightarrow c_1 \lor \ldots \lor c_n$

- General logic programs (Ferraris, Lifschitz) = theories in L_{ht}
 - answer-set semantics extends to general logic programs
 - equilibrium models in logic ht
 - the two coincide!
Entailment in logic here-and-there

Ht-interpretations

- Pairs $\langle H, T \rangle$, where $H \subseteq T$ are sets of atoms
- Kripke interpretations with two worlds “here” and “there”
 - H determines the valuation for “here”
 - T determines the valuation for “there”

Kripke-model satisfiability in the world “here” \models_{ht}

- $\langle H, T \rangle \not\models_{ht} \bot$
- $\langle H, T \rangle \models_{ht} p$ if $p \in H$ (for atoms only)
- $\langle H, T \rangle \models_{ht} \varphi \land \psi$ and $\langle H, T \rangle \models_{ht} \varphi \lor \psi$ — standard recursion
- $\langle H, T \rangle \models_{ht} \varphi \rightarrow \psi$ if
 - $\langle H, T \rangle \not\models_{ht} \varphi$ or $\langle H, T \rangle \models_{ht} \psi$
 - $T \models \varphi \rightarrow \psi$ (in standard propositional logic).
Entailment in logic here-and-there

Ht-interpretations

- Pairs \(\langle H, T \rangle \), where \(H \subseteq T \) are sets of atoms
- Kripke interpretations with two worlds “here” and “there”
 - \(H \) determines the valuation for “here”
 - \(T \) determines the valuation for “there”

Kripke-model satisfiability in the world “here” \(\models_{ht} \)

- \(\langle H, T \rangle \not \models_{ht} \bot \)
- \(\langle H, T \rangle \models_{ht} p \) if \(p \in H \) (for atoms only)
- \(\langle H, T \rangle \models_{ht} \varphi \land \psi \) and \(\langle H, T \rangle \models_{ht} \varphi \lor \psi \) — standard recursion
- \(\langle H, T \rangle \models_{ht} \varphi \rightarrow \psi \) if
 - \(\langle H, T \rangle \not \models_{ht} \varphi \) or \(\langle H, T \rangle \models_{ht} \psi \)
 - \(T \models \varphi \rightarrow \psi \) (in standard propositional logic).
Entailment in logic here-and-there

ht-model, ht-validity, ht-equivalence

- If $\langle H, T \rangle \models_{ht} \varphi$ - $\langle H, T \rangle$ is an **ht-model** of φ
- φ is **ht-valid** if for every **ht-model** $\langle H, T \rangle$, $\langle H, T \rangle \models \varphi$
- φ and ψ are **ht-equivalent** if they have the same **ht**-models

- φ and ψ are ht-equivalent iff $\varphi \leftrightarrow \psi$ is **ht-valid**
Proof theory

Natural deduction — sequents and rules

- Sequents $\Gamma \Rightarrow \varphi$ — “φ under the assumptions Γ”
- Introduction rules for \land, \lor, \rightarrow
 \[
 \frac{\Gamma \Rightarrow \varphi \quad \Delta \Rightarrow \psi}{\Gamma, \Delta \Rightarrow \varphi \land \psi}
 \]
- Elimination rules for \land, \lor, \rightarrow
 \[
 \frac{\Gamma \Rightarrow \varphi \quad \Delta \Rightarrow \varphi \rightarrow \psi}{\Gamma, \Delta \Rightarrow \psi}
 \]
- Contradiction
 \[
 \frac{\Gamma \Rightarrow \bot}{\Gamma \Rightarrow \varphi}
 \]
- Weakening
 \[
 \frac{\Gamma \Rightarrow \varphi}{\Gamma' \Rightarrow \varphi}
 \quad \text{for all Γ', Γ s.t. $\Gamma' \subseteq \Gamma$}
 \]
Axiom schemas

- **(AS1)** \(\varphi \Rightarrow \varphi \)
- **(AS2)** \(\Rightarrow \varphi \lor \neg \varphi \) (Excluded Middle)
- **(AS2')** \(\Rightarrow \neg \varphi \lor \neg \neg \varphi \) (Weak EM)
- **(AS2'')** \(\Rightarrow \varphi \lor (\varphi \rightarrow \psi) \lor \neg \psi \) (in between (AS2) and (AS2'))

Logics through natural deduction

- Propositional logic: (AS1), (AS2)
- Intuitionistic logic: (AS1)
- Logic here-and-there: (AS1), (AS2'')
Proof theory

Axiom schemas

<table>
<thead>
<tr>
<th>Axiom</th>
<th>Formula</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(AS1)</td>
<td>$\varphi \Rightarrow \varphi$</td>
<td></td>
</tr>
<tr>
<td>(AS2)</td>
<td>$\Rightarrow \varphi \lor \neg \varphi$</td>
<td>(Excluded Middle)</td>
</tr>
<tr>
<td>(AS2′)</td>
<td>$\Rightarrow \neg \varphi \lor \neg \neg \varphi$</td>
<td>(Weak EM)</td>
</tr>
<tr>
<td>(AS2″)</td>
<td>$\Rightarrow \varphi \lor (\varphi \rightarrow \psi) \lor \neg \psi$</td>
<td>(in between (AS2) and (AS2′))</td>
</tr>
</tbody>
</table>

Logics through natural deduction

- Propositional logic: (AS1), (AS2)
- Intuitionistic logic: (AS1)
- Logic here-and-there: (AS1),(AS2″)
Bringing the two together

Soundness and completeness

- A formula is a theorem of ht if and only if it is ht-valid

In particular

- φ and ψ are ht-equivalent iff $\Rightarrow \varphi \leftrightarrow \psi$ is a theorem of ht
Bringing the two together

Soundness and completeness

- A formula is a theorem of ht if and only if it is ht-valid

In particular

- φ and ψ are ht-equivalent iff $\Rightarrow \varphi \leftrightarrow \psi$ is a theorem of ht
Equilibrium models, Pearce 1997

- \(\langle T, T \rangle \) is an equilibrium model of a set \(A \) of formulas if
 - \(\langle T, T \rangle \models_{ht} A \), and
 - for every \(H \subseteq T \) such that \(\langle H, T \rangle \models_{ht} A \), \(H = T \)

Key connection

- A set \(M \) of atoms is an answer set of a disjunctive logic program \(P \) (general logic program \(P \)) if and only if \(\langle M, M \rangle \) is an equilibrium model for \(P \)
Equilibrium models, Pearce 1997

\(\langle T, T \rangle \) is an \emph{equilibrium model} of a set \(A \) of formulas if

1. \(\langle T, T \rangle \models_{ht} A \), and
2. for every \(H \subseteq T \) such that \(\langle H, T \rangle \models_{ht} A \), \(H = T \)

Key connection

A set \(M \) of atoms is an answer set of a disjunctive logic program \(P \) (general logic program \(P \)) if and only if \(\langle M, M \rangle \) is an equilibrium model for \(P \)
Let P and Q be two (general) programs. The following conditions are equivalent:

- P and Q are strongly equivalent
- P and Q are ht-equivalent
- P and Q have the same ht-models
- $P \leftrightarrow Q$ is ht-valid
- $\Rightarrow P \leftrightarrow Q$ is a theorem of ht
Algebraic approach
The problem

Complex landscape of nonmonotonicity

- Multitude of formalisms
- Different intuitions
- Different languages
- Different semantics
- Complexity

Needed!

- Unifying abstract foundation
The problem

Complex landscape of nonmonotonicity

- Multitude of formalisms
- Different intuitions
- Different languages
- Different semantics
- Complexity

Needed!

- Unifying abstract foundation
A triumph of universal algebra

Basic lesson for this segment

- Major nonmonotonic systems
 - logic programming
 - default logic
 - autoepistemic logics

 can be given a unified algebraic treatment

- Each system can be assigned the same family of semantics

- Key concepts: lattices and bilattices, operators and fixpoints

- Key ideas: approximating operators and stable operators

- Key tool: Knaster-Tarski Theorem
Overview of approach

Generalize Fitting’s work on logic programming

- Central role of 4-valued van Emden-Kowalski operator \mathcal{T}_P
- Derived stable operator, Ψ'_P
- 2-valued and 3-valued supported models and Kripke-Kleene semantics described by fixpoints of \mathcal{T}_P
- 2-valued and 3-valued stable models and well-founded semantics described by fixpoints of Ψ'_P
Key definitions, some notation

- $\langle L, \leq \rangle$
 - L is a nonempty set
 - \leq is a partial order such that every two lattice elements have lub (join) and glb (meet)
- Elements of L express
 - degree of truth
 - measure of knowledge
- \leq - order of increased truth or knowledge
- Complete lattices (both bounds defined for all sets)
- \bot, \top
Lattices - examples

Lattice \(\text{TWO} \)
- \(\{f, t\} \)
- \(f \leq t \)

Lattice \(\mathcal{A}_2 \)
- set of all 2-valued interpretations
- componentwise extension of the ordering from \(\text{TWO} \)

Lattice \(\mathcal{W} \)
- family of sets of 2-valued interpretations
- \(W_1 \subseteq W_2 \) if \(W_2 \subseteq W_1 \)
Lattices - examples

Lattice \(\mathcal{TW} \)
- \(\{ f, t \} \)
- \(f \leq t \)

Lattice \(\mathcal{A}_2 \)
- set of all 2-valued interpretations
- componentwise extension of the ordering from \(\mathcal{TW} \)

Lattice \(\mathcal{W} \)
- family of sets of 2-valued interpretations
- \(W_1 \subseteq W_2 \) if \(W_2 \subseteq W_1 \)
Lattices - examples

Lattice \mathcal{TWO}

- $\{f, t\}$
- $f \leq t$

Lattice \mathcal{A}_2

- set of all 2-valued interpretations
- componentwise extension of the ordering from \mathcal{TWO}

Lattice \mathcal{W}

- family of sets of 2-valued interpretations
- $W_1 \subseteq W_2$ if $W_2 \subseteq W_1$
That’s what it’s all about!

- Truth or knowledge can be revised
- Revisions are described by operators on lattices
- Fixpoints — states of truth or knowledge that cannot be revised
An operator O is monotone if $x \leq y$ implies $O(x) \leq O(y)$.

Knaster-Tarski Theorem: a monotone operator on a complete lattice has a least fixpoint.
Antimonotone operators

- An operator O is antimonotone if $x \leq y$ implies $O(y) \leq O(x)$
- If O is antimonotone then O^2 is monotone:
 \[
 x \leq y \implies O(y) \leq O(x) \implies O^2(x) \leq O^2(y)
 \]
- Oscillating pair: (x, y) is an oscillating pair for an operator O if $O(x) = y$ and $O^2(x) = x$
- Antimonotone operator O has an extreme oscillating pair
 \[
 (\text{lfp}(O^2), \text{gfp}(O^2))
 \]
Approximations and bilattices

Key definitions, some notation

- A pair \((x, y)\) approximates an element \(z\) if \(x \leq z \leq y\)
- Orderings of approximations:
 - information (or precision) ordering: \((x_1, y_1) \leq_i (x_2, y_2)\) iff \(x_1 \leq x_2\) and \(y_2 \leq y_1\)
 - truth ordering: \((x_1, y_1) \leq_t (x_2, y_2)\) iff \(x_1 \leq x_2\) and \(y_1 \leq y_2\)
- Bilattice \(\langle L^2, \leq_i, \leq_t \rangle\)
- A pair \((x, y)\) is consistent if \(x \leq y\), and inconsistent, otherwise
- An element \((x, y)\) is complete if \(x = y\)
Bilattices - examples

Bilattice **FOUR**

- set of all pairs of 2-valued interpretations (identified with 4-valued interpretations)
- componentwise extension of the orderings from **FOUR**
Bilattices - examples

Bilattice FOUR

<table>
<thead>
<tr>
<th>≤i</th>
<th>(t, f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f, f)</td>
<td>(t, t)</td>
</tr>
<tr>
<td>(f, t)</td>
<td></td>
</tr>
</tbody>
</table>

Bilattice A_4

- set of all pairs of 2-valued interpretations (identified with 4-valued interpretations)
- componentwise extension of the orderings from $FOUR$
Bilattices - examples, cont’d

Bilattice \(\mathcal{B} \)

- Family of pairs of sets of 2-valued interpretations
- *Belief pairs*
 - \((P_1, S_1) \sqsubseteq_i (P_2, S_2)\) if \(P_2 \subseteq P_1\) and \(S_1 \subseteq S_2\)
 - \((P_1, S_1) \sqsubseteq_t (P_2, S_2)\) if \(P_2 \subseteq P_1\) and \(S_2 \subseteq S_1\)
Approximating operators

Key definitions, some notation

- $A : L^2 \to L^2$ approximates $O : L \to L$ if
 - $A(x, x) = (O(x), O(x))$
 - A is \leq_i-monotone
 - A is symmetric: $A^1(x, y) = A^2(y, x)$, where $A(x, y) = (A^1(x, y), A^2(x, y))$

Properties

- Approximating operators are consistent
- Complete fixpoints of A correspond to fixpoints of O
- Every fixpoint of A is approximated by the least fixpoint of A: Kripke-Kleene fixpoint of A
- Kripke-Kleene fixpoint of an approximating operator is consistent
Approximating operators

Key definitions, some notation

- $A : L^2 \rightarrow L^2$ approximates $O : L \rightarrow L$ if
 - $A(x, x) = (O(x), O(x))$
 - A is \leq_i-monotone
 - A is symmetric: $A^1(x, y) = A^2(y, x)$, where $A(x, y) = (A^1(x, y), A^2(x, y))$

Properties

- Approximating operators are consistent
- Complete fixpoints of A correspond to fixpoints of O
- Every fixpoint of A is approximated by the least fixpoint of A: Kripke-Kleene fixpoint of A
- Kripke-Kleene fixpoint of an approximating operator is consistent
Stable operators

- If $A : L^2 \to L^2$ is \leq_i-monotone then $A^1(\cdot, y)$ and $A^2(x, \cdot)$ are monotone
- For \leq_i-monotone operator $A : L^2 \to L^2$ define:
 \[
 C_A^l(y) = \text{lfp}(A^1(\cdot, y)) \quad \text{and} \quad C_A^u(x) = \text{lfp}(A^2(x, \cdot))
 \]
- Since A is symmetric, $C_A^l = C_A^u = C_A$
- Stable operator for A:
 \[
 C_A(x, y) = (C_A(y), C_A(x))
 \]
- Stable fixpoints (relative to C_A)
- \leq_i-least fixpoint of C_A — well-founded (WF) fixpoint of A
Properties of stable operators

All quite easy to prove, in fact

- C_A is antimonotone
- C_A is \leq_i-monotone and \leq_t-antimonotone
- Fixpoints of C_A are \leq_t-minimal fixpoints of A
- Complete fixpoints of C_A correspond to fixpoints of C_A
- Complete fixpoints of C_A are fixpoints of O
- K-K fixpoint of $A \leq_i$ WF fixpoint of A
Logic programming — case study 1

Fitting

- Lattice \mathcal{A}_2, bilattice \mathcal{A}_4
- Operators associated with program P
 - 2-valued van Emden-Kowalski operator T_P
 - Its approximation: 4-valued van Emden-Kowalski operator \mathcal{I}_P
 - 2-valued stable operator (Gelfond-Lifschitz operator GL_P)
 - Stable operator C_P of \mathcal{I}_P (operator Ψ_P' of Przymusinski)
- Semantics
 - Supported models: fixpoints of the operator \mathcal{I}_P (T_P)
 - Kripke-Kleene semantics: least fixpoint of \mathcal{I}_P
 - Stable models: fixpoints of the operator C_P (C_P)
 - Well-founded semantics: least fixpoint of C_P
Logic programming explained

Central role of \mathcal{I}_P

\[\begin{array}{c}
\mathcal{I}_P \\
T_P \\
C_P \\
\end{array} \]
Truth assignment function $\mathcal{H}_{V,I}$

- For atom p: $\mathcal{H}_{V,I}(p) = I(p)$
- The boolean connectives — standard way
 - $\mathcal{H}_{V,I}(KF) = t$, if for every $J \in V$, $\mathcal{H}_{V,I}(F) = t$
 - $\mathcal{H}_{V,I}(KF) = f$, otherwise

AE models, expansions

- Moore’s operator $D_T: \mathcal{W} \rightarrow \mathcal{W}$
 $$D_T(V) = \{ I: \mathcal{H}_{V,I}(T) = t \}$$
- Fixpoints of D_T — autoepistemic models of T
- Autoepistemic models generate expansions
Truth assignment function $\mathcal{H}_{V,I}$

- For atom p: $\mathcal{H}_{V,I}(p) = I(p)$
- The boolean connectives — standard way
 - $\mathcal{H}_{V,I}(KF) = \text{t}$, if for every $J \in V$, $\mathcal{H}_{V,J}(F) = \text{t}$
 - $\mathcal{H}_{V,I}(KF) = \text{f}$, otherwise

AE models, expansions

- Moore’s operator $D_T : \mathcal{W} \rightarrow \mathcal{W}$

 $$D_T(V) = \{I : \mathcal{H}_{V,I}(T) = \text{t}\}$$

- Fixpoints of D_T — autoepistemic models of T
- Autoepistemic models generate expansions
The setting

- Lattice \mathcal{W}, bilattice \mathcal{B}
- $\mathcal{H}_{(V, V')}^4, I$
- Approximating operator for D_T — \mathcal{D}_T (DMT 98)

$$D_T(V, V') = (\{I : \mathcal{H}_{(V, V')}^4, I(T) \geq_t (f, t)\}, \{I : \mathcal{H}_{(V, V')}^4, I(T) \geq_t (t, f)\})$$

- Complete fixpoints of \mathcal{D}_T — autoepistemic models of T
- The least fixpoint of \mathcal{D}_T — Kripke-Kleene fixpoint
 - approximates all autoepistemic models of T
- The stable operator for \mathcal{D}_T: $C_T(V, V') = (C_T(V'), C_T(V))$
- What are the fixpoints of C_T?
Autoepistemic logic explained

Central role of D_T

Diagram:

D_T D_T

D_T C_T

C_T
Same setting as for AEL

- Lattice \(\mathcal{W} \), bilattice \(\mathcal{B} \)

- \(\mathcal{H}_V, l(\varphi) = I(\varphi) \), for every formula \(\varphi \)

- \(d = \frac{\alpha : \beta_1, \ldots, \beta_k}{\gamma} \)

- \(\mathcal{H}_V, l(d) = t \) iff
 - there is \(J \in V \) such that \(J(\alpha) = f \), or
 - there is \(i, 1 \leq i \leq k \) such that for every \(J \in V \), \(J(\beta_i) = f \), or
 - \(l(\gamma) = t \)

- Weak-extension operator \(E_\Delta \) (\(\Delta \) — default theory):
 \[
 E_\Delta(V) = \{ I \in \mathcal{A}_2 : \mathcal{H}_V, l(\Delta) = t \}
 \]

- Fixpoints of \(E_\Delta(V) \) — default models of weak extensions of \(\Delta \)
4-valued truth assignment, approximating operator

- $\mathcal{H}^4_{(V,V'),I}$
- Approximating operator for $E_\Delta \models E_\Delta$

$$E_\Delta(V, V') = (\{ I : \mathcal{H}^4_{(V,V'),I}(\Delta) \geq_t (f, t) \}, \{ I : \mathcal{H}^4_{(V,V'),I}(\Delta) \geq_t (t, f) \})$$

- Complete fixpoints of $E_\Delta \models$ models of weak extensions of Δ
- The least fixpoint of $E_\Delta \models$ Kripke-Kleene fixpoint
 - approximates all default models of weak extensions of Δ
Stable operator

- The stable operator for E_Δ:

 $C_\Delta (V, V') = (C_\Delta (V'), C_\Delta (V))$

- C_Δ — Guerreiro-Casanova operator Σ_Δ

- Fixpoints of C_Δ — default models of Reiter’s extensions

- Consistent fixpoints of C_Δ — stationary extensions by Przymusinski

- Well-founded fixpoint of E_Δ (least fixpoint of C_Δ — well-founded semantics of default logic by Baral and Subrahmanian)
Central role of \mathcal{E}_Δ
Strong parallels!

\[c \leftarrow a, \text{not } b \Rightarrow \frac{a \text{--} b}{c} \]
Connections

Strong parallels!

\[
\begin{align*}
T_P & \rightarrow C_P & E_\Delta & \rightarrow C_\Delta \\
C_P & \rightarrow T_P & C_\Delta & \rightarrow D_T \\
& & & C_T
\end{align*}
\]

\[
c \leftarrow a, \text{ not } b \quad \Rightarrow \quad \frac{a \rightarrow \neg b}{c}
\]

\[
\begin{align*}
\begin{array}{c}
\alpha : \beta \\
\gamma
\end{array} & \quad \Rightarrow \quad K\alpha \land \neg K\neg \beta \supset \gamma
\end{align*}
\]
Thank you!