
So, you want to generate your own sudoku? �Raphael Finkel Vi
tor Marek Mirek Trusz
zy�nskiAbstra
tThis paper is attempting to introdu
e the reader to the use ofde
larative tools su
h as aspps or smodels to generate tabular numer-i
al puzzles su
h as sudoku.1 Introdu
tionCellular puzzles take the form of
ells whose values are
onstrained byrules involving groups of
ells. The puzzle starts with
lues, whi
h are
ells that already possess their value. It is the pleasant task of the puzzleenthusiast to solve the puzzle by entering values in all the
ells in a way thatsatis�es the
onstraints. A well-formed puzzle has exa
tly one solution. Toassist the enthusiast, the puzzle may
ontain a hint sequen
e, whi
h is asequen
e of
ells that suggest the order in whi
h the enthusiast should be ableto
omplete the puzzle. While the puzzles published in newspaper do notprovide assistan
e to the person solving the puzzle beyond providing (eitherat the same time, or later) a solution, it is possible to assist the person solvingthe puzzle in a subtler way, and we will dis
uss as we will dis
uss it in thebody of this paper.�Computer S
ien
e Department, University of Kentu
ky. email: raphael j marek jmirek�
s.uky.edy 1

This paper is a (
urious) mixture of s
ien
e and a
ookbook. On one hand,we will provide a rigorous des
ription of the puzzles of sudoku
lass. To makeit even worse, we will present the unsuspe
ting reader with the introdu
tionto
onstraint satisfa
tion problems and then
ast the problem of
onstru
tiongsudoku puzzles as a two-phase appli
ation of
onstraint satisfa
tion; �rst, to�nd a solution, and se
ond, to use the solution that was found and a
ertainalgorithm for building a sudoku problem - out of that solution. Of
ourse,nothing like this is done by hand. The
omputer and its software (we willuse a
lass of publi
ly (and freely) available software
alled solvers) produ
ethe problem. The output of the solver requires an additional pro
essing; wewill
omment on this issue as well.Here is the outline of our paper. First we will (gently) introdu
e thereader to the
on
ept of
ellular puzzles that we will dis
uss in the paper.Then, a heavy artillery starts, we will introdu
e the
onstraint satisfa
tionproblems and we will
ast the tabular problems we fo
us on in this paperas
onstraint satisfa
tion problems. In this pro
ess we will introdu
e ba-si

onstraints that de�ne so-
alled Euler's Latin Squares [DK74℄ that arenot yet a sudoku, but almost are. Then we introdu
e the additional
on-straint that sele
ts out of latin squares sudoku solutions, that is latin squaresthat satisfy the additional sudoku
onstraint (namely that every one of ninequadrants (also
alled se
tions)
ontains every number in the range 1..9 ex-a
tly on
e.) To s
are the reader more we formulate (but not prove) theproposition asserting
orre
tness of our
onstru
tion. At that stage of ourpro
eedings we know that the sudoku solutions
an be obtained by runningsoftware
apable of solving
onstraint satisfa
tion problems. But our goal2

is not to �nd sudoku solutions, but sudoku problems. We then formallyde�ne what a sudoku problem is and state (but not prove) formally, the
ri-terion for a
onstraint satisfa
tion problem to be a sudoku problem. Two(entirely immaterial for a layperson) propositions give two di�erent repre-sentations and assert the
orre
tness of that representation. But we willnot
reate sudoku problems on
ommonly available
onstraint satisfa
tionproblem software su
h as ECLiPSe [WNS97℄, but use the representation of(�nite-domain)
onstraint satisfa
tion problems using something quite exoti
for general publi
 (but known in some Computer S
ien
e and also Combi-natorial Optimization
ir
les)
alled
ardinality
onstraints. Instead we will�rst formulate sudoku solutions as solutions to some system of
ardinality
onstraints, and then we give an algorithm that allows for
reating reason-ably hard sudoku problems via repeated appli
ation of solving a system of
ardinality
onstraints. The
ardinality
onstraints solvers are freely avail-able (one su
h solver is due to the third author and his students and is
alledaspps http://www.
s.uky.edu/ai/aspps/. This is the software we use forbuilding sudoku solutions and problems. We save the reader the s
are ofrevealing of what aspps is an a
ronim of. At that stage of our paper thereader
an (with some small amount of programming, say in Perl [WS90℄or VB) produ
e a des
ription of a ni
e sudoku puzzle. One s
ript (it is notprovided, we need to keep something in our sleeve) transforms the output ofthe solver
reating the sudoku problem into a familiar, partly �lled grid that
an be enjoyed by a person solving the puzzles. But now the question o

ursif all problems we
reate will be equally diÆ
ult. It turns out that the solvers(the software we use) have at least three di�erent modes for produ
ing their3

solutions. Those modes
an be used for di�erentiating among the diÆ
ultyof sudoku problems. But this is not the end of our paper. We dis
uss several
lasses of tabular problems related to sudoku. For instan
e, we
an requirethat one or both diagonals in our puzzle has all entries di�erent. We mayrequire that the
enters of quadrants house di�erent numbers. We may evenrequire both! We may want to
hange the shape of pie
es in whi
h we parti-tion the basi
 grid - in the
lassi
al sudoku we partition the grid into 3-by-3quares, but we do not have to. This leads to the generalization of sudoku tosituations where the grid is no longer 9-by-9. For instan
e we may have 8-by-8 grid, partition it into additional 8 subgrids (ea
h
ontaining 8
ells) andrequire that besides of being a latin square, every subgrid also
ontains ea
hnumber (in the range 1..8) exa
tly on
e. There is a wealth of generalizationsand the reader who musters patien
e to read and understand this paper willhave an opportunity to produ
e her very own spe
ial version of sudoku, orsudoku generalization. Finally, we
omment on weakening the
ondition thatevery row and
olumn
ontains ever number from prespe
i�ed range on
e.2 Classi
al sudoku puzzlesWe will
onsider Sudoku puzzles [TFE05℄ as a typi
al
ellular puzzle. Fig-ure 1 shows a sample Sudoku puzzle. The
ells are arranged in a 9� 9 gridsubdivided into nine 3� 3 se
tions or quadrants. We say a set of 9
ells is
omplete if the numbers 1 : : : 9 appear exa
tly on
e in that set. The
on-straints that link the
ells are that ea
h row,
olumn, and se
tion is
omplete.
4

Puzzle SolutionA B C Dab
d E F G H I
efghi 5 65 8 483 7 16 94 9

1 8
8 36

2
7 1

32
2

5 A B C Dab
d E F G H I
efghi

5 7 4 8 1 9 6 2 38 9 1 3 2 6 5 7 46 2 3 4 7 5 9 8 13 8 5 1 6 2 7 4 92 1 6 9 4 7 8 3 59 4 7 5 3 8 2 1 67 3 8 6 5 4 1 9 24 6 2 7 9 1 3 5 81 5 9 2 8 3 4 6 7Figure 1: A 9� 9 Sudoku puzzle, and its solution3 Constraint satisfa
tion problemsWe start with a formal de�nition. Later on we will move from
onstraintsatisfa
tion to
ardinality
onstraints and some readers may want to moveto that pla
e (Se
tion 6). A
onstraint satisfa
tion problem is a tuple P =hX; fDxgx2X ; R1; : : : ; Rk; Si where1. X = fx1; : : : ; ; xmg is a �nite set of variables. The set X is
alled ass
heme of P2. S assigns to ea
h realtion Rj, 1 � j � k its s
heme, Sj � S.3. For ea
h variable x 2 X, there is a �nite domain of variable x, Dx4. For ea
h j, 1 � j � k, with Sj = fi1; : : : ; ijg, the relation Rj �Di1 � : : :�DijThe solution to the
onstraint satisfa
tion problem P is any sequen
ehp1; : : : ; pmi (remember that X has m elements) su
h that5

(a) For all i, 1 � i � m, pi 2 Di(b) For all j, 1 � j � m, hpii; : : : ; piji 2 RjLet us see how the
omplete sudoku solutions (i.e. entirely and
or-re
tly �lled grids)
an be
ast in the language of
onstraint satisfa
tion.What we introdu
e are 81 variables, one for ea
h
ell of the grid. It willbe
onvenient to use double indi
es for variables: the variable xr;
 (wherethe row index r ranges over letters 1::9 and the
olumn index
 ranges over1::9 1 denotes the
ontent of the
ell (r;
). See the diagram of our sudokufor the self-explanation of our
onvention. Domains of all variables are thesame; they are 1::9. So now we know the s
heme of the problem and thedomains of variables. Now we need to de�ne relations. There will be 27 re-lations. Nine relations for the rows of our puzzle, nine relations for
olumnsof our puzzle, and nine relations for quadrants (se
tions). The tables willbe very similar, they will di�er by s
hemes, but not anything else. Let ussee the s
heme for the
onstraint for the �rst row: it
onsists of variables:xa;A; xa;B; : : : ; xa;I . Likewise, the
onstraint
orresponding to the last row hasthe s
heme
onsisting of variables: xi;A; xi;B; : : : ; xi;I. We hope the readerhave seen the s
heme for the other rows. The s
heme for the �rst
olumnwill be: xa;A; xb;A; : : : ; xi;A. We hope the the reader see the s
hemes for the
onstraints of other
olumns. The s
hemes for quadrant
onstraint have more
ompli
ating form. Here is the one for the middle quadrant: fxd;D; xd;E; xd;F ,xe;D; xe;E; xe;F , xf;D; xf;E; xf;Fg. We leave the problem of founding the others
hemes for quadrants to the reader. Surprisingly, besides of having di�erent1To distinguish between row indi
es and
olumn indi
es we enumerated rows with lattera..i and
olumns with letters A..I, see Figure 16

s
hemes, the a
tual tables for the
onstraints are all the same. It is a tablewith nine
olumns (remember they will be relabeled as we move throughthe
onstraints). Ea
h table has exa
tly 9! rows (roughly 38 thousand lines- but do not worry, we will never write it expli
itely!). The resear
hers in
onstraint satisfa
tion have a language for this very
onstraint. They
all itall di�erent (and they add the names of variables whi
h are required to beall di�erent). So, our �rst
onstraint isall di�erent(xa;A; xa;B; xa;C ; xa;D; xa;E; xa;F ; xa;G; xa;H ; xa;I)Now a bit of
ombinatori
s. A latin square over (1::n) is an n � n table�lled with numbers (1::n) su
h that every row and every
olumn
ontainsea
h number from (1::n) exa
tly on
e. Thus sudoku solution (like in ourexample) is a latin square, but not every latin square is a sudoku solution.To be totally formal we de�ne a
omplete sudoku solution (sudoku solutionfor short) a latin square over m2 for some m where every quadrant (therewill be m2 quadrants) has also every number from 1 to m2 exa
tly on
e. The
lassi
al sudoku solution is one for m = 3 (and so n = 9). But there aresudokus in n = 16; 25; 36 et
.Now, to be on the safe side we formulate a proposition that tells us that, inprin
iple,
onstraint satisfa
tion problem solvers generate sudoku solutions.Proposition 1 There is a bije
tive
orresponden
e between solution to the
onstraint satisfa
tion problem P and
omplete sudoku solutions.
7

4 Sudoku problems as
onstraint satisfa
tionproblemsSo far we have seen that we
an
ast
omplete sudoku solutions as
on-straint satisfa
tion problems. But, of
ourse, our goal is to
onstru
t sudokuproblems, and in fa
t interesting sudoku problems. So now we will des
ribesudoku problems (
omplete or otherwise) as
onstraint satisfa
tion problems.We will start with the general de�nition, spe
ially for theoreti
ians, espe
iallythose who know the
on
ept of a partial �un
tion. Let C be some
onstraintsatisfa
tion problem with its set of variables X. A partial assignment for Cis a fun
tion f satisfying the following
onditions:1. The domain of the fun
tion f , dom(f), is in
luded in X2. for all x 2 dom(f), f(x) 2 DxThis looks intimidating, but partial assignment is just assignment of valuesto some variables, not ne
essarily all. It may be
orre
t or not. It is quite
lear when su
h assignment is intuitively
orre
t { when we
an
omplete fto a solution. So now the following de�nition makes sense. A partial solutionto a
onstraint satisfa
tion problem C is a fun
tion f whi
h is in
luded insome
omplete solution in of C. This should immediately ring the bell: weassign values to some
ells in the grid. We did a reasonable job if what we did
an be
ompleted to a solution. So we are almost at the
orre
t de�nition. Apartial
omplete solution is a partial solution whi
h extends to an exa
tly one
omplete solution. There are all sort of
hara
terizations of partial solutionsand of partial
omplete solutions. To give a suitable
hara
terization we needto modify
onstraint satisfa
tion problem asso
iated with sudoku. Let P be8

xe;D9Table 1: The relation asso
iated with
lue xe;D = 9a
onstraint satisfa
tion problem, and f a partial assignment of variablesfrom X. We extend P to a new
onstraint satisfa
tion problem by addinga number of very trivial relations. Namely, we add, for ea
h x 2 dom(f)a relation Rx. This relation is very simple. Its s
heme
onsists of just oneelement, x (so it has just one
olumn). The relation Rx has just one row
onsisting of f(x). Let us look at our example. The
lues (depi
ted in theleft side of our Figure 1) are the partial assignment. For instan
e we assignedthe value to xa;D, namely 8. We assigned the value to xi;A, namely 1, et
.Altogether, our partial assignment had 25 variables in its domain. thereforewe will extend our
onstraint satisfa
tion problem for
lassi
al sudoku (81variables, 27 relations) by 25 very simple tables. Here is one su
h table(s
heme in the top row): Given partial assignment f , we de�ne Pf as the
onstraint satisfa
tion problem:hX; fDxgx2X ; R1; : : : ; Rk; hRxix2dom(f); SiWe then haveProposition 2 1. A partial assignment f is a partial solution for P ifand only if the
onstraint satisfa
tion problem Pf has a solution2. A partial assignment f is a partial
omplete solution for P if and onlyif the
onstraint satisfa
tion problem Pf has a unique solution9

We
an also express our Proposition 2 in a database langage SQL (yes!). Weneed a bit of terminology. Given a partial valuation f , with the domain of fbeing h1; : : : ; hp let 'f be the following propositional formula:h1 = f(h1) AND : : :ANDhp = f(hp):Now we write an SQL query Qf :SELECT �FROM R1; : : : ; RkWHERE 'fWe then haveProposition 3 1. A partial assignment f is a partial solution to P if andonly if the answer to the query Qf is nonempty2. A partial assignment f is a partial
omplete solution to P if and onlyif the answer to the query Qf
onsists of just one tuple.Even though Propositions 2 and 3 looks mathemati
al, they a
tually tellsus what do we need to do. We have to �nd the partial assignments f so thatPf possesses a unique solution. But Proposition 2 does not tell us how todo this, and, in parti
ular, what kind of software means
an we use in thisventure.5 Possible strategies for a random
ompletesolution generationThe strategy to
onstru
t a meaningful sudoku problem, i.e. �nding somereasonable
orre
t set of
lues
onsists of two steps. First we will �nd a10

sudoku solution. Then on
e we know that solution, we will build out of thatsolution a set of
lues (
omplete partial assignment). This partial assignmentwill be what will be presented to the human solver.In this se
tion we need to see what kind of strategy
an be used to �nda solution. A
tually there are many possible strategies. We list four. First,the programmer (
onstru
tor of the puzzle) may design and implement aspe
ialized program in some imperative
omputer language su
h as C++ orJAVA. In order to produ
e di�erent solutions some random number genera-tion may be needed, to dire
t the program in its sear
h for solutions. These
ond approa
h, for enthusiasts of SQL
ould be to dire
tly translate our
onstraint satisfa
tion problem P to SQL. True, there will be 27 tables, ea
happroximately 38,000 re
ords long, and 81 variables (thus attribute names),but, in prin
iple, a query that produ
es all sudoku solutions
an be written.But there is a
osmi
 number of sudoku solutions even for
lassi
al sudoku.There will not be enough of spa
e to write them all to the disk. The thirdpossibility is to translate our
onstraint satisfa
tion problem to some pro-gram whi
h
an be further pro
essed by a
onstraint programming languagesu
h as E
LiPSe or CHIP. This
an
ertainly be done. There is a fourth one(we guess that there may be others) namely
onverting the
onstraint satis-fa
tion problem P to a problem in logi
. This is what we will do. This willdrasti
ally de
rease the number of
onstraints we need to do. Then, by puremira
le, we will �nd a
omputer language (known as PS+ [ET01℄) wherethese
onstraints
an be easily written. The e�e
t will be a short (
ouple oflines) des
ription of
lassi
al sudoku. Even more mira
ulous will be the fa
tthat there is a software (publi
ly available, not less!) that will pro
ess su
h11

programs and return a random solution. Su
h software is
alled a solver.The type of solver we use is based on two te
hniques, one taken from logi
,another from
ombinatorial optimization. From logi
 we will take the wayto write formulas. From
ombinatorial optimization we will use a te
hniquegeneralizing atomi
 expressions to so-
alled pseudo-boolean
onstraints. Bothare pretty intuitive and we will devote next se
tion to the syntax of logi
 andand what do we need to write.6 Logi
 and its extension with
ardinality
on-straint atoms,
omputing sudoku solutionsWe will assume that the reader had sometimes in the past some kind of logi

ourse, and that she is familiar with logi
al notation, in parti
ular quanti�ers.But we will go a step further; we will extend the language of logi
 to in
lude
ardinality atoms. The reason is that tools like aspps are aware of
ardinalityatoms and are able to pro
ess some expressions
ontaining
ardinality atoms.The idea is that we require that
ertain number of atoms (at least as mu
h asthe lower bound, but not more than upper bound) is true. Here is a simpleexample. An expression 1fp; q; r; sg2 means that at least one but not morethan two among p; q; r; and s are true. So if p and r are true but q and sare false we satis�ed our
ardinality
onstraint. But if, say, p; q; r are true,but s false too many of atoms are true, and our
onstraint fails. Now, for1 � i � 9, 1 � j � 9, 1 � k � 9 the proposition pi;j;k denote this fa
t: the
ell with
oordinates (i; j) holds k. Then look how our
onstraint that
ell(i; j)
ontains exa
tly one value
ould be written:1fpi;j;1; pi;j;2; : : : ; pi;j;9g1:12

Likewise, the fa
t that given i and k the ith row
ontains number k exa
tlyon
e
an be written as: 1fpi;1;k; pi;2;k; : : : ; pi;9;kg1:And with
olumn j? { also very easy:1fp1;j;k; p2;j;k; : : : ; p9;j;kg1:For quadrants, we need to be a bit
areful. Here is the
ardinality
onstraintexpressing the fa
t that number 1 o

urs in the �rst quadrant exa
tly on
e:1fp1;1;1; p1;2;1; p1;3;1; p2;1;1; p2;2;1; p2;3;1; p3;1;1; p3;2;1; p3;3;1g1:The issue now is if we have to do all this by hand or if additional means
an be used. Even though it is
ertainly easy to write a s
ript to produ
eall these
onstraints involving propositional variables, there is a better way.Namely we use the predi
ate
al
ulus. We add a new predi
ate letter p with3 pla
es and we write p(i; j; k) to denote that the
ell (i; j)
ontains k. Sonow our
onstraint on
ontents of
ell is:8x;y9z1fp(x; y; z)g1that is for all row indi
es x and
olumn indi
es y that exa
tly one of of atomsp(x; y; 1); p(x; y; 2); : : : ; p(x; y; 9) (here the range of z is (1..9)) is true. andwe
ertainly
an do this for row and
olumn
onstraints getting:8x;z9y1fp(x; y; z)g1and 8y;z9x1fp(x; y; z)g113

1 numsmall(1..n).2 numlarge(1..m).3 pred pla
e(numlarge, numlarge, numlarge).4 var numlarge I,J,N.5 var numsmall K,M.6 1 f pla
e(I,J,N)[N℄ g 1.7 1 f pla
e(I,J,N)[I℄ g 1.8 1 f pla
e(I,J,N)[J℄ g 1.9 1 f pla
e(I,J,N)[I,J℄: I<=n*K: J<=n*M: n*(K-1) < I:10 n*(M-1) < Jg 1.Figure 2: Aspps rules for the Sudoku puzzleIt is a bit more diÆ
ult for
ontraints on quadrants. We need to look at somearithmeti

onditions. We will see the
onstraint on quadrants soon.We have to be able to tell the pro
essing engine that we want to dealwith numbers (1..9) - but it
ould be (1..16) for more
omplex sudoku, oreven 25, or 36. Next we have to be able to distinguis between the universallyquanti�ed and universally quanti�ed variables.When the dust settles we have the following expression, written in thelanguage understood by aspps:Lines 1 and 2 introdu
e numsmall and numlarge as predi
ates true overthe range 1 : : :3 and 1 : : :m, respe
tively. The parameters n and m
an beinstantiated from
ommand line. In
lassi
al sudoku, n is instantiated to3 and m to 9 Lines 3, 4, and 5 give the signature of the ternary predi
atepla
e and the variables I, J, N, K, and M. We use pla
e(I,J,N) to representthe fa
t that the value N is pla
ed in
ell (I,J). Line 6
an be read \given a
ell (I,J), there is at least one and at most one (that is, exa
tly one) value14

N that is pla
ed in that
ell." Line 7 represents the
onstraint that there isexa
tly one row I for whi
h any given value N appears in
olumn J. Line 8
onstrains
olumns in a similar way. Lines 9 and 10 introdu
e the se
tion
onstraints. Given a se
tion numbered (K,M) and a value N, there is exa
tlyone
ell (I,J) in that se
tion that has that value.The software su
h as aspps
onverts the program su
h as the one in Figure2 to a propositional program, in e�e
t eliminating variables, and putting the
onstant values (from the range of variables) instead. This pro
ess is knownas grounding. The grounded program has only propositional variables. The
asual user does not have to see the grounded version of the program atall. The grounded version of the program is solved. This pro
ess �nds itspropositional models also known as satisfying valuations. There is a hugenumber of solutions. To avoid repetition, the pro
essing of the propositionalprogram is randomized, for instan
e by randomly assigning values of somepropositional variables. The solver is based on ba
ktra
king sear
h, a form ofsear
h
losely related to so-
alled DPLL algorithm for �nding propositionalmodels of CNF propositional theories ([DLL62℄). The DPLL algorithm wasextended by the designers of aspps top handle
lauses admitting
ardinality
onstraints.The following fa
t is
ru
ial for the purpose of
onstru
ting sudoku puz-zles.Proposition 4 There is a bije
tive
orresponden
e between the models ofprogram listed in Figure 2 with parameters n = 3 and m = 9, and
lassi
alsudoku solutions.We will
all the program
onsisting of lines (1), (3), (4), and (5) only the15

basi
 program. The models of this program initialized withm = k
orrespondto latin squares of length k. Therefore, when we build later in the paper otherpuzzles based on latin squares, we will reuse this basi
 program, heaping onthe top of it additional
onstraints.The question arises if aspps is
ru
ial for the kind of appli
ations we havein mind. In fa
t we
ould use (with pretty small
hanges in the program,but still the
hanges would be required) solver su
h as smodels[NS97℄. orPBS[ARMS03℄. We
ould (with still more work on our part) use SAT solverssu
h as z
ha� [MMZZM01℄, or other solvers publi
ly available. Sin
e thesesolvers usually do not support
ardinality
onstraints, and generally appearto be weak in the area of knowledge representation, an additional work on
oding would be needed before we
ould use the results returned by thesolver.Let us add that the number of sudoku solutions is known, see [FJ05℄.The authors of [FJ05℄ give a method of
al
ulation of the number of sudokusolutions, and
ompute that number. They also quote a re
omputation byan independent resear
her (with his own program) of their result. For thesake of
ompleteness, we state that result of Felgenhauer and Jarvis:6670903752021072936960:The number of 16� 16 sudoku solutions is not known.
16

7 From the sudoku solution to sudoku prob-lemSo far we have seen how de
larative tools, in parti
ular aspps
an be used to
ompute sudoku solutions. But, of
ourse, the puzzle enthusiast wants thepuzzle, moreover an interesting puzzle, not the solution. we will outline analgorithm for building an interesting puzzle. This
on
ept
an be formallyde�ned. Before we give a formal de�nition re
all that a sudoku problem is apartial assignment f of values to variables so that there is a unique solutionextending f . Here is how we de�ne the
on
ept of interesting problem. Asudoku problem f is interesting (
omplete) if1. f is a sudoku problem2. for every variable x in the domain of f , the problem g arising from fby eliminating the pair (x; f(x)) from f is not a sudoku problem.This de�nition of interesting problem requires that an interesting problembe minimal; eliminating of any
lue would result in multiple solutions extend-ing the revised set of
lues. Here is an algorithm that does build interestingsudoku problems.The algorithm starts with a
omputation of one solution. We presentedabove means that make su
h
omputation feasible. Let f be su
h solution.We pro
eed re
ursively. The initial assignment of variable removableClues isthe entire set of
lues. Then, in the main loop, on
e we have the
urrent valueof the set removableClues and that value is not empty, we
he
k whi
h values
an be eliminated from removableClues so that the uniqueness of extension ispreserved. One su
h value is sele
ted at random, and eliminated (this value17

1 removableClues := solution2 preservedClues := �3 while removableClues 6= � do4 vi
timClue := randomChoi
e(removableClues)5 removableClues := removableClues - fvi
timClueg6 if puzzleBad(removableClues + preservedClues) then7 preservedClues := preservedClues + fvi
timClueg8 end if9 end while10
lues := preservedCluesFigure 3: Algorithm to redu
e the
lue setis
alled vi
timClue. This loop is iterated until removal of any
lue results inhaving more than one extension of removableClues to a solution. Here is thealgorithm.Ea
h iteration randomly pi
ks a single
lue and tries to solve the puzzlewithout it. If the puzzle is now bad (we'll explain that shortly), the
lue isadded to the set of �xed
lues, whi
h must be preserved. Eventually, all theoriginal
lues are either removed or preserved; the preserved
lues be
omethe �nal set of
lues.The only
omplex part of this algorithm is the puzzleBad fun
tion, whi
hdetermines whether a given set of
lues makes an good puzzle, that is admitsa unique solution. To this end we again use aspps. If the set of
lues(the
lue of the form \the
ell (i; j)
ontains value k" is
oded as a fa
t of the formpla
e(i; j; k) - thus the set of
lues
orresponding to our running examples
ontains the
lues su
h pla
e(3; 5; 7))
an be no further redu
ed withoutforfeiting uniqueness of solutions, it is returned. The fun
tion puzzleBadtests exa
tly this. 18

But aspps allows not only for �nding a solution, but allows to tra
e thediÆ
ulty of �nding of a solution. Spe
i�
ally, aspps may work in an in-
omplete mode; it may use only some means to solve the solution, or useits
omplete power. So far, aspps allows for three modes of solving (in thein
reased degree of
ompleteness):1. Solving in the grounder2. Solving with so-
alled 1-lookahead3. Solve by
omplete sear
h of the sear
h tree of partial solutionsHere is what it means. As mentioned above, the grounder transforms thevery short des
ription of the problem (this des
ription is written in predi
ate
al
ulus, just that it is streamlined so it is understandable to the ma
hine)into a propositional theory, without individual variables (but with proposi-tional variables - grounded predi
ate letters). But the grounder exe
ute so-
alled Boolean Constraint Propagation (BCP), essentially �nding more fa
tsthat stare in your fa
e as you solve it 2. It may happen that the problem isso easy that this is enought to �nd a solution. The 1-lookahead is a te
hniquein whi
h the solver, besides of Boolean Constraint Propagation
an make asingle guess and then
he
k if the resulting theory admits a solution. The
omplete sear
h uses both the previously mentioned te
hniques and if stu
k,makes additional guesses. If a guess turns out wrong (leads to
ontradi
-tion), the opposite value for the last guess is tried. If both eventually fail,ba
ktra
k (or even stronger form of ba
ktra
k, ba
kjump [BS97℄) is applied.2By staring in your fa
e we mean: \There isbjust one possibility for a value and we seeit now (for instan
e 8 values are already assigned in a row,
olumn, or se
tion).19

The following results
an arise from applying Aspps.� The puzzle has no solutions. This situation should never happen, be-
ause ea
h iteration tests a less-
onstrained puzzle than the previousone.� The grounder �nds a solution without lookahead. The puzzle is \good"and the
lue may be safely removed.� The grounder �nds the solution, but it needs lookahead. Dependingon how diÆ
ult we wish to make the puzzle, we might
all the puzzleeither \good" or \bad". In pra
ti
e, unless we are trying to generate ahard puzzle, we tell the grounder not to use lookahead. So when thissituation arises, we
all the puzzle \good".� Aspps requires the full solver and ba
ktra
k to �nd a sole solution. Al-though the puzzle is well-formed, it is too hard for general enthusiasts.We
all the puzzle \bad".� The puzzle has multiple solutions. The missing
lue is required to keepthe puzzle well-formed. The puzzle is \bad".These last two situations require the solver to distinguish. But we
onsiderboth to be \bad". Therefore, we don't ever
all the solver. Either thegrounder
an solve the puzzle (\good") or it
an't (\bad").If we are trying to generate a hard puzzle, we let the grounder use one-step lookahead. We also apply one more test after rea
hing the �nal set of
lues: Can the grounder solve the �nal set of
lues without using lookahead?If so, then the puzzle isn't hard enough, but removing any
lues would make20

it ill-formed or too hard. In this
ase, we reje
t the puzzle
ompletely andstart afresh.Let us also observe, that the Algorithm 3
an be used to make puzzleseasier. The reason for this is that we do not have to return the minimal setof
lues. We
an break the loop earlier, and the resulting puzzle will be onlyeasier. Our own puzzles do not break earlier, but if one wants to produ
eless interesting puzzles, a numeri
al swit
h su
h as \no more than 30
luesleft"
an be used.8 Generating a hint sequen
eIn a
ellular puzzle, most atoms turn out to be false. For example, in thepuzzle of Figure 1 (page 5), it turns out that pla
e(1,1,5) is true. Thereforethe grounder at some point also derives that pla
e(1,1,1) is false, as ispla
e(1,1,2) and all the other related values. The positive (true) instan
esof pla
e are the interesting ones. By examining the grounder's log, we
andetermine the order in whi
h it dis
overs positive atoms by unit propagation.That list begins with the
lues themselves. The rest of the positive instan
esof pla
e in the log form the hint sequen
e.We show now the hint sequen
e for our running example:9 Performan
eThe logi
-program approa
h to generating
ellular puzzles is remarkably ef-�
ient in programmer time. Ea
h puzzle type requires only a few lines ofAspps
ode. The algorithm of Figure 3 is en
oded in about 500 lines of21

1:bE 2:eF 3:eE 4:fE 5:hG6:iF 7:fD 8:
H 9:
I 10:gG11:fG 12:
B 13:eI 14:hH15:bH 16:eA 17:hC 18:gI19:gA 20:fC 21:fA 22:hA23:aA 24:dC 25:bG 26:aG27:aB 28:dA 29:dB 30:bA31:iG 32:iC 33:bB 34:bF35:gD 36:gF 37:
D 38:bD39:
C 40:bC 41:eB 42:eC43:hB 44:aE 45:dD 46:dE47:aF 48:hE 49:iE 50:hI 51:iI52:dG 53:dI 54:gH 55:dH56:aCFigure 4: The sequen
e of hints generated by the solverPerl [WS90℄, mu
h of whi
h is devoted to generating formatted puzzle andhint output.Given the Aspps rules, generating a puzzle has two phases: Finding thesolution and redu
ing the
lues. The time needed for the �rst phase depends,of
ourse, on the
omplexity of the
onstraints and the size of the puzzle. Ona 3GHz Pentium 4 running Linux, we a

omplish the �rst phase for Sudokupuzzles of various sizes in time and memory shown in Figure 5. The time forthe �rst phase has a large varian
e, espe
ially for larger puzzles. Figure 5also shows the time for ea
h iteration in the se
ond phase. This value hasmu
h smaller varian
e.
22

10 Modifying
lassi
al sudokuThe aspps program that
omputes the the
lassi
al sudoku solutions has avery
ompa
t form. It expresses four basi

onstraints (we get four formulas,shown above in Figure 2). It turns out that various additional
onstraints
an be further imposed. The �rst type of modi�
ation of sudoku (existingfor all types of sudoku
onsidered here) is one where we require that ea
hdiagonal also
ontains the numbers 1..n exa
tly on
e. The sudoku in Figure1 is not a diagonal sudoku, be
ause the number 1 o

urs on the NE diagonaltwi
e (whereas 2 does not o

ur there at all). It is very easy to generatediagonal sud kus. First, let us observe that our
onstraints
an be writtenas:1. 8y9xpla
e(x; x; y)2. 8y9xpla
e(x; 9� x; y)(For sudokus of dimentions 16, 25, 36 et
, the formula (2) needs to be mod-i�ed in an obvious waya) It is very easy to write the diagonal
onstraints inaspps:(1') 1fpla
e(I; I; N)[I℄g1(2') 1fpla
e(I; 9� I; N)[I℄g1We observe that while the �st part of the pro
ess is modi�ed, the se
ondphase does not
hange at all, ex
ept that the badness is tested with respe
tto a di�erent program.The se
ond modi�
ation we implemented is related to the fa
t that wedeal with the odd length of the side of the grid. In su
h
ir
umstations ea
h23

quadrant (segment) has a
enter
ell. We
an require that these n
ells holddi�erent numbers. We
all su
h puzzles CenterDot sudokus. There are su
hsudokus and they are regularly published on our site.There are sudoku solutions that are both diagonal sudokus and Center-Dot. The sizes of the
lue set are mu
h smaller for both diagonal sudokusand CenterDot sudokus, thus putting a bigger
ognitive strain on the puzzleenthusiast.There are other generalizations; for instan
e when we
onsider (in 9 � 9grid)
orners,
enters of sides and the
enter
ell. All these
an be easilyimplemented.What to do when the side of the grid is not a square? Here a general-ization is still possible. The idea is to partition n2
ells into
ontiguous (andestheti
ally pleasing) n regions, ea
h of size n. Those are of spe
ial interestto younger puzzle enthusiasts for whom 4 � 4 sudoku is to easy, but 9 � 9sudoku of type we routinely publish { too diÆ
ult. We
all these sudokuvariations MultiSpot sudokus and our experien
e is that while for n = 5; 6; 7those are generally easy, for n = 8 they may be pretty tough. Again, pleasevisit our site for these generalizations.The reader must have noti
ed that up to now we have used
ardinality
onstraints with both upper and lower bounds equal to 1. Those are usually
alled
hoi
e rules. But it turns out that there are variations of sudoku wherewe do not stipulate that the solution is a latin square. We implemented twosu
h puzzles: Multifour and DoubleNine. In the �rst of these puzzles, wehave a grid of side 12, and we require that ea
h number in 1::4 o

urs in ea
hrow and in ea
h
olumn exa
tly three times (of
ourse tough enthusiasts
an24

size initial se
onds iteration se
onds MB16� 16 0.2 0.10 425� 25 0.6 { 2.7 0.14 636� 36 4.8 { 54 0.24 1449� 49 22 { 300 0.49 30Figure 5: Time and memory requirements for generating Sudoku puzzlesgeneralize it immediately). Here, we do not use the basi
 program generatinglatin square, be
ause the resulting grid is not a latin square. Instead wemodify the aspps rules (7) and (8) to:3fpla
e(I; J;N)[I℄g3and 3fpla
e(I; J;N)[J ℄g3Yet another variation (this time on
lassi
al sudoku) is a square grid ofside 18, where we put the following
onstrains. First, every row and
olumn
ontains ea
h number from 1..9 twi
e. Se
ond, there are 36 3 � 3 se
tions(yes, just
ount!). We require that ea
h se
tion
ontain every number in 1::9exa
tly on
e.(FIGURE NEEDED)11 Con
lusionsREUSE MIREK TEXT AS MUCH AS POSSIBLE
25

Puzzle SolutionA B C Dab
d E F G H I
efghi 7 82

2 389 761 4
1

9 9 5 342 1 A B C Dab
d E F G H I
efghi

2 8 5 6 3 7 1 9 49 1 6 4 8 2 7 5 33 7 4 9 5 1 2 6 86 4 8 3 7 9 5 2 15 2 1 8 6 4 9 3 77 9 3 1 2 5 4 8 61 6 7 2 9 3 8 4 54 3 9 5 1 8 6 7 28 5 2 7 4 6 3 1 9Figure 6: A 9� 9 diagonal Sudoku puzzle and its solution
Puzzle SolutionA B C D E F G Hab
defgh

I J K L
ijkl 4

241 41
32 1

2 12 2
411 41

2 242 4 434 1
1

4
1 1 3

2
1

13 4
41

3 2
3

4 33 41 123 222
3

23 3
3 4

13 24
2 42 2
2 42 213 A B C D E F G Hab
defgh

I J K L
ijkl

3 2 2 3 2 1 3 1 1 4 4 42 1 3 2 1 1 4 3 4 2 3 41 1 4 4 4 2 2 3 3 1 2 33 1 1 2 1 3 4 2 4 3 4 22 2 1 1 3 1 3 2 4 4 3 42 2 2 1 3 4 4 1 1 4 3 31 3 2 1 4 4 3 4 2 3 1 24 4 4 3 2 3 1 2 3 1 2 11 4 4 4 3 2 1 3 2 3 2 13 3 1 2 4 4 2 4 1 2 1 34 4 3 4 1 3 2 1 3 2 1 24 3 3 3 2 2 1 4 2 1 4 1Figure 7: An n = 3 MultiFour puzzle and its solution
26

Puzzle Solutionpp p p pp ppppppp p ppA B C D Eab
de F
f

G
g 16 47 13 3357 4 pp p p pp ppppppp p ppA B C D Eab
de F

f
G

g
2 5 4 3 7 6 11 7 6 5 2 3 43 6 1 7 4 2 54 2 5 1 6 7 36 3 7 4 1 5 27 4 3 2 5 1 65 1 2 6 3 4 7Figure 8: An n = 7 MultiSpot puzzle and its solutionReferen
es[ARMS03℄ F. Aloul, A. Ramani, I. Markov and K. Sakallah. PBS v0.2,in
remental pseudo-boolean ba
ktra
k sear
h SAT solver andoptimizer, http://www.ee
s.umi
h.edu/~faloul/Tools/pbs/,2003.[BS97℄ R.J. Bayardo, Jr and R.C. S
hrag. Using CSP Look-ba
k te
h-niques to solve real-world SAT instan
es. "Pro
eedings of the 14thNational Conferen
e on Arti�
ial Intelligen
e (AAAI-1997), pp.203{208. 1997.[DLL62℄ M. Davis, G. Logemann, and D. Loveland. A ma
hine program fortheorem-proving, Communi
ations of the Asso
iation for Comput-ing Ma
hinery, 7:394{397, 1962.[DK74℄ J. Denes and A.D. Keedwell. Latin Squares and their appli
ations.A
ademi
 Press, 1974.[EFLP00℄ Thomas Eiter, Wolfgang Faber, Ni
ola Leone, and Gerald Pfeifer.De
larative problem-solving in DLV. In Ja
k Minker, editor,27

Logi
-Based Arti�
ial Intelligen
e, pages 79{103. Kluwer A
a-demi
 Publishers, Dordre
ht, 2000.[ET01℄ D. East and M. Trusz
zy�nski. aspps | an implementation ofanswer-set programming with propositional s
hemata. In Pro
eed-ings of Logi
 Programming and Nonmonotoni
 Reasoning Confer-en
e, LPNMR 2001, volume 2173, pages 402{405. Le
ture Notesin Arti�
ial Intelligen
e, Springer Verlag, 2001.[FJ05℄ B. Felgenhauer and F. Jarvis. Enumerating possible Sudoku grids.web.info.tu-dresden.de/~bf3/sudoku/sudoku.pdf. 2005.[MMZZM01℄ M. Moskewi
z, C. Madigan, Y. Zhao. L. Zhang and S. Ma-lik. SAT solver
ha�. http://www.ee.prin
eton.edu/~
haff/.2001.[NS97℄ I. Niemel�a and P. Simons. Smodels | an implementation of thestable model and well-foundd semanti
s for normal logi
 programs.In Logi
 Programming and Nonmonotoni
 Reasoning (the 4th In-ternational Conferen
e, Dagstuhl, Germany, 1997), volume 1265of Le
ture Notes in Computer S
ien
e, pages 420{429. Springer-Verlag, 1997.[TFE05℄ Wikipedia: The Free En
y
lopedia. Sudoku, 2005. http://en.wikipedia.org/wiki/Sudoku.[WS90℄ L. Wall and R. L. S
hwartz. Programming Perl. O'Reilly andAsso
iates, 1990. 28

[WNS97℄ M. Walla
e, S. Novello and J. S
himpf. ECLiPSe: A Platform forConstraint Logi
 Programming. http://www.i
par
.i
.a
.uk/e
lipse/reports/e
lipse.ps.gz

29

