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Abstract

This paper is attempting to introduce the reader to the use of
declarative tools such as aspps or smodels to generate tabular numer-
ical puzzles such as sudoku.

1 Introduction

Cellular puzzles take the form of cells whose values are constrained by
rules involving groups of cells. The puzzle starts with clues, which are
cells that already possess their value. It is the pleasant task of the puzzle
enthusiast to solve the puzzle by entering values in all the cells in a way that
satisfies the constraints. A well-formed puzzle has exactly one solution. To
assist the enthusiast, the puzzle may contain a hint sequence, which is a
sequence of cells that suggest the order in which the enthusiast should be able
to complete the puzzle. While the puzzles published in newspaper do not
provide assistance to the person solving the puzzle beyond providing (either
at the same time, or later) a solution, it is possible to assist the person solving
the puzzle in a subtler way, and we will discuss as we will discuss it in the

body of this paper.
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This paper is a (curious) mixture of science and a cookbook. On one hand,
we will provide a rigorous description of the puzzles of sudoku class. To make
it even worse, we will present the unsuspecting reader with the introduction
to constraint satisfaction problems and then cast the problem of constructiong
sudoku puzzles as a two-phase application of constraint satisfaction; first, to
find a solution, and second, to use the solution that was found and a certain
algorithm for building a sudoku problem - out of that solution. Of course,
nothing like this is done by hand. The computer and its software (we will
use a class of publicly (and freely) available software called solvers) produce
the problem. The output of the solver requires an additional processing; we
will comment on this issue as well.

Here is the outline of our paper. First we will (gently) introduce the
reader to the concept of cellular puzzles that we will discuss in the paper.
Then, a heavy artillery starts, we will introduce the constraint satisfaction
problems and we will cast the tabular problems we focus on in this paper
as constraint satisfaction problems. In this process we will introduce ba-
sic constraints that define so-called Euler’s Latin Squares [DK74] that are
not yet a sudoku, but almost are. Then we introduce the additional con-
straint that selects out of latin squares sudoku solutions, that is latin squares
that satisfy the additional sudoku constraint (namely that every one of nine
quadrants (also called sections) contains every number in the range 1..9 ex-
actly once.) To scare the reader more we formulate (but not prove) the
proposition asserting correctness of our construction. At that stage of our
proceedings we know that the sudoku solutions can be obtained by running

software capable of solving constraint satisfaction problems. But our goal



is not to find sudoku solutions, but sudoku problems. We then formally
define what a sudoku problem is and state (but not prove) formally, the cri-
terion for a constraint satisfaction problem to be a sudoku problem. Two
(entirely immaterial for a layperson) propositions give two different repre-
sentations and assert the correctness of that representation. But we will
not create sudoku problems on commonly available constraint satisfaction
problem software such as ECLiPSe [WNS97|, but use the representation of
(finite-domain) constraint satisfaction problems using something quite exotic
for general public (but known in some Computer Science and also Combi-
natorial Optimization circles) called cardinality constraints. Instead we will
first formulate sudoku solutions as solutions to some system of cardinality
constraints, and then we give an algorithm that allows for creating reason-
ably hard sudoku problems via repeated application of solving a system of
cardinality constraints. The cardinality constraints solvers are freely avail-
able (one such solver is due to the third author and his students and is called
aspps http://www.cs.uky.edu/ai/aspps/. This is the software we use for
building sudoku solutions and problems. We save the reader the scare of
revealing of what aspps is an acronim of. At that stage of our paper the
reader can (with some small amount of programming, say in Perl [WS90]
or VB) produce a description of a nice sudoku puzzle. One script (it is not
provided, we need to keep something in our sleeve) transforms the output of
the solver creating the sudoku problem into a familiar, partly filled grid that
can be enjoyed by a person solving the puzzles. But now the question occurs
if all problems we create will be equally difficult. It turns out that the solvers

(the software we use) have at least three different modes for producing their



solutions. Those modes can be used for differentiating among the difficulty
of sudoku problems. But this is not the end of our paper. We discuss several
classes of tabular problems related to sudoku. For instance, we can require
that one or both diagonals in our puzzle has all entries different. We may
require that the centers of quadrants house different numbers. We may even
require both! We may want to change the shape of pieces in which we parti-
tion the basic grid - in the classical sudoku we partition the grid into 3-by-3
quares, but we do not have to. This leads to the generalization of sudoku to
situations where the grid is no longer 9-by-9. For instance we may have 8-
by-8 grid, partition it into additional 8 subgrids (each containing 8 cells) and
require that besides of being a latin square, every subgrid also contains each
number (in the range 1..8) exactly once. There is a wealth of generalizations
and the reader who musters patience to read and understand this paper will
have an opportunity to produce her very own special version of sudoku, or
sudoku generalization. Finally, we comment on weakening the condition that

every row and column contains ever number from prespecified range once.

2 Classical sudoku puzzles

We will consider Sudoku puzzles [TFE05] as a typical cellular puzzle. Fig-
ure 1 shows a sample Sudoku puzzle. The cells are arranged in a 9 x 9 grid
subdivided into nine 3 x 3 sections or quadrants. We say a set of 9 cells is
complete if the numbers 1...9 appear exactly once in that set. The con-

straints that link the cells are that each row, column, and section is complete.



Puzzle Solution

ABCDETFGHII ABCDETFGHI
a 8 273| afs[7[4[8]t[9]6[2]3
b 4] olsloli|3]2]6|5]7]4
cle 715]9 clel2lslal7|5]ol8]1
d al3Tslsl1]6]2]7]4]9
e 9 8|3 el2]1]6]ola]7]8]3]5
f 8 16| flolal7]ls5[3|8]2|1]6
g| 13718 5 gl7T3Tsle5 4192
h 7 1 hlale|2]7]o]1]3]5]8
il1]s 2 6 ilifs]ol2]8]3]4]6]7

Figure 1: A 9 x 9 Sudoku puzzle, and its solution

3 Constraint satisfaction problems

We start with a formal definition. Later on we will move from constraint

satisfaction to cardinality constraints and some readers may want to move

to that place (Section 6). A constraint satisfaction problem is a tuple P =

<X, {Dm}mGX; Rl; . ;Rk; S) where

1. X = {x1,...,, &y} is a finite set of variables. The set X is called as

scheme of P

2. S assigns to each realtion R;, 1 < j <k its scheme, S; C S.

3. For each variable x € X, there is a finite domain of variable z, D,

4. For each j, 1 < j < k, with S; = {iy,..

Dilx---XDi]-

.,i;}, the relation R; C

The solution to the constraint satisfaction problem P is any sequence

(p1,...,Pm) (remember that X has m elements) such that



(a) Foralli, 1<i<m, p; €D,
(b) Forallj, 1<j<m, (pi,....p;,) € R;

Let us see how the complete sudoku solutions (i.e. entirely and cor-
rectly filled grids) can be cast in the language of constraint satisfaction.
What we introduce are 81 variables, one for each cell of the grid. It will
be convenient to use double indices for variables: the variable z,,. (where
the row index r ranges over letters 1..9 and the column index ¢ ranges over
1..9 ! denotes the content of the cell (r,c). See the diagram of our sudoku
for the self-explanation of our convention. Domains of all variables are the
same; they are 1..9. So now we know the scheme of the problem and the
domains of variables. Now we need to define relations. There will be 27 re-
lations. Nine relations for the rows of our puzzle, nine relations for columns
of our puzzle, and nine relations for quadrants (sections). The tables will
be very similar, they will differ by schemes, but not anything else. Let us
see the scheme for the constraint for the first row: it consists of variables:
Ta,AsTa,B;---,Lqr. Likewise, the constraint corresponding to the last row has
the scheme consisting of variables: z; 4,2; p,...,z;;. We hope the reader
have seen the scheme for the other rows. The scheme for the first column
will be: 24 4, %4 4,...,7;a. We hope the the reader see the schemes for the
constraints of other columns. The schemes for quadrant constraint have more
complicating form. Here is the one for the middle quadrant: {z4p, 4 g, T4 r,
TeDsTe B, TeF, LfD, TfE, Trr}. We leave the problem of founding the other

schemes for quadrants to the reader. Surprisingly, besides of having different

!To distinguish between row indices and column indices we enumerated rows with latter
a..i and columns with letters A..I, see Figure 1



schemes, the actual tables for the constraints are all the same. It is a table
with nine columns (remember they will be relabeled as we move through
the constraints). Each table has exactly 9! rows (roughly 38 thousand lines
- but do not worry, we will never write it explicitely!). The researchers in
constraint satisfaction have a language for this very constraint. They call it
all_different (and they add the names of variables which are required to be

all different). So, our first constraint is
all different (xa,Aa Ta,BsLa,CyTa,Ds La,E)La,FsLa,Gs La,H, ',I/Ia,I)

Now a bit of combinatorics. A latin square over (1..n) is an n X n table
filled with numbers (1..n) such that every row and every column contains
each number from (1..n) ezactly once. Thus sudoku solution (like in our
example) is a latin square, but not every latin square is a sudoku solution.
To be totally formal we define a complete sudoku solution (sudoku solution
for short) a latin square over m? for some m where every quadrant (there
will be m? quadrants) has also every number from 1 to m? exactly once. The
classical sudoku solution is one for m = 3 (and so n = 9). But there are
sudokus in n = 16, 25, 36 etc.

Now, to be on the safe side we formulate a proposition that tells us that, in

principle, constraint satisfaction problem solvers generate sudoku solutions.

Proposition 1 There is a bijective correspondence between solution to the

constraint satisfaction problem P and complete sudoku solutions.



4 Sudoku problems as constraint satisfaction
problems

So far we have seen that we can cast complete sudoku solutions as con-
straint satisfaction problems. But, of course, our goal is to construct sudoku
problems, and in fact interesting sudoku problems. So now we will describe
sudoku problems (complete or otherwise) as constraint satisfaction problems.
We will start with the general definition, specially for theoreticians, especially
those who know the concept of a partial fiunction. Let C be some constraint
satisfaction problem with its set of variables X. A partial assignment for C

is a function f satisfying the following conditions:

1. The domain of the function f, dom(f), is included in X

2. for all x € dom(f), f(z) € D,

This looks intimidating, but partial assignment is just assignment of values
to some variables, not necessarily all. It may be correct or not. It is quite
clear when such assignment is intuitively correct ~when we can complete f
to a solution. So now the following definition makes sense. A partial solution
to a constraint satisfaction problem C is a function f which is included in
some complete solution in of C. This should immediately ring the bell: we
assign values to some cells in the grid. We did a reasonable job if what we did
can be completed to a solution. So we are almost at the correct definition. A
partial complete solution is a partial solution which extends to an exactly one
complete solution. There are all sort of characterizations of partial solutions
and of partial complete solutions. To give a suitable characterization we need

to modify constraint satisfaction problem associated with sudoku. Let P be



Te,D

Table 1: The relation associated with clue z. p =9

a constraint satisfaction problem, and f a partial assignment of variables
from X. We extend P to a new constraint satisfaction problem by adding
a number of very trivial relations. Namely, we add, for each x € dom(f)
a relation R,. This relation is very simple. Its scheme consists of just one
element, x (so it has just one column). The relation R, has just one row
consisting of f(x). Let us look at our example. The clues (depicted in the
left side of our Figure 1) are the partial assignment. For instance we assigned
the value to z, p, namely 8. We assigned the value to z; 4, namely 1, etc.
Altogether, our partial assignment had 25 variables in its domain. therefore
we will extend our constraint satisfaction problem for classical sudoku (81
variables, 27 relations) by 25 very simple tables. Here is one such table
(scheme in the top row): Given partial assignment f, we define Py as the

constraint satisfaction problem:

<Xa {D.’E}.’EEXa Rla s Rka <Rm>x€dom(f)a S)
We then have

Proposition 2 1. A partial assignment f is a partial solution for P if

and only if the constraint satisfaction problem Py has a solution

2. A partial assignment f is a partial complete solution for P if and only

if the constraint satisfaction problem Py has a unique solution



We can also express our Proposition 2 in a database langage SQL (yes!). We
need a bit of terminology. Given a partial valuation f, with the domain of f

being hq, ..., h, let ¢; be the following propositional formula:
hy = f(hy) AND...ANDh, = f(h,).

Now we write an SQL query Qy:

SELECT x
FROM Ry, ..., Ry
WHERE ¢,

We then have

Proposition 3 1. A partial assignment f is a partial solution to P if and

only if the answer to the query Qs is nonempty

2. A partial assignment f is a partial complete solution to P if and only

if the answer to the query Qs consists of just one tuple.

Even though Propositions 2 and 3 looks mathematical, they actually tells
us what do we need to do. We have to find the partial assignments f so that
P; possesses a unique solution. But Proposition 2 does not tell us how to
do this, and, in particular, what kind of software means can we use in this

venture.

5 Possible strategies for a random complete
solution generation

The strategy to construct a meaningful sudoku problem, i.e. finding some

reasonable correct set of clues consists of two steps. First we will find a
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sudoku solution. Then once we know that solution, we will build out of that
solution a set of clues (complete partial assignment). This partial assignment
will be what will be presented to the human solver.

In this section we need to see what kind of strategy can be used to find
a solution. Actually there are many possible strategies. We list four. First,
the programmer (constructor of the puzzle) may design and implement a
specialized program in some imperative computer language such as C++ or
JAVA. In order to produce different solutions some random number genera-
tion may be needed, to direct the program in its search for solutions. The
second approach, for enthusiasts of SQL could be to directly translate our
constraint satisfaction problem P to SQL. True, there will be 27 tables, each
approximately 38,000 records long, and 81 variables (thus attribute names),
but, in principle, a query that produces all sudoku solutions can be written.
But there is a cosmic number of sudoku solutions even for classical sudoku.
There will not be enough of space to write them all to the disk. The third
possibility is to translate our constraint satisfaction problem to some pro-
gram which can be further processed by a constraint programming language
such as EcLiPSe or CHIP. This can certainly be done. There is a fourth one
(we guess that there may be others) namely converting the constraint satis-
faction problem P to a problem in logic. This is what we will do. This will
drastically decrease the number of constraints we need to do. Then, by pure
miracle, we will find a computer language (known as PS+ [ETO01]) where
these constraints can be easily written. The effect will be a short (couple of
lines) description of classical sudoku. Even more miraculous will be the fact

that there is a software (publicly available, not less!) that will process such
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programs and return a random solution. Such software is called a solver.
The type of solver we use is based on two techniques, one taken from logic,
another from combinatorial optimization. From logic we will take the way
to write formulas. From combinatorial optimization we will use a technique
generalizing atomic expressions to so-called pseudo-boolean constraints. Both
are pretty intuitive and we will devote next section to the syntax of logic and

and what do we need to write.

6 Logic and its extension with cardinality con-
straint atoms, computing sudoku solutions

We will assume that the reader had sometimes in the past some kind of logic
course, and that she is familiar with logical notation, in particular quantifiers.
But we will go a step further; we will extend the language of logic to include
cardinality atoms. The reason is that tools like aspps are aware of cardinality
atoms and are able to process some expressions containing cardinality atoms.
The idea is that we require that certain number of atoms (at least as much as
the lower bound, but not more than upper bound) is true. Here is a simple
example. An expression 1{p, q,r, s}2 means that at least one but not more
than two among p, q,r, and s are true. So if p and r are true but ¢ and s
are false we satisfied our cardinality constraint. But if, say, p,q,r are true,
but s false too many of atoms are true, and our constraint fails. Now, for
1<i<9,1<35<9, 1<k <9 the proposition p; ;, denote this fact: the
cell with coordinates (i, 7) holds k. Then look how our constraint that cell

(1, 7) contains exactly one value could be written:
Hpiji, Pigas - Pijotl.

12



Likewise, the fact that given i and k the i*" row contains number k exactly

once can be written as:

Hpii g Diog,- - Dokl

And with column 57 — also very easy:

Hp1,jkD2jks - Dokt

For quadrants, we need to be a bit careful. Here is the cardinality constraint

expressing the fact that number 1 occurs in the first quadrant exactly once:

1{101,1,1 yD1,2,1,P1,3,1,P2,1,1, P2,2,1, P2,3,1, P3,1,1, P3,2,1, p3,3,1}1-

The issue now is if we have to do all this by hand or if additional means
can be used. Even though it is certainly easy to write a script to produce
all these constraints involving propositional variables, there is a better way.
Namely we use the predicate calculus. We add a new predicate letter p with
3 places and we write p(i, 7, k) to denote that the cell (i,j) contains k. So

now our constraint on contents of cell is:

Vou3:Hp(z,y, 2)}1

that is for all row indices z and column indices y that exactly one of of atoms
p(z,y,1),p(x,y,2),...,p(x,y,9) (here the range of z is (1..9)) is true. and

we certainly can do this for row and column constraints getting:

Ve 23y H{p(z, y, 2) 11

and

Vy,zﬂml{p(.'t, Y, Z)}l

13



1 numsmall(l..n).
numlarge(l..m).

3 pred place(numlarge, numlarge, numlarge).

4 var numlarge I,J,N.

5 wvar numsmall K,M.

6 1 { place(I,J,N)[N] } 1.

7 1 { place(I,J,N)[I] } 1.

8 1 { place(I,J,N)[J] } 1.

9 1 { place(I,J,N)[I,J]: I<=n*K: J<=n*M: n*(K-1) < I:

10 n*(M-1) < J} 1.

Figure 2: Aspps rules for the Sudoku puzzle

It is a bit more difficult for contraints on quadrants. We need to look at some
arithmetic conditions. We will see the constraint on quadrants soon.

We have to be able to tell the processing engine that we want to deal
with numbers (1..9) - but it could be (1..16) for more complex sudoku, or
even 25, or 36. Next we have to be able to distinguis between the universally
quantified and universally quantified variables.

When the dust settles we have the following expression, written in the
language understood by aspps:

Lines 1 and 2 introduce numsmall and numlarge as predicates true over
the range 1...3 and 1...m, respectively. The parameters n and m can be
instantiated from command line. In classical sudoku, n is instantiated to
3 and m to 9 Lines 3, 4, and 5 give the signature of the ternary predicate
place and the variables I, J, N, K, and M. We use place(I,J,N) to represent
the fact that the value N is placed in cell (I,J). Line 6 can be read “given a

cell (I,7J), there is at least one and at most one (that is, exactly one) value
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N that is placed in that cell.” Line 7 represents the constraint that there is
exactly one row I for which any given value N appears in column J. Line 8
constrains columns in a similar way. Lines 9 and 10 introduce the section
constraints. Given a section numbered (K,M) and a value N, there is exactly
one cell (I,J) in that section that has that value.

The software such as aspps converts the program such as the one in Figure
2 to a propositional program, in effect eliminating variables, and putting the
constant values (from the range of variables) instead. This process is known
as grounding. The grounded program has only propositional variables. The
casual user does not have to see the grounded version of the program at
all. The grounded version of the program is solved. This process finds its
propositional models also known as satisfying valuations. There is a huge
number of solutions. To avoid repetition, the processing of the propositional
program is randomized, for instance by randomly assigning values of some
propositional variables. The solver is based on backtracking search, a form of
search closely related to so-called DPLL algorithm for finding propositional
models of CNF propositional theories ([DLL62]). The DPLL algorithm was
extended by the designers of aspps top handle clauses admitting cardinality
constraints.

The following fact is crucial for the purpose of constructing sudoku puz-

zles.

Proposition 4 There is a bijective correspondence between the models of
program listed in Figure 2 with parameters n = 3 and m = 9, and classical

sudoku solutions.
We will call the program consisting of lines (1), (3), (4), and (5) only the
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basic program. The models of this program initialized with m = k correspond
to latin squares of length k. Therefore, when we build later in the paper other
puzzles based on latin squares, we will reuse this basic program, heaping on
the top of it additional constraints.

The question arises if aspps is crucial for the kind of applications we have
in mind. In fact we could use (with pretty small changes in the program,
but still the changes would be required) solver such as smodels]NS97]. or
PBS[ARMS03]. We could (with still more work on our part) use SAT solvers
such as zchaff [MMZZMO1], or other solvers publicly available. Since these
solvers usually do not support cardinality constraints, and generally appear
to be weak in the area of knowledge representation, an additional work on
coding would be needed before we could use the results returned by the
solver.

Let us add that the number of sudoku solutions is known, see [FJ05].
The authors of [FJ05] give a method of calculation of the number of sudoku
solutions, and compute that number. They also quote a recomputation by
an independent researcher (with his own program) of their result. For the

sake of completeness, we state that result of Felgenhauer and Jarvis:
6670903752021072936960.

The number of 16 x 16 sudoku solutions is not known.
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7 From the sudoku solution to sudoku prob-
lem

So far we have seen how declarative tools, in particular aspps can be used to
compute sudoku solutions. But, of course, the puzzle enthusiast wants the
puzzle, moreover an interesting puzzle, not the solution. we will outline an
algorithm for building an interesting puzzle. This concept can be formally
defined. Before we give a formal definition recall that a sudoku problem is a
partial assignment f of values to variables so that there is a unique solution
extending f. Here is how we define the concept of interesting problem. A

sudoku problem f is interesting (complete) if

1. fis a sudoku problem

2. for every variable z in the domain of f, the problem ¢ arising from f

by eliminating the pair (z, f(z)) from f is not a sudoku problem.

This definition of interesting problem requires that an interesting problem
be minimal; eliminating of any clue would result in multiple solutions extend-
ing the revised set of clues. Here is an algorithm that does build interesting
sudoku problems.

The algorithm starts with a computation of one solution. We presented
above means that make such computation feasible. Let f be such solution.
We proceed recursively. The initial assignment of variable removableClues is
the entire set of clues. Then, in the main loop, once we have the current value
of the set removableClues and that value is not empty, we check which values
can be eliminated from removableClues so that the uniqueness of extension is

preserved. One such value is selected at random, and eliminated (this value
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removableClues := solution

preservedClues := @

while removableClues # () do
victimClue := randomChoice(removableClues)
removableClues := removableClues - {victimClue}
if puzzleBad(removableClues + preservedClues) then

preservedClues := preservedClues + {victimClue}

end if

end while

O 00 N O O b WN =

[y
o

clues := preservedClues

Figure 3: Algorithm to reduce the clue set

is called wvictimClue. This loop is iterated until removal of any clue results in
having more than one extension of removable Clues to a solution. Here is the
algorithm.

Each iteration randomly picks a single clue and tries to solve the puzzle
without it. If the puzzle is now bad (we’ll explain that shortly), the clue is
added to the set of fixed clues, which must be preserved. Eventually, all the
original clues are either removed or preserved; the preserved clues become
the final set of clues.

The only complex part of this algorithm is the puzzleBad function, which
determines whether a given set of clues makes an good puzzle, that is admits
a unique solution. To this end we again use aspps. If the set of clues( the
clue of the form “the cell (i, ) contains value k” is coded as a fact of the form
place(i, j, k) - thus the set of clues corresponding to our running examples
contains the clues such place(3,5,7)) can be no further reduced without
forfeiting uniqueness of solutions, it is returned. The function puzzleBad

tests exactly this.
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But aspps allows not only for finding a solution, but allows to trace the
difficulty of finding of a solution. Specifically, aspps may work in an in-
complete mode; it may use only some means to solve the solution, or use
its complete power. So far, aspps allows for three modes of solving (in the

increased degree of completeness):

1. Solving in the grounder
2. Solving with so-called 1-lookahead

3. Solve by complete search of the search tree of partial solutions

Here is what it means. As mentioned above, the grounder transforms the
very short description of the problem (this description is written in predicate
calculus, just that it is streamlined so it is understandable to the machine)
into a propositional theory, without individual variables (but with proposi-
tional variables - grounded predicate letters). But the grounder execute so-
called Boolean Constraint Propagation (BCP), essentially finding more facts
that stare in your face as you solve it 2. It may happen that the problem is
so easy that this is enought to find a solution. The 1-lookahead is a technique
in which the solver, besides of Boolean Constraint Propagation can make a
single guess and then check if the resulting theory admits a solution. The
complete search uses both the previously mentioned techniques and if stuck,
makes additional guesses. If a guess turns out wrong (leads to contradic-
tion), the opposite value for the last guess is tried. If both eventually fail,
backtrack (or even stronger form of backtrack, backjump [BS97]) is applied.

2By staring in your face we mean: “There isbjust one possibility for a value and we see
it now (for instance 8 values are already assigned in a row, column, or section).
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The following results can arise from applying Aspps.

e The puzzle has no solutions. This situation should never happen, be-
cause each iteration tests a less-constrained puzzle than the previous

one.

e The grounder finds a solution without lookahead. The puzzle is “good”

and the clue may be safely removed.

e The grounder finds the solution, but it needs lookahead. Depending
on how difficult we wish to make the puzzle, we might call the puzzle
either “good” or “bad”. In practice, unless we are trying to generate a
hard puzzle, we tell the grounder not to use lookahead. So when this

situation arises, we call the puzzle “good”.

e Aspps requires the full solver and backtrack to find a sole solution. Al-
though the puzzle is well-formed, it is too hard for general enthusiasts.

We call the puzzle “bad”.

e The puzzle has multiple solutions. The missing clue is required to keep

the puzzle well-formed. The puzzle is “bad”.

These last two situations require the solver to distinguish. But we consider
both to be “bad”. Therefore, we don’t ever call the solver. Either the
grounder can solve the puzzle (“good”) or it can’t (“bad”).

If we are trying to generate a hard puzzle, we let the grounder use one-
step lookahead. We also apply one more test after reaching the final set of
clues: Can the grounder solve the final set of clues without using lookahead?

If so, then the puzzle isn’t hard enough, but removing any clues would make
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it ill-formed or too hard. In this case, we reject the puzzle completely and
start afresh.

Let us also observe, that the Algorithm 3 can be used to make puzzles
easier. The reason for this is that we do not have to return the minimal set
of clues. We can break the loop earlier, and the resulting puzzle will be only
easier. Our own puzzles do not break earlier, but if one wants to produce
less interesting puzzles, a numerical switch such as “no more than 30 clues

left” can be used.

8 Generating a hint sequence

In a cellular puzzle, most atoms turn out to be false. For example, in the
puzzle of Figure 1 (page 5), it turns out that place(1,1,5) is true. Therefore
the grounder at some point also derives that place(1,1,1) is false, as is
place(1,1,2) and all the other related values. The positive (true) instances
of place are the interesting ones. By examining the grounder’s log, we can
determine the order in which it discovers positive atoms by unit propagation.
That list begins with the clues themselves. The rest of the positive instances
of place in the log form the hint sequence.

We show now the hint sequence for our running example:

9 Performance

The logic-program approach to generating cellular puzzles is remarkably ef-
ficient in programmer time. Each puzzle type requires only a few lines of

Aspps code. The algorithm of Figure 3 is encoded in about 500 lines of
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1:bE 2:eF 3:.eE 4:.fE 5:hG
6:iF 7:AD 8:cH 9:cI 10:gG

11:0G
15:bH
19:gA
23:aA
27:aB
311G
35:¢D
39:¢C
43:hB

12:cB 13:eI 14:hH
16:eA 17:hC 18:gl
20:fC 21:fA 22:hA
24:dC 25:bG 26:aG
28:dA 29:dB 30:bA
32:iC 33:bB 34:bF
36:gF 37:cD 38:bD
40:bC 41:eB 42:eC
44:aFE 45:dD 46:dE

47:aF 48:hE 49:1E 50:hI 51:11
52:dG 53:dl 54:¢gH 55:dH

56:aC

Figure 4: The sequence of hints generated by the solver

Perl [WS90], much of which is devoted to generating formatted puzzle and

hint output.

Given the Aspps rules, generating a puzzle has two phases: Finding the
solution and reducing the clues. The time needed for the first phase depends,
of course, on the complexity of the constraints and the size of the puzzle. On
a 3GHz Pentium 4 running Linux, we accomplish the first phase for Sudoku
puzzles of various sizes in time and memory shown in Figure 5. The time for
the first phase has a large variance, especially for larger puzzles. Figure 5

also shows the time for each iteration in the second phase. This value has

much smaller variance.
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10 Modifying classical sudoku

The aspps program that computes the the classical sudoku solutions has a
very compact form. It expresses four basic constraints (we get four formulas,
shown above in Figure 2). It turns out that various additional constraints
can be further imposed. The first type of modification of sudoku (existing
for all types of sudoku considered here) is one where we require that each
diagonal also contains the numbers 1..n exactly once. The sudoku in Figure
1 is not a diagonal sudoku, because the number 1 occurs on the NE diagonal
twice (whereas 2 does not occur there at all). It is very easy to generate
diagonal sud kus. First, let us observe that our constraints can be written

as:
1. ‘v’yﬂmplace(w,%y)
2. Vy3yplace(x,9 — z,y)

(For sudokus of dimentions 16, 25, 36 etc, the formula (2) needs to be mod-

ified in an obvious waya) It is very easy to write the diagonal constraints in

aspps:

(1’) {place(l,I,N)[I]}1
(2) 1{place(I,9 — I, N)[I]}1

We observe that while the fist part of the process is modified, the second
phase does not change at all, except that the badness is tested with respect
to a different program.

The second modification we implemented is related to the fact that we

deal with the odd length of the side of the grid. In such circumstations each
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quadrant (segment) has a center cell. We can require that these n cells hold
different numbers. We call such puzzles CenterDot sudokus. There are such
sudokus and they are regularly published on our site.

There are sudoku solutions that are both diagonal sudokus and Center-
Dot. The sizes of the clue set are much smaller for both diagonal sudokus
and CenterDot sudokus, thus putting a bigger cognitive strain on the puzzle
enthusiast.

There are other generalizations; for instance when we consider (in 9 x 9
grid) corners, centers of sides and the center cell. All these can be easily
implemented.

What to do when the side of the grid is not a square? Here a general-
ization is still possible. The idea is to partition n? cells into contiguous (and
esthetically pleasing) n regions, each of size n. Those are of special interest
to younger puzzle enthusiasts for whom 4 x 4 sudoku is to easy, but 9 x 9
sudoku of type we routinely publish — too difficult. We call these sudoku
variations MultiSpot sudokus and our experience is that while for n = 5,6, 7
those are generally easy, for n = 8 they may be pretty tough. Again, please
visit our site for these generalizations.

The reader must have noticed that up to now we have used cardinality
constraints with both upper and lower bounds equal to 1. Those are usually
called choice rules. But it turns out that there are variations of sudoku where
we do not stipulate that the solution is a latin square. We implemented two
such puzzles: Multifour and DoubleNine. In the first of these puzzles, we
have a grid of side 12, and we require that each number in 1..4 occurs in each

row and in each column exactly three times (of course tough enthusiasts can
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size initial seconds iteration seconds MB

16 x 16 0.2 0.10 4
25 X 25 0.6 2.7 0.14 6
36 x 36 4.8 54 0.24 14
49 x 49 22300 0.49 30

Figure 5: Time and memory requirements for generating Sudoku puzzles

generalize it immediately). Here, we do not use the basic program generating
latin square, because the resulting grid is not a latin square. Instead we

modify the aspps rules (7) and (8) to:
3{place(1,J, N)[I]|}3
and
3{place(l,J,N)[J|}3

Yet another variation (this time on classical sudoku) is a square grid of
side 18, where we put the following constrains. First, every row and column
contains each number from 1..9 twice. Second, there are 36 3 x 3 sections
(yes, just count!). We require that each section contain every number in 1..9

exactly once.

(FIGURE NEEDED)

11 Conclusions

REUSE MIREK TEXT AS MUCH AS POSSIBLE
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Solution
A BCDEVFGHI

al2|8|5)6|3|7]1]9|4

bl9|1|6]4[8|2]7|5]|3

Puzzle
A BCDEVFGHI

317141915112 |6]8

512118641937

8152714613119

C

d]6(4|8]3[7]9]5(2]|1

e

f17(913]1(2|5]4|8|6
gll|6]7]12|9]3]8|4|5

h14(3|9]5|1|8]6|7]|2

i

4
3

7

Figure 6: A 9 x 9 diagonal Sudoku puzzle and its solution

Solution
ABCDEFGHTI J KL
al[37212]312/11311]1 444
b[2[1]3/2/1]143|4]2|3|4
cli(172/2/212/2(3/3/1 23
d[3[1[1]2/13424(3]4|2
el22]1]1/3/1(3/2/4 43 4
f[2/2/2/1(3 4]4]|1]14/3|3
gli3 21224342312

h|4(4/4/3|2|3|1|2|3|1|2]|1

Puzzle
ABCDEFGHI JKL

i]1/4|4|4|3|2|1/3]2]3|2]|1
jl3]|3|1|2|4(4|2(4/1]2|1|3
k|4/4/3/4|1|3|2|1]3]2|1|2

114|3|3|3|2|2|1]4]2]1|4]|1

1

2
1

2

4314|123

211132

cll|14|4

Figure 7: An n = 3 MultiFour puzzle and its solution
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Puzzle Solution

ABCDEFG ABCDEFG
a 413 al2|54]3]|7/6|1
b 7 bl1]7/6]|5|2]3 |4
c|3]6]1 4 c|3]6]1|7|4]12|5
d 5 3 dl4|2]|5|1|6]7|3
e e|l6|3]7]4|1|5]2
fl7 1 fl7/4]13]2]5|1|6
g g|5]1|2]6]3]4|7

Figure 8: An n = 7 MultiSpot puzzle and its solution
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