
So, you want to generate your own sudoku? �Raphael Finkel Vitor Marek Mirek Truszzy�nskiAbstratThis paper is attempting to introdue the reader to the use ofdelarative tools suh as aspps or smodels to generate tabular numer-ial puzzles suh as sudoku.1 IntrodutionCellular puzzles take the form of ells whose values are onstrained byrules involving groups of ells. The puzzle starts with lues, whih areells that already possess their value. It is the pleasant task of the puzzleenthusiast to solve the puzzle by entering values in all the ells in a way thatsatis�es the onstraints. A well-formed puzzle has exatly one solution. Toassist the enthusiast, the puzzle may ontain a hint sequene, whih is asequene of ells that suggest the order in whih the enthusiast should be ableto omplete the puzzle. While the puzzles published in newspaper do notprovide assistane to the person solving the puzzle beyond providing (eitherat the same time, or later) a solution, it is possible to assist the person solvingthe puzzle in a subtler way, and we will disuss as we will disuss it in thebody of this paper.�Computer Siene Department, University of Kentuky. email: raphael j marek jmirek�s.uky.edy 1



This paper is a (urious) mixture of siene and a ookbook. On one hand,we will provide a rigorous desription of the puzzles of sudoku lass. To makeit even worse, we will present the unsuspeting reader with the introdutionto onstraint satisfation problems and then ast the problem of onstrutiongsudoku puzzles as a two-phase appliation of onstraint satisfation; �rst, to�nd a solution, and seond, to use the solution that was found and a ertainalgorithm for building a sudoku problem - out of that solution. Of ourse,nothing like this is done by hand. The omputer and its software (we willuse a lass of publily (and freely) available software alled solvers) produethe problem. The output of the solver requires an additional proessing; wewill omment on this issue as well.Here is the outline of our paper. First we will (gently) introdue thereader to the onept of ellular puzzles that we will disuss in the paper.Then, a heavy artillery starts, we will introdue the onstraint satisfationproblems and we will ast the tabular problems we fous on in this paperas onstraint satisfation problems. In this proess we will introdue ba-si onstraints that de�ne so-alled Euler's Latin Squares [DK74℄ that arenot yet a sudoku, but almost are. Then we introdue the additional on-straint that selets out of latin squares sudoku solutions, that is latin squaresthat satisfy the additional sudoku onstraint (namely that every one of ninequadrants (also alled setions) ontains every number in the range 1..9 ex-atly one.) To sare the reader more we formulate (but not prove) theproposition asserting orretness of our onstrution. At that stage of ourproeedings we know that the sudoku solutions an be obtained by runningsoftware apable of solving onstraint satisfation problems. But our goal2



is not to �nd sudoku solutions, but sudoku problems. We then formallyde�ne what a sudoku problem is and state (but not prove) formally, the ri-terion for a onstraint satisfation problem to be a sudoku problem. Two(entirely immaterial for a layperson) propositions give two di�erent repre-sentations and assert the orretness of that representation. But we willnot reate sudoku problems on ommonly available onstraint satisfationproblem software suh as ECLiPSe [WNS97℄, but use the representation of(�nite-domain) onstraint satisfation problems using something quite exotifor general publi (but known in some Computer Siene and also Combi-natorial Optimization irles) alled ardinality onstraints. Instead we will�rst formulate sudoku solutions as solutions to some system of ardinalityonstraints, and then we give an algorithm that allows for reating reason-ably hard sudoku problems via repeated appliation of solving a system ofardinality onstraints. The ardinality onstraints solvers are freely avail-able (one suh solver is due to the third author and his students and is alledaspps http://www.s.uky.edu/ai/aspps/. This is the software we use forbuilding sudoku solutions and problems. We save the reader the sare ofrevealing of what aspps is an aronim of. At that stage of our paper thereader an (with some small amount of programming, say in Perl [WS90℄or VB) produe a desription of a nie sudoku puzzle. One sript (it is notprovided, we need to keep something in our sleeve) transforms the output ofthe solver reating the sudoku problem into a familiar, partly �lled grid thatan be enjoyed by a person solving the puzzles. But now the question oursif all problems we reate will be equally diÆult. It turns out that the solvers(the software we use) have at least three di�erent modes for produing their3



solutions. Those modes an be used for di�erentiating among the diÆultyof sudoku problems. But this is not the end of our paper. We disuss severallasses of tabular problems related to sudoku. For instane, we an requirethat one or both diagonals in our puzzle has all entries di�erent. We mayrequire that the enters of quadrants house di�erent numbers. We may evenrequire both! We may want to hange the shape of piees in whih we parti-tion the basi grid - in the lassial sudoku we partition the grid into 3-by-3quares, but we do not have to. This leads to the generalization of sudoku tosituations where the grid is no longer 9-by-9. For instane we may have 8-by-8 grid, partition it into additional 8 subgrids (eah ontaining 8 ells) andrequire that besides of being a latin square, every subgrid also ontains eahnumber (in the range 1..8) exatly one. There is a wealth of generalizationsand the reader who musters patiene to read and understand this paper willhave an opportunity to produe her very own speial version of sudoku, orsudoku generalization. Finally, we omment on weakening the ondition thatevery row and olumn ontains ever number from prespei�ed range one.2 Classial sudoku puzzlesWe will onsider Sudoku puzzles [TFE05℄ as a typial ellular puzzle. Fig-ure 1 shows a sample Sudoku puzzle. The ells are arranged in a 9� 9 gridsubdivided into nine 3� 3 setions or quadrants. We say a set of 9 ells isomplete if the numbers 1 : : : 9 appear exatly one in that set. The on-straints that link the ells are that eah row, olumn, and setion is omplete.
4



Puzzle SolutionA B C Dabd E F G H I
efghi 5 65 8 483 7 16 94 9

1 8
8 36

2
7 1

32
2

5 A B C Dabd E F G H I
efghi

5 7 4 8 1 9 6 2 38 9 1 3 2 6 5 7 46 2 3 4 7 5 9 8 13 8 5 1 6 2 7 4 92 1 6 9 4 7 8 3 59 4 7 5 3 8 2 1 67 3 8 6 5 4 1 9 24 6 2 7 9 1 3 5 81 5 9 2 8 3 4 6 7Figure 1: A 9� 9 Sudoku puzzle, and its solution3 Constraint satisfation problemsWe start with a formal de�nition. Later on we will move from onstraintsatisfation to ardinality onstraints and some readers may want to moveto that plae (Setion 6). A onstraint satisfation problem is a tuple P =hX; fDxgx2X ; R1; : : : ; Rk; Si where1. X = fx1; : : : ; ; xmg is a �nite set of variables. The set X is alled assheme of P2. S assigns to eah realtion Rj, 1 � j � k its sheme, Sj � S.3. For eah variable x 2 X, there is a �nite domain of variable x, Dx4. For eah j, 1 � j � k, with Sj = fi1; : : : ; ijg, the relation Rj �Di1 � : : :�DijThe solution to the onstraint satisfation problem P is any sequenehp1; : : : ; pmi (remember that X has m elements) suh that5



(a) For all i, 1 � i � m, pi 2 Di(b) For all j, 1 � j � m, hpii; : : : ; piji 2 RjLet us see how the omplete sudoku solutions (i.e. entirely and or-retly �lled grids) an be ast in the language of onstraint satisfation.What we introdue are 81 variables, one for eah ell of the grid. It willbe onvenient to use double indies for variables: the variable xr; (wherethe row index r ranges over letters 1::9 and the olumn index  ranges over1::9 1 denotes the ontent of the ell (r; ). See the diagram of our sudokufor the self-explanation of our onvention. Domains of all variables are thesame; they are 1::9. So now we know the sheme of the problem and thedomains of variables. Now we need to de�ne relations. There will be 27 re-lations. Nine relations for the rows of our puzzle, nine relations for olumnsof our puzzle, and nine relations for quadrants (setions). The tables willbe very similar, they will di�er by shemes, but not anything else. Let ussee the sheme for the onstraint for the �rst row: it onsists of variables:xa;A; xa;B; : : : ; xa;I . Likewise, the onstraint orresponding to the last row hasthe sheme onsisting of variables: xi;A; xi;B; : : : ; xi;I. We hope the readerhave seen the sheme for the other rows. The sheme for the �rst olumnwill be: xa;A; xb;A; : : : ; xi;A. We hope the the reader see the shemes for theonstraints of other olumns. The shemes for quadrant onstraint have moreompliating form. Here is the one for the middle quadrant: fxd;D; xd;E; xd;F ,xe;D; xe;E; xe;F , xf;D; xf;E; xf;Fg. We leave the problem of founding the othershemes for quadrants to the reader. Surprisingly, besides of having di�erent1To distinguish between row indies and olumn indies we enumerated rows with lattera..i and olumns with letters A..I, see Figure 16



shemes, the atual tables for the onstraints are all the same. It is a tablewith nine olumns (remember they will be relabeled as we move throughthe onstraints). Eah table has exatly 9! rows (roughly 38 thousand lines- but do not worry, we will never write it expliitely!). The researhers inonstraint satisfation have a language for this very onstraint. They all itall di�erent (and they add the names of variables whih are required to beall di�erent). So, our �rst onstraint isall di�erent(xa;A; xa;B; xa;C ; xa;D; xa;E; xa;F ; xa;G; xa;H ; xa;I)Now a bit of ombinatoris. A latin square over (1::n) is an n � n table�lled with numbers (1::n) suh that every row and every olumn ontainseah number from (1::n) exatly one. Thus sudoku solution (like in ourexample) is a latin square, but not every latin square is a sudoku solution.To be totally formal we de�ne a omplete sudoku solution (sudoku solutionfor short) a latin square over m2 for some m where every quadrant (therewill be m2 quadrants) has also every number from 1 to m2 exatly one. Thelassial sudoku solution is one for m = 3 (and so n = 9). But there aresudokus in n = 16; 25; 36 et.Now, to be on the safe side we formulate a proposition that tells us that, inpriniple, onstraint satisfation problem solvers generate sudoku solutions.Proposition 1 There is a bijetive orrespondene between solution to theonstraint satisfation problem P and omplete sudoku solutions.
7



4 Sudoku problems as onstraint satisfationproblemsSo far we have seen that we an ast omplete sudoku solutions as on-straint satisfation problems. But, of ourse, our goal is to onstrut sudokuproblems, and in fat interesting sudoku problems. So now we will desribesudoku problems (omplete or otherwise) as onstraint satisfation problems.We will start with the general de�nition, speially for theoretiians, espeiallythose who know the onept of a partial �untion. Let C be some onstraintsatisfation problem with its set of variables X. A partial assignment for Cis a funtion f satisfying the following onditions:1. The domain of the funtion f , dom(f), is inluded in X2. for all x 2 dom(f), f(x) 2 DxThis looks intimidating, but partial assignment is just assignment of valuesto some variables, not neessarily all. It may be orret or not. It is quitelear when suh assignment is intuitively orret { when we an omplete fto a solution. So now the following de�nition makes sense. A partial solutionto a onstraint satisfation problem C is a funtion f whih is inluded insome omplete solution in of C. This should immediately ring the bell: weassign values to some ells in the grid. We did a reasonable job if what we didan be ompleted to a solution. So we are almost at the orret de�nition. Apartial omplete solution is a partial solution whih extends to an exatly oneomplete solution. There are all sort of haraterizations of partial solutionsand of partial omplete solutions. To give a suitable haraterization we needto modify onstraint satisfation problem assoiated with sudoku. Let P be8



xe;D9Table 1: The relation assoiated with lue xe;D = 9a onstraint satisfation problem, and f a partial assignment of variablesfrom X. We extend P to a new onstraint satisfation problem by addinga number of very trivial relations. Namely, we add, for eah x 2 dom(f)a relation Rx. This relation is very simple. Its sheme onsists of just oneelement, x (so it has just one olumn). The relation Rx has just one rowonsisting of f(x). Let us look at our example. The lues (depited in theleft side of our Figure 1) are the partial assignment. For instane we assignedthe value to xa;D, namely 8. We assigned the value to xi;A, namely 1, et.Altogether, our partial assignment had 25 variables in its domain. thereforewe will extend our onstraint satisfation problem for lassial sudoku (81variables, 27 relations) by 25 very simple tables. Here is one suh table(sheme in the top row): Given partial assignment f , we de�ne Pf as theonstraint satisfation problem:hX; fDxgx2X ; R1; : : : ; Rk; hRxix2dom(f); SiWe then haveProposition 2 1. A partial assignment f is a partial solution for P ifand only if the onstraint satisfation problem Pf has a solution2. A partial assignment f is a partial omplete solution for P if and onlyif the onstraint satisfation problem Pf has a unique solution9



We an also express our Proposition 2 in a database langage SQL (yes!). Weneed a bit of terminology. Given a partial valuation f , with the domain of fbeing h1; : : : ; hp let 'f be the following propositional formula:h1 = f(h1) AND : : :ANDhp = f(hp):Now we write an SQL query Qf :SELECT �FROM R1; : : : ; RkWHERE 'fWe then haveProposition 3 1. A partial assignment f is a partial solution to P if andonly if the answer to the query Qf is nonempty2. A partial assignment f is a partial omplete solution to P if and onlyif the answer to the query Qf onsists of just one tuple.Even though Propositions 2 and 3 looks mathematial, they atually tellsus what do we need to do. We have to �nd the partial assignments f so thatPf possesses a unique solution. But Proposition 2 does not tell us how todo this, and, in partiular, what kind of software means an we use in thisventure.5 Possible strategies for a random ompletesolution generationThe strategy to onstrut a meaningful sudoku problem, i.e. �nding somereasonable orret set of lues onsists of two steps. First we will �nd a10



sudoku solution. Then one we know that solution, we will build out of thatsolution a set of lues (omplete partial assignment). This partial assignmentwill be what will be presented to the human solver.In this setion we need to see what kind of strategy an be used to �nda solution. Atually there are many possible strategies. We list four. First,the programmer (onstrutor of the puzzle) may design and implement aspeialized program in some imperative omputer language suh as C++ orJAVA. In order to produe di�erent solutions some random number genera-tion may be needed, to diret the program in its searh for solutions. Theseond approah, for enthusiasts of SQL ould be to diretly translate ouronstraint satisfation problem P to SQL. True, there will be 27 tables, eahapproximately 38,000 reords long, and 81 variables (thus attribute names),but, in priniple, a query that produes all sudoku solutions an be written.But there is a osmi number of sudoku solutions even for lassial sudoku.There will not be enough of spae to write them all to the disk. The thirdpossibility is to translate our onstraint satisfation problem to some pro-gram whih an be further proessed by a onstraint programming languagesuh as ELiPSe or CHIP. This an ertainly be done. There is a fourth one(we guess that there may be others) namely onverting the onstraint satis-fation problem P to a problem in logi. This is what we will do. This willdrastially derease the number of onstraints we need to do. Then, by puremirale, we will �nd a omputer language (known as PS+ [ET01℄) wherethese onstraints an be easily written. The e�et will be a short (ouple oflines) desription of lassial sudoku. Even more miraulous will be the fatthat there is a software (publily available, not less!) that will proess suh11



programs and return a random solution. Suh software is alled a solver.The type of solver we use is based on two tehniques, one taken from logi,another from ombinatorial optimization. From logi we will take the wayto write formulas. From ombinatorial optimization we will use a tehniquegeneralizing atomi expressions to so-alled pseudo-boolean onstraints. Bothare pretty intuitive and we will devote next setion to the syntax of logi andand what do we need to write.6 Logi and its extension with ardinality on-straint atoms, omputing sudoku solutionsWe will assume that the reader had sometimes in the past some kind of logiourse, and that she is familiar with logial notation, in partiular quanti�ers.But we will go a step further; we will extend the language of logi to inludeardinality atoms. The reason is that tools like aspps are aware of ardinalityatoms and are able to proess some expressions ontaining ardinality atoms.The idea is that we require that ertain number of atoms (at least as muh asthe lower bound, but not more than upper bound) is true. Here is a simpleexample. An expression 1fp; q; r; sg2 means that at least one but not morethan two among p; q; r; and s are true. So if p and r are true but q and sare false we satis�ed our ardinality onstraint. But if, say, p; q; r are true,but s false too many of atoms are true, and our onstraint fails. Now, for1 � i � 9, 1 � j � 9, 1 � k � 9 the proposition pi;j;k denote this fat: theell with oordinates (i; j) holds k. Then look how our onstraint that ell(i; j) ontains exatly one value ould be written:1fpi;j;1; pi;j;2; : : : ; pi;j;9g1:12



Likewise, the fat that given i and k the ith row ontains number k exatlyone an be written as: 1fpi;1;k; pi;2;k; : : : ; pi;9;kg1:And with olumn j? { also very easy:1fp1;j;k; p2;j;k; : : : ; p9;j;kg1:For quadrants, we need to be a bit areful. Here is the ardinality onstraintexpressing the fat that number 1 ours in the �rst quadrant exatly one:1fp1;1;1; p1;2;1; p1;3;1; p2;1;1; p2;2;1; p2;3;1; p3;1;1; p3;2;1; p3;3;1g1:The issue now is if we have to do all this by hand or if additional meansan be used. Even though it is ertainly easy to write a sript to produeall these onstraints involving propositional variables, there is a better way.Namely we use the prediate alulus. We add a new prediate letter p with3 plaes and we write p(i; j; k) to denote that the ell (i; j) ontains k. Sonow our onstraint on ontents of ell is:8x;y9z1fp(x; y; z)g1that is for all row indies x and olumn indies y that exatly one of of atomsp(x; y; 1); p(x; y; 2); : : : ; p(x; y; 9) (here the range of z is (1..9)) is true. andwe ertainly an do this for row and olumn onstraints getting:8x;z9y1fp(x; y; z)g1and 8y;z9x1fp(x; y; z)g113



1 numsmall(1..n).2 numlarge(1..m).3 pred plae(numlarge, numlarge, numlarge).4 var numlarge I,J,N.5 var numsmall K,M.6 1 f plae(I,J,N)[N℄ g 1.7 1 f plae(I,J,N)[I℄ g 1.8 1 f plae(I,J,N)[J℄ g 1.9 1 f plae(I,J,N)[I,J℄: I<=n*K: J<=n*M: n*(K-1) < I:10 n*(M-1) < Jg 1.Figure 2: Aspps rules for the Sudoku puzzleIt is a bit more diÆult for ontraints on quadrants. We need to look at somearithmeti onditions. We will see the onstraint on quadrants soon.We have to be able to tell the proessing engine that we want to dealwith numbers (1..9) - but it ould be (1..16) for more omplex sudoku, oreven 25, or 36. Next we have to be able to distinguis between the universallyquanti�ed and universally quanti�ed variables.When the dust settles we have the following expression, written in thelanguage understood by aspps:Lines 1 and 2 introdue numsmall and numlarge as prediates true overthe range 1 : : :3 and 1 : : :m, respetively. The parameters n and m an beinstantiated from ommand line. In lassial sudoku, n is instantiated to3 and m to 9 Lines 3, 4, and 5 give the signature of the ternary prediateplae and the variables I, J, N, K, and M. We use plae(I,J,N) to representthe fat that the value N is plaed in ell (I,J). Line 6 an be read \given aell (I,J), there is at least one and at most one (that is, exatly one) value14



N that is plaed in that ell." Line 7 represents the onstraint that there isexatly one row I for whih any given value N appears in olumn J. Line 8onstrains olumns in a similar way. Lines 9 and 10 introdue the setiononstraints. Given a setion numbered (K,M) and a value N, there is exatlyone ell (I,J) in that setion that has that value.The software suh as aspps onverts the program suh as the one in Figure2 to a propositional program, in e�et eliminating variables, and putting theonstant values (from the range of variables) instead. This proess is knownas grounding. The grounded program has only propositional variables. Theasual user does not have to see the grounded version of the program atall. The grounded version of the program is solved. This proess �nds itspropositional models also known as satisfying valuations. There is a hugenumber of solutions. To avoid repetition, the proessing of the propositionalprogram is randomized, for instane by randomly assigning values of somepropositional variables. The solver is based on baktraking searh, a form ofsearh losely related to so-alled DPLL algorithm for �nding propositionalmodels of CNF propositional theories ([DLL62℄). The DPLL algorithm wasextended by the designers of aspps top handle lauses admitting ardinalityonstraints.The following fat is ruial for the purpose of onstruting sudoku puz-zles.Proposition 4 There is a bijetive orrespondene between the models ofprogram listed in Figure 2 with parameters n = 3 and m = 9, and lassialsudoku solutions.We will all the program onsisting of lines (1), (3), (4), and (5) only the15



basi program. The models of this program initialized withm = k orrespondto latin squares of length k. Therefore, when we build later in the paper otherpuzzles based on latin squares, we will reuse this basi program, heaping onthe top of it additional onstraints.The question arises if aspps is ruial for the kind of appliations we havein mind. In fat we ould use (with pretty small hanges in the program,but still the hanges would be required) solver suh as smodels[NS97℄. orPBS[ARMS03℄. We ould (with still more work on our part) use SAT solverssuh as zha� [MMZZM01℄, or other solvers publily available. Sine thesesolvers usually do not support ardinality onstraints, and generally appearto be weak in the area of knowledge representation, an additional work onoding would be needed before we ould use the results returned by thesolver.Let us add that the number of sudoku solutions is known, see [FJ05℄.The authors of [FJ05℄ give a method of alulation of the number of sudokusolutions, and ompute that number. They also quote a reomputation byan independent researher (with his own program) of their result. For thesake of ompleteness, we state that result of Felgenhauer and Jarvis:6670903752021072936960:The number of 16� 16 sudoku solutions is not known.
16



7 From the sudoku solution to sudoku prob-lemSo far we have seen how delarative tools, in partiular aspps an be used toompute sudoku solutions. But, of ourse, the puzzle enthusiast wants thepuzzle, moreover an interesting puzzle, not the solution. we will outline analgorithm for building an interesting puzzle. This onept an be formallyde�ned. Before we give a formal de�nition reall that a sudoku problem is apartial assignment f of values to variables so that there is a unique solutionextending f . Here is how we de�ne the onept of interesting problem. Asudoku problem f is interesting (omplete) if1. f is a sudoku problem2. for every variable x in the domain of f , the problem g arising from fby eliminating the pair (x; f(x)) from f is not a sudoku problem.This de�nition of interesting problem requires that an interesting problembe minimal; eliminating of any lue would result in multiple solutions extend-ing the revised set of lues. Here is an algorithm that does build interestingsudoku problems.The algorithm starts with a omputation of one solution. We presentedabove means that make suh omputation feasible. Let f be suh solution.We proeed reursively. The initial assignment of variable removableClues isthe entire set of lues. Then, in the main loop, one we have the urrent valueof the set removableClues and that value is not empty, we hek whih valuesan be eliminated from removableClues so that the uniqueness of extension ispreserved. One suh value is seleted at random, and eliminated (this value17



1 removableClues := solution2 preservedClues := �3 while removableClues 6= � do4 vitimClue := randomChoie(removableClues)5 removableClues := removableClues - fvitimClueg6 if puzzleBad(removableClues + preservedClues) then7 preservedClues := preservedClues + fvitimClueg8 end if9 end while10 lues := preservedCluesFigure 3: Algorithm to redue the lue setis alled vitimClue. This loop is iterated until removal of any lue results inhaving more than one extension of removableClues to a solution. Here is thealgorithm.Eah iteration randomly piks a single lue and tries to solve the puzzlewithout it. If the puzzle is now bad (we'll explain that shortly), the lue isadded to the set of �xed lues, whih must be preserved. Eventually, all theoriginal lues are either removed or preserved; the preserved lues beomethe �nal set of lues.The only omplex part of this algorithm is the puzzleBad funtion, whihdetermines whether a given set of lues makes an good puzzle, that is admitsa unique solution. To this end we again use aspps. If the set of lues( thelue of the form \the ell (i; j) ontains value k" is oded as a fat of the formplae(i; j; k) - thus the set of lues orresponding to our running examplesontains the lues suh plae(3; 5; 7)) an be no further redued withoutforfeiting uniqueness of solutions, it is returned. The funtion puzzleBadtests exatly this. 18



But aspps allows not only for �nding a solution, but allows to trae thediÆulty of �nding of a solution. Spei�ally, aspps may work in an in-omplete mode; it may use only some means to solve the solution, or useits omplete power. So far, aspps allows for three modes of solving (in theinreased degree of ompleteness):1. Solving in the grounder2. Solving with so-alled 1-lookahead3. Solve by omplete searh of the searh tree of partial solutionsHere is what it means. As mentioned above, the grounder transforms thevery short desription of the problem (this desription is written in prediatealulus, just that it is streamlined so it is understandable to the mahine)into a propositional theory, without individual variables (but with proposi-tional variables - grounded prediate letters). But the grounder exeute so-alled Boolean Constraint Propagation (BCP), essentially �nding more fatsthat stare in your fae as you solve it 2. It may happen that the problem isso easy that this is enought to �nd a solution. The 1-lookahead is a tehniquein whih the solver, besides of Boolean Constraint Propagation an make asingle guess and then hek if the resulting theory admits a solution. Theomplete searh uses both the previously mentioned tehniques and if stuk,makes additional guesses. If a guess turns out wrong (leads to ontradi-tion), the opposite value for the last guess is tried. If both eventually fail,baktrak (or even stronger form of baktrak, bakjump [BS97℄) is applied.2By staring in your fae we mean: \There isbjust one possibility for a value and we seeit now (for instane 8 values are already assigned in a row, olumn, or setion).19



The following results an arise from applying Aspps.� The puzzle has no solutions. This situation should never happen, be-ause eah iteration tests a less-onstrained puzzle than the previousone.� The grounder �nds a solution without lookahead. The puzzle is \good"and the lue may be safely removed.� The grounder �nds the solution, but it needs lookahead. Dependingon how diÆult we wish to make the puzzle, we might all the puzzleeither \good" or \bad". In pratie, unless we are trying to generate ahard puzzle, we tell the grounder not to use lookahead. So when thissituation arises, we all the puzzle \good".� Aspps requires the full solver and baktrak to �nd a sole solution. Al-though the puzzle is well-formed, it is too hard for general enthusiasts.We all the puzzle \bad".� The puzzle has multiple solutions. The missing lue is required to keepthe puzzle well-formed. The puzzle is \bad".These last two situations require the solver to distinguish. But we onsiderboth to be \bad". Therefore, we don't ever all the solver. Either thegrounder an solve the puzzle (\good") or it an't (\bad").If we are trying to generate a hard puzzle, we let the grounder use one-step lookahead. We also apply one more test after reahing the �nal set oflues: Can the grounder solve the �nal set of lues without using lookahead?If so, then the puzzle isn't hard enough, but removing any lues would make20



it ill-formed or too hard. In this ase, we rejet the puzzle ompletely andstart afresh.Let us also observe, that the Algorithm 3 an be used to make puzzleseasier. The reason for this is that we do not have to return the minimal setof lues. We an break the loop earlier, and the resulting puzzle will be onlyeasier. Our own puzzles do not break earlier, but if one wants to produeless interesting puzzles, a numerial swith suh as \no more than 30 luesleft" an be used.8 Generating a hint sequeneIn a ellular puzzle, most atoms turn out to be false. For example, in thepuzzle of Figure 1 (page 5), it turns out that plae(1,1,5) is true. Thereforethe grounder at some point also derives that plae(1,1,1) is false, as isplae(1,1,2) and all the other related values. The positive (true) instanesof plae are the interesting ones. By examining the grounder's log, we andetermine the order in whih it disovers positive atoms by unit propagation.That list begins with the lues themselves. The rest of the positive instanesof plae in the log form the hint sequene.We show now the hint sequene for our running example:9 PerformaneThe logi-program approah to generating ellular puzzles is remarkably ef-�ient in programmer time. Eah puzzle type requires only a few lines ofAspps ode. The algorithm of Figure 3 is enoded in about 500 lines of21



1:bE 2:eF 3:eE 4:fE 5:hG6:iF 7:fD 8:H 9:I 10:gG11:fG 12:B 13:eI 14:hH15:bH 16:eA 17:hC 18:gI19:gA 20:fC 21:fA 22:hA23:aA 24:dC 25:bG 26:aG27:aB 28:dA 29:dB 30:bA31:iG 32:iC 33:bB 34:bF35:gD 36:gF 37:D 38:bD39:C 40:bC 41:eB 42:eC43:hB 44:aE 45:dD 46:dE47:aF 48:hE 49:iE 50:hI 51:iI52:dG 53:dI 54:gH 55:dH56:aCFigure 4: The sequene of hints generated by the solverPerl [WS90℄, muh of whih is devoted to generating formatted puzzle andhint output.Given the Aspps rules, generating a puzzle has two phases: Finding thesolution and reduing the lues. The time needed for the �rst phase depends,of ourse, on the omplexity of the onstraints and the size of the puzzle. Ona 3GHz Pentium 4 running Linux, we aomplish the �rst phase for Sudokupuzzles of various sizes in time and memory shown in Figure 5. The time forthe �rst phase has a large variane, espeially for larger puzzles. Figure 5also shows the time for eah iteration in the seond phase. This value hasmuh smaller variane.
22



10 Modifying lassial sudokuThe aspps program that omputes the the lassial sudoku solutions has avery ompat form. It expresses four basi onstraints (we get four formulas,shown above in Figure 2). It turns out that various additional onstraintsan be further imposed. The �rst type of modi�ation of sudoku (existingfor all types of sudoku onsidered here) is one where we require that eahdiagonal also ontains the numbers 1..n exatly one. The sudoku in Figure1 is not a diagonal sudoku, beause the number 1 ours on the NE diagonaltwie (whereas 2 does not our there at all). It is very easy to generatediagonal sud kus. First, let us observe that our onstraints an be writtenas:1. 8y9xplae(x; x; y)2. 8y9xplae(x; 9� x; y)(For sudokus of dimentions 16, 25, 36 et, the formula (2) needs to be mod-i�ed in an obvious waya) It is very easy to write the diagonal onstraints inaspps:(1') 1fplae(I; I; N)[I℄g1(2') 1fplae(I; 9� I; N)[I℄g1We observe that while the �st part of the proess is modi�ed, the seondphase does not hange at all, exept that the badness is tested with respetto a di�erent program.The seond modi�ation we implemented is related to the fat that wedeal with the odd length of the side of the grid. In suh irumstations eah23



quadrant (segment) has a enter ell. We an require that these n ells holddi�erent numbers. We all suh puzzles CenterDot sudokus. There are suhsudokus and they are regularly published on our site.There are sudoku solutions that are both diagonal sudokus and Center-Dot. The sizes of the lue set are muh smaller for both diagonal sudokusand CenterDot sudokus, thus putting a bigger ognitive strain on the puzzleenthusiast.There are other generalizations; for instane when we onsider (in 9 � 9grid) orners, enters of sides and the enter ell. All these an be easilyimplemented.What to do when the side of the grid is not a square? Here a general-ization is still possible. The idea is to partition n2 ells into ontiguous (andesthetially pleasing) n regions, eah of size n. Those are of speial interestto younger puzzle enthusiasts for whom 4 � 4 sudoku is to easy, but 9 � 9sudoku of type we routinely publish { too diÆult. We all these sudokuvariations MultiSpot sudokus and our experiene is that while for n = 5; 6; 7those are generally easy, for n = 8 they may be pretty tough. Again, pleasevisit our site for these generalizations.The reader must have notied that up to now we have used ardinalityonstraints with both upper and lower bounds equal to 1. Those are usuallyalled hoie rules. But it turns out that there are variations of sudoku wherewe do not stipulate that the solution is a latin square. We implemented twosuh puzzles: Multifour and DoubleNine. In the �rst of these puzzles, wehave a grid of side 12, and we require that eah number in 1::4 ours in eahrow and in eah olumn exatly three times (of ourse tough enthusiasts an24



size initial seonds iteration seonds MB16� 16 0.2 0.10 425� 25 0.6 { 2.7 0.14 636� 36 4.8 { 54 0.24 1449� 49 22 { 300 0.49 30Figure 5: Time and memory requirements for generating Sudoku puzzlesgeneralize it immediately). Here, we do not use the basi program generatinglatin square, beause the resulting grid is not a latin square. Instead wemodify the aspps rules (7) and (8) to:3fplae(I; J;N)[I℄g3and 3fplae(I; J;N)[J ℄g3Yet another variation (this time on lassial sudoku) is a square grid ofside 18, where we put the following onstrains. First, every row and olumnontains eah number from 1..9 twie. Seond, there are 36 3 � 3 setions(yes, just ount!). We require that eah setion ontain every number in 1::9exatly one.(FIGURE NEEDED)11 ConlusionsREUSE MIREK TEXT AS MUCH AS POSSIBLE
25



Puzzle SolutionA B C Dabd E F G H I
efghi 7 82

2 389 761 4
1

9 9 5 342 1 A B C Dabd E F G H I
efghi

2 8 5 6 3 7 1 9 49 1 6 4 8 2 7 5 33 7 4 9 5 1 2 6 86 4 8 3 7 9 5 2 15 2 1 8 6 4 9 3 77 9 3 1 2 5 4 8 61 6 7 2 9 3 8 4 54 3 9 5 1 8 6 7 28 5 2 7 4 6 3 1 9Figure 6: A 9� 9 diagonal Sudoku puzzle and its solution
Puzzle SolutionA B C D E F G Habdefgh

I J K L
ijkl 4

241 41
32 1

2 12 2
411 41

2 242 4 434 1
1

4
1 1 3

2
1

13 4
41

3 2
3

4 33 41 123 222
3

23 3
3 4

13 24
2 42 2
2 42 213 A B C D E F G Habdefgh

I J K L
ijkl

3 2 2 3 2 1 3 1 1 4 4 42 1 3 2 1 1 4 3 4 2 3 41 1 4 4 4 2 2 3 3 1 2 33 1 1 2 1 3 4 2 4 3 4 22 2 1 1 3 1 3 2 4 4 3 42 2 2 1 3 4 4 1 1 4 3 31 3 2 1 4 4 3 4 2 3 1 24 4 4 3 2 3 1 2 3 1 2 11 4 4 4 3 2 1 3 2 3 2 13 3 1 2 4 4 2 4 1 2 1 34 4 3 4 1 3 2 1 3 2 1 24 3 3 3 2 2 1 4 2 1 4 1Figure 7: An n = 3 MultiFour puzzle and its solution
26



Puzzle Solutionpp p p pp ppppppp p ppA B C D Eabde F
f

G
g 16 47 13 3357 4 pp p p pp ppppppp p ppA B C D Eabde F

f
G

g
2 5 4 3 7 6 11 7 6 5 2 3 43 6 1 7 4 2 54 2 5 1 6 7 36 3 7 4 1 5 27 4 3 2 5 1 65 1 2 6 3 4 7Figure 8: An n = 7 MultiSpot puzzle and its solutionReferenes[ARMS03℄ F. Aloul, A. Ramani, I. Markov and K. Sakallah. PBS v0.2,inremental pseudo-boolean baktrak searh SAT solver andoptimizer, http://www.ees.umih.edu/~faloul/Tools/pbs/,2003.[BS97℄ R.J. Bayardo, Jr and R.C. Shrag. Using CSP Look-bak teh-niques to solve real-world SAT instanes. "Proeedings of the 14thNational Conferene on Arti�ial Intelligene (AAAI-1997), pp.203{208. 1997.[DLL62℄ M. Davis, G. Logemann, and D. Loveland. A mahine program fortheorem-proving, Communiations of the Assoiation for Comput-ing Mahinery, 7:394{397, 1962.[DK74℄ J. Denes and A.D. Keedwell. Latin Squares and their appliations.Aademi Press, 1974.[EFLP00℄ Thomas Eiter, Wolfgang Faber, Niola Leone, and Gerald Pfeifer.Delarative problem-solving in DLV. In Jak Minker, editor,27



Logi-Based Arti�ial Intelligene, pages 79{103. Kluwer Aa-demi Publishers, Dordreht, 2000.[ET01℄ D. East and M. Truszzy�nski. aspps | an implementation ofanswer-set programming with propositional shemata. In Proeed-ings of Logi Programming and Nonmonotoni Reasoning Confer-ene, LPNMR 2001, volume 2173, pages 402{405. Leture Notesin Arti�ial Intelligene, Springer Verlag, 2001.[FJ05℄ B. Felgenhauer and F. Jarvis. Enumerating possible Sudoku grids.web.info.tu-dresden.de/~bf3/sudoku/sudoku.pdf. 2005.[MMZZM01℄ M. Moskewiz, C. Madigan, Y. Zhao. L. Zhang and S. Ma-lik. SAT solver ha�. http://www.ee.prineton.edu/~haff/.2001.[NS97℄ I. Niemel�a and P. Simons. Smodels | an implementation of thestable model and well-foundd semantis for normal logi programs.In Logi Programming and Nonmonotoni Reasoning (the 4th In-ternational Conferene, Dagstuhl, Germany, 1997), volume 1265of Leture Notes in Computer Siene, pages 420{429. Springer-Verlag, 1997.[TFE05℄ Wikipedia: The Free Enylopedia. Sudoku, 2005. http://en.wikipedia.org/wiki/Sudoku.[WS90℄ L. Wall and R. L. Shwartz. Programming Perl. O'Reilly andAssoiates, 1990. 28



[WNS97℄ M. Wallae, S. Novello and J. Shimpf. ECLiPSe: A Platform forConstraint Logi Programming. http://www.ipar.i.a.uk/elipse/reports/elipse.ps.gz

29


