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» Satisfiability - invented in the0** of XX century by philosophers and
mathematicians (Wittgenstein, Tarski)

» Shannon (lat€0*¢*) applications to what was then known as electrical
engineering

» Fundamental developmen®*¢* and70*** — both mathematics of it, and
fundamental algorithms

» 90°* - progress in computing speed and solving moderately lamjalgms

» Emergence of “killer applications” in Computer EnginegriBounded Model
Checking




» SAT solvers as a class of software
» Solving large cases generated by industrial applications

» Vibrant area of research both in Computer Science and in Qe@ngngineering
e Various CS meetings (SAT, AAAI, CP)
e Various CE meetings (CAV, FMCAD, DATE)
e CE meetings Stressing applications




» Providing mathematical and computer science foundatid&\d

General mathematical foundations

Two- and Three- valued logics

Complete sets of functors

Normal forms (includingte)

Compactness of propositional logic

Resolution rule, completeness of resolution, semantasalution
Fundamental algorithms for SAT

Craig Lemma




» Easy cases of SAT
e Horn
o 2SAT
e Linear formulas

» And if there is time (but notes will be provided anyway)
e Expressing runs of polynomial-time NDTM as SAT, NP comphetes
e “Mix and match”
e Learning in SAT, partial closure under resolution
e Bounded Model Checking




» Expected involvement of Dr. Truszczynski

An extensive set of notes (> 200 pages), covering most of$opill be provided
f.0.c. to registered students (in instaliments)

\ 4

No claim to absolute correctness made

Syllabus: http://www.cs.uky.edu/ marek/ntmidid.dirGa@mi
Homeworks every other week

Midterm

Individually-negotiated project
e Write your own SAT solver@
e Modify Chaff

e Use SAT solver for some reasonable task

vV v v v Y

» Questions?

2Hic Rhodes, Hic Salta




Sets and operations on sets
Relations

Partial orderings (posets)
Elements’ classification

Lattices

Boolean Algebras

Chains in posets, Zorn Lemma
Well-orderings, ordinals, induction
Inductive proofs
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Inductive definability




» Complete Lattices
» Monotone operators (functions) in lattices

» (Knaster-Tarski Fixpoint Theorem) If L is a complete lattice anfl: . — L is
monotone operator ih then f possesses a fixpoint. In fact fixpoints oform a
complete lattice under the ordering bf and thus there is a least and largest
fixpoint of f

» Continuous monotone functions

» The least fixpoint (bubhotthe largest fixpoint) of a continuous operator reached
IN w or less steps

» Generalizations of fixpoint theorem




Variables of some (problem-dependent) \¢at

For each seVar a separate propositional logic

Inductive definition of the set of formula®orm v,

Thinking about formulas as binary trees, the rank of formula




Valuations of variables

Partial valuations of variables

Two-valued logic and valuations

TypeBool

Tables for operations iBool

Valuations acting on formulas
Valuationsuniquelyextend from variables to formulas
Characterizing valuations as complete sets of literals
Characterizing valuations as sets of variables
Two-valued truth function,

Satisfaction relatior=

Consistent theories
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» Interactions between sets of variables
» Restrictions of valuations

» Localization theorem: If Var; C Vary andy € Ly,,,, v IS a valuation ofVar,,
v is the restriction ob to Vary = ¢ thenv = g ifand only if v’ = ¢

» Complete sets of formulas

» Lemma: Complete sets of formulas determine valuations and ceelgr
valuations determine completes sets of formulas

» (Robinson joint-consistency) L&t , 1, are two sets of formulas iar,, Vars
resp. Let us assume thétr = Var, N Vary and that boti?, T, are complete
for Var and coincide. Theff; U T5 Is consistent




Need for partial valuations?

Partial valuation as complete valuations buf{n1, u}
Post ordering and Kleene ordering in the S&t1, u }
Product ordering

Post ordering and Kleene ordering in the multiple-copiesipct of{0, 1, u}, <,
and<,

» Getting Kleene and Post orderings of partial valuations
» Valuations as maximal partial valuations
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Three-valued truth functions

vo andws coincide ifv is a (two-valued) valuation
If v <; w then for every formula, vs(¢) <i ws(p)
Autarkies

Fundamental effect of this result in SAT
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Restriction result for 3-valued valuations
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A tautology- formula true under all valuation of its variables
Satisfiable formulas

A formula ¢ is satisfiable if and only if-¢ is not a tautology
Consequences of this fact: satisfiability checkers as l@gyacheckers
Common tautologies

How many are there tautologies?




» Substitution
P1 ... DPn
V1 ... Yy

» Valuations acting on substitutions

» Substitution Lemma: Lety € Formy, ., 1 be aformulain propositional

variablespy, . .., p,, and let(vyq, ..., ¥,,) be a sequence of propositional
formulas. Letv be a valuation of all variables occurringin, . .., v,,. Finally,

let v’ be a valuation of variables, . .., p,, defined byv'(p;) = v(v;),

1 <73 <m.Then
1o pP1 ... Dn
”(9")”<¢<¢1 w))




» Letp be atautology, with variables gf amongp+, ..., p,. Then for every
P1 ce. Pn

1 e n

choice of formulag, ..., ¥,), the formulay IS a tautology.

» There are infinitely many tautologies




» Relation~: ¢ ~ 2 if for all valuationswv (of all variables occurring i, 1)
v(p) = v(¥)

~ IS an equivalence relation

@ ~ 1 iff the formulay = v is a tautology

We can form the cosetBorm/ ~

Operations inform/ ~

Independence from the choice of representatives

Lindenbaum Algebra

vV v v vV v Vv Y

Lindenbaum Algebra is a Boolean Algebra
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Permutations of atoms

Permutations of literals, consistent permutations ofdite
Shifts

Consistent permutations form a group

Decomposing consistent permutations of literals intotslahd permutation of
variables

There is2™ - n! of consistent permutations of literals over a $et of sizen

» Consistent permutations of literals (and thus permutatadrvariables) preserve

completeness of sets of literals

Every consistent and complete set of literals can be mapptedamy other
consistent and complete set of literals by a suitably chosesistent
permutation of literals




» Permutations act on formulas

» (Permutation Theorem) If ¢ is a formula,v is a valuation and a consistent
permutation of literals then = ¢ if and only if 7(v) = 7 ()

» Set-representation of valuations and permutation




» OperationCn, entailment of the (sets of) formulas
Cn(F) ={p:Vo(v[E F = v )}

Cn Is an operator in the complete Boolean algebra of sets ofutasn
For all setsF', F' C Cn(F)

Cn IS monotone and idempotent

Cn is continuous (but we have no means to prove it, yet)
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Cn () consists of tautologies and nothing else




» Implication functor and consequence operation
» The following are equivalent

e =Y e Cn(F)

e ¥ Cn(FU{p})




» From sets of formulas to valuationdfod(F) = {v:v = F'}
» From sets of valuations to formuld (V) = {¢ : forallv e V,v = ¢}

» Connection: Leb be a valuation andl a set of valuations. Then
v € Mod(Th(V)) if and only if for every finite set of variabled there is a

valuationw € V such thaw | 4= w | 4.

» Let A be a finite set of propositional variables. léthe a collections of
valuations of sed andv be a valuation oA. Thenv = Mod(Th(V)) if and
onlyif v € V.

» Mod(Th(Mod(F))) = Mod(Cn(F)) = Mod(F)
» Th(Mod(Th(V))) = Th(V).




An n-ary functor is an-ary function inBool

There are?” n-ary functors
Table - Boolean function of finite number of variables
Altogether there is infinitely many tables
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Given a set’ of names for functors we can forfrbrm® - the set of formulas
based o’ (obvious syntactic restrictions)




» Valuations as before, functions drur into Bool
» Assigning tables to well-formed formulas (i.e. trees, butanger binary trees)
[

T, table associated witp

» C iscompletaf every tableT is equal tal, for somey € Form®




» If C,C; are two sets of functorg, is complete and C C; then(; is also
complete.

» The set{—, A, V}is acomplete set of functors.
» Thus{—, A,V,=,=}is a complete set of functors.

» Let(C; andC, be two sets of functors. Let us assume thats a complete set of

functors, and that for every functere C, there is a formula € Form®' such
that the tablel. is identical with the tabld’,. Then(; is also a complete set of
functors.

» Let(C; andC, be two sets of functors. Let us assume thats a complete set of

functors, and that for every functerc C, there is a formula € Form® such
that the formulac(z4, ..., z,) = ¢(x1,...,x,) IS atautology. Thel, is a
complete set of functors.




{—, A} is a complete set of functors
{—, v} is a complete set of functors

But in this last case we allowed use _of

>
>

» {=}is acomplete set of functors.

>

» {ite} is complete, but use of constants needed
>

Beautiful property ofte:
Let ¢ be a propositional formula and letbe a variable. Then for all variablgs
and formulag) and+ the equivalence

e my) = e (5)#(5)

IS a tautology.




» The sef{A,V}is notacomplete set of functors, even in the weak sense.
» The set{=} is not complete




Negation normal form, pushing negation downwards

Double negation rewrite rule
De Morgan laws as rewrite rules
Canonical negation normal form




» Inductive definition of positive and negative occurrences
» A variable may occur both positively and negatively in a fatan

» Canonical negative normal form preserves both positivereggtive occurrences
of variables
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Treating formulas as trees
Counting negations on the unique path from the leaf to the roo
Positive occurrrence if this number is even, odd occurremse

Rewrite rules, when interpreted as operations on treegpiegven and odd
number of occurrences on paths

In cNN(¢) number of occurrencesor 1




» Canonical disjunctive and conjunctive normal forms:
» Four distributive rules

* PA(PVI)=(p A1)V (pAD)
e WVI)ANp= [ Ap)V(IAp)
e pV(PAD)=(pVY)A(p VD)
e WAI) Vo= Ve)A(DVe)




» Formulayp is already in cNN form
e ¢cDNF(a) = aif ais avariable
e ¢cDNF(—a) = —aif ais avariable
e AssumingDi V D3 V...V D; = cDNF(¢y)andD; Vv D5V ...V Dz,
= cDNF (1), define
1. ¢cDNF (1 AY2) = Vi, j<m, D! A D?
2. ¢cDNF (1)1 V 1p5) = cDNF(11) V cDNF (1))

» For every formulap in negation normal form, the formutd NF () is in
disjunctive normal form. Moreovey = cDNF ().

» (Preparing for the complete DNF).
For every formulap and a variable € Var, there exist two formulas;,
¢ = 1,2 such that

1. p¢ Vary,,i=1,2
2. The formulap = ((p A1) V (—p A 1bg)) IS a tautology.
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Assumingyp in cNN form

cCNF(a) = aif ais avariable

cCNF(—a) = —a if a is a variable

AssumingCt AC3 A...AC = cCNF(¢) andC; AC3 A ... NCZ,
= cCNF(1)), define

1. ¢cONF (1 V¥2) = Nicons i<ms Ci v

2. cCNF (11 A1pg) = cCNF(1p1) A cCNF (1))

For every formulap in negation normal form, the formuts&CNF (¢) is in
conjunctive normal form. Moreoveg = cCNF(p).




» If a variablep has only positive occurences iy {p} does not have to be an
autarky, but...

» Let F' be a set of formulas in which a varialjdnas only positive (resp. negative)

occurrences. TheR is satisfiable if and only it" U {p} (resp.F" U {—p})is
satisfiable. In other worddy is satisfiable if and only if it is satisfiable by a

valuationv such that(p) = 1 (resp.v(p) = 0).
» Look at the proof: it shows equivalent formulas may not hame autarkies




» AclauseC =p; V...Vpr Vg V...V g is atautology if and only if for
somei, 1 <i < kandj,1<j<Il,p; =g

» Given two clause§’; andCsy, C; = Cs if and only if all literals occurring inC'y
occur inCs, that isC; subsumesg’,.

» Reduced CNF: no subsumption between clauses

» Subsumption can be eliminated in polynomial time (but It siay be too much
work)

» Similar result for DNF
» CNF machine a device to convestto cCNF ()
» CNF machine as a DNF machine




» A mintermis an elementary conjunction containing one literal froroheset
{p, ~p}

» For every formulap and every minterm, either the formuldp A t) = tis a
tautology, orp At is false.

» Given a valuatiorv of finite set of variables,, is conjunction of literalg such
thatv(l) = 1

> d‘P — v’UEMOd((p) by

» Eachd, entailsy

» For every formulap, ¢ = d,, is a tautology. Up to the order of variables, and the
listing of minterms the representatign— d,, is unique.
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Minterms: just rows in the table where the valuéd is
Maxclauses: clauses non-tautological clauses mentialinvgriables
Formulac,, - conjunction of maxclauses entailed py

For every formulap, ¢ = ¢, is a tautology. Up to the order of variables, and the
listing of maxclauses the representation- c,, IS unique.




» Equivalence classes of minterms are atoms in the Lindenl#dgabra

» Since there ar™ minterms, Lindedenbaum algebra l2&satoms ¢ - number of
variables)

» Hence for finite set/ar the Lindenbaum algebra dfar is a finite Boolean
algebra

» Not every finite Boolean algebra is Lindenbaum algebra
» Butif a finite Boolean algebra ha$ atoms then it is a Lindenbaum algebra




» Implication normal form (only implication]. and variables)

» Hence by adding additional variables we can reduce evemular to collection
of implications

» If-then-else normal form




» KoOnig Lemma: an infinite, finitely splitting tree possessesdinite branch

» (Compactness Theorem) If a set of formulasF' is unsatisfiable then there is a
finite subsett; C F' such thatF' is unsatisfiable

» Equivalently: when all finite subsets &f are satisfiable theR' is satisfiable
» Constructing a tree associated with a family of clauses
» Corollary: The operato€'n is continuous




» Clausal logic: logic where only formulas are clauses

» Alternative approach: negation and infinitely many funstarary disjunctions,
each with its own table

» Such logic expresses the same theories as the full propaalitfiogic

» Since such disjunctions are commutative w.r.t. all pertnuta we treat clauses
as sets of literals, no repetition

» Fundamental operation on clauses: resolution

Nze 1V Cy
CiV Cs '

» Resolution rule isound




» Given a set of clausek there is a least set of claus@ssuch that
1. FC(d
2. WhenevelD, andD- are two clauses itr and the operatio®es(D1, D) is

executable and results in a non-tautological clause #D+, D-)
belongs taG.

» Operatorresr (in the complete lattice of subsets of the set of clauses)

7“63F(G) = FU {RBS(Cl,CQ) : 01,02 c FUG
and Res(C1, Cs) is defined and non-tautologidal

» resp has aleast fixpoint. This is the closure under resolution




» Derivation of a clause: a labeled binary tree: leaves labeith elements of,
internal nodes labeled with resolvents

» Proof-theorists invert those trees. Root is at the bottom
» As every ordered tree, such trees can be represented asgtritth depth-first
traversal)

» In this way we can define proofs as sequences of clauses:

1. Conclusion of the rule application application occuvgagls later than
premises

2. If a clause occurs in the sequence then it belonds do is a conclusion of
an application of resolution to earlier elements of the etau

3. The proven clause is last element of the sequence
» Both approaches (trees, proofs) are equivalent
» Derp set of clauses that have proof




» Resolution alone is not complete. That is there are clawgeastically entailed,
but not provable by resolution

» Reason: resolution does not add variables

» Example:F :={pVq},C :=pVvqVr. ClearlyF = C, butthe only thing we
can prove (using resolution) is the only claus&in




» Elements ofRes(F') - resolution consequences

» Inclusion-minimal elements akes(F') - minimal resolution consequences

» If C'is aresolution consequence Bf then there must be minimal resolution
consequence di' ¢’ included inC'




» Subsumption rule:
C

CVD

Subsumption rule is sound

We can define the notion of derivation (tree) using subswng@nd resolution
We can define the the notion of proof (sequence of clauses)

Whatever can be proved with one can be proved with the other

v v. v Vv




» A non-tautological clausé€’ is a consequence of a set of claused and only if
there is a Resolution consequencerpiD, such thatD C C.

» A non-tautological clausé€’ is a consequence of a CNFif and only if for some
minimal Resolution consequenéeof F', D C C.

» A CNF F is satisfiable if and only il ¢ Res(F).

» (Quine Theorem Proof system consisting of Resolution and Subsumptiorsisle
complete for clausal logic. That is, given a set of clausesd a clausé€’,
F = C if and only if there exists a derivation (using Resolutionl an
Subsumption rules) that provés

» We can limit the proof to admit a single application of Subgtion.




» Given a clause’,
-C={l:1cC}
» If Cis aclause thea(C is a set of unit clauses

» We say that follows from F' by Resolution refutationf the closure under
Resolution off" U —=C' contains an empty clause (i.e. is inconsistent).

» Let F'be a CNF, and lef’ be a clause. TheR = C if and only if C follows
from F' by Resolution refutation.




» BasisG of Res(F)
1. G C Res(F)
2. Cn(F) = Cn(Q)
3. G forms an antichain, i.e. fat';, Cy € G, if C7 C Cy thenCy = (s
4. Every element oRes(F') is subsumed by some element®f
» Let F' be a set of clauses. Thdnipossesses a unique basis

» How to compute a basis w/o computing the enfde (F')?




» Start with an CNFH-'. Due to the discussion above we can assumeRhat
subsumption-free.

» Non-deterministically, select frorf' a pair of resolvable clausé€s andCs
which has not been previously resolved.

» If Res(Cq,C5) is subsumed by some other clauséimr is a tautology, do
nothing and select next pair.

» If D := Res(C7,C5) is notsubsumed by some other clauserindo two things:
(@) ComputeR := {FE € F : D C E}. Eliminate fromF' all clauses subsumed
by D, thatisF := FF\ R
(b) Sett' := FU{D}.

» Do this until I’ does not change.




» Two invariants:
e Antichain
e Consequences

» This implies termination




» PruningF, givenC'
F/C ={D: D e F andD can not be resolved witt'}.

» F=Cifandonlyif F/C = C




» The reductt] is
Fi:={C\{l}:Ce€FAl¢&C}
» The setF splits into three sets: of clauses mentioningf clauses mentioning
and those not mentioning at all
» [ arises from the second and the third

» Let F' be a set of non-tautological clauses, and le¢ a literal. Then is
unsatisfiable if and only if botlt; and £} are unsatisfiable.

» Dual form: LetF be a set of non-tautological clauses, and let a literal. Then
F is satisfiable if and only if at least one 6§, Fj is satisfiable.




» [is free forF if no clause ofF containl

» Let I’ be a set of clauses. lfis a free literal inF’ then F' is satisfiable if and only
If I} is satisfiable.

» Moreover, ifv is a valuation satisfyind;, then a valuationw defined by

w(m) — {v(m) m ¢ {11}

1 m = [

satisfiest'.




» F'given. Let us fixv. F splits in Fy — clauses of” unsatisfied by, F; clauses of
F satisfied by

» If F' unsatisfiable ther|,, F};, nonempty

» Ordering variables induces order of literals in each nanetagical clauses (via
ordering of underlying variables)

» Semantic resolution rule (remembefixed) applied to arderedpair (D, F) of

clauses ofF
(@) v(D) =1
(b) v(E)=0

(c) D, FE are resolved on the literal largest in the ordering (i.e. highest inE)




» Operatorres g, < (+)

respy <(G) ={C:C € FVi3p g(De FUGA
EcFUGANv(D)=1ANv(E)=0ANC = Res, <(D,FE))}.

» The operatoresr, - iS monotone. Thus it possesses a least fixpoint.
» Res, <(F)

» Completeness of semantic resolution; giverv, <, F' is unsatisfiable if and
only if Res, ~(F') containg)




Table method

Tableaux

Clausal Logic: Davis-Putnam two-phase algorithm

Clausal Logic: Davis-Putnam-Logemann-Loveland algaonith




» No immediate contradictionl(, no contradictory atoms)
» Standard decomposition principles ferA, v
» Hintikka set is always consistent




Binary trees with nodes decorated with signed formulas
Tableau for a theory®

=
>

» Open and closed branches

» Managing branches via expansion rules
=

Finished tableaux
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Open branch in a finished tableau is a Hintikka set
Thus if the a tableau fdf’ has an open branch thé&nis satisfiable
Canonical tableau farf

T is satisfiable if and only if the canonical finished tableauffdias an open
branch

T is unsatisfiable if and only if the canonical finished tabléaul’ has no open
branches

(Completeness for tableaux). = ¢ if and only if canonical finished tableau for
T U {—¢}is closed




» OperationF' — [, handling free literals

» Variable elimination resolutio®es . (F')
e Select variable:
e Ifl==x,orifl==xisfreeinF, F —
e O/w clauses without occurrence of and clauses obtained by resolving w.r.t
x, tautologies eliminated
» ThusRes,(F') has no occurrence aof

» Clauses off' that haver maintained separately




» If v satisfiesF’ thenv satisfiesRes,, (F')

» We will assume that we have some heuristic functielact (1) selecting a
variable from an input set of variabl&s

» This heuristic funtion guides variable elimination resmn
» Decomposition oft” w.r.t z:

e FO={CeF:-xeC},

e F1={CeF:xeC},

e F°={CeF:z,~x¢C}




» Selection function assumed
» Three sequencest;), (z;), (S;)

o Fy:=F,zg:= select yarg, , So = FYUF}, Fy = Res,, (Fp)

o If Varp, =0, halt.

e Olwz, := selectVaer , S = FJQ U Fjl,

Fjy1 = Resy, (F))

» Possible outcomes?,, { =0 orF, | = {0}
» In the latter casé’ is unsatisfiable becaugg, F; is included inRes(F')
» We can stop at any moment ongeomputed




» We assume part | did not return the string “input theory usfable”
» S, Is empty. Why?
» Two possible rasons:

e The last variable selected occurred either positivelgliclausesor
negatively inall clauses

e All we produced during the resolution w.r.t last variablesrev
tautologies, sdkes,, _, (F,_1) is empty




» The idea: construct a sequence of partial valuations, doacgwards

» This partial valuation defined on all variables occurringjn_; and
nothing else

» Base Case L, ; freeins,,_,. We setw(z,,_, = 1, all other variables still
occurring inS,, 1 zeroed (but we do not have to do so, b.t.w.)

» Base Case 2.z, 1 freeinS,,_1. We setw(x,,_1 = 0, all other variables still
occurring inS,,_1 zeroed (but we do not have to do so, b.t.w.)

» Base case 3. Some occurrences.@f; in S,,_; positive, some negative.
Tricky!




» Inductive case

» Reduct w.r.t. a partial valuation - eliminating claused tra already satisfied,
eliminating literals that can not be used for satisfaction

» Inductive assumption is that we satisfied all lay8gsk > 7 with a
valuationv

» Goal: SatisfyS;_4

» We reduceS;_; by currentv. Variables of current no longer
occur in the reduced CNF

» We define an extension of curremto newwv so thatv is defined on all
variables ofS;_;, and those occurring in late;, and nothing else. How?




» Four, not three cases possible
e Reductis empty. That is all clausesSn_, already satisfied. We zero
any variable occurring i$;_; but not in current
e Literal z;_; is free in the reduct. We set the valueagf_; to 1,
zero all other variable

e Literal —x;_; is free in the reduct. We set the valueagtf_; to 0, zero
all other variable

e z;_; occurs both positively and negatively $)_,. We proceed
similarly to case 3 of base

» Proof of correctness of this procedure




» The DP algorithm is complete. That is,Afis a set of clauses, and
select(-) is a selection function, then:

1. If Fis satisfiable then the DP algorithm returns on the infpaind
the selection functioelect a valuation satisfying”

2. If F'is unsatisfiable, then the DP returns the string ‘input fdemu
unsatisfiable’.

» In the second phase we have plenty of leverage, we do not baset
anything already computed, but can plug in other partialatbns,
as long as they satisfy the rest




» We assume fnite set of clauses

» We arrangepartial valuationin a search tree (i.e. label full binary tree - but see
below - with partial valuations)

» We assume that, like in DP algorithm we have a heuristic fancielect(-) that
assigns to a partial valuatiana variableoutsidethe domain ofv (providing
Dom(v) # Varp)

» Then node: has two childrenng, n;,. The first one labeled by U {select(v)},
the other labeled by U {—select(v)}




» Given a set of literale
bep(S) = {l:ThereisC :=1; V...VIyVI€ Fl,...,1l; € v}

bep(+) Is @a monotone operator in the complete lattice of sets ofblise
BCP(F)) is the least fixpoint of the operatéep (-)

Proof-theoretic representation of BCP, unit resolution.

Both approaches equivalent

vV v . v Vv




» Let F be a CNF. Thert' is satisfiable if and only iBCP(F') consistent and the
reduct of " w.r.t. BCP(F) is satisfiable

» An obvious observation: Given a CNF, F' is satisfiable if and only i¥' U {p}
Is satisfiable o U {—p} is satisfiable

» If G is the reduct of” by means oBCP(F) thenBCP(G) = ()
» But often it may happen th&CP(F) = () butBCP(F U {I}) # 0

» DPLL: systematic backtracking search of the tree of pavaalations, with BCP
as a pruning algorithm and user-provide selection function

» DPLL is complete
» Improvements to DPLL




» Given a valid implication) = ¢, aninterpolantis any formula? such that both
Y = 9 andd = ¢ are valid

» Craig Lemma: Given a valid implication = ¢, there is an interpolant so that
variables in¢ occurbothin ¢ and invy

» Stronger form will be shown
» Recent reports of the use of Craig Lemma in Bounded Model Kihgc




» If Y iISDNF,v := Dy V...V D, theny = ¢ is a tautology if and only if for all
1,1 <i<k,D; = ¢is atautology

» If D is an elementary conjunction add set of variables, the® |x is the result
of eliminating fromD literals based on variables not i

» Let D be a noncontradictory elementary conjunctionddie an arbitrary
formula. ThenD = ¢ is a tautology if and only ifD |y, = ¢ is a tautology

» Thus, assuming = ¢ is atautologyy := D1 V...V D, a DNF, all D;
non-contradictory. Then

Dl |Va'r<p \/Dk |Va'r<p:>()0

IS a tatutolgy




» For every formulap, the formula
DyV...VDyp= D |Var(<p) V...V Dy |Va,r(<p)

IS a tautology.

» If v = ¢ is atautology, then there exists a formulauch that
Var(d) C Var(y) N Var(yp) and such that botty = ¢ andy = ¢ are tautologies




» If ¢ is aformula with only positive occurrences of variapléhen there are two
formulas:+); andy with no occurrence gb so that

0 & (P AY1) V)

IS a tautology

» If ©is aformula with only negative occurrences of varigbkaen there are two
formulas:y; andy with no occurrence gb so that

0 & ((pAhr) Vabg)

IS a tautology




» Assume thal; A... Al = @ is atautology, and, does not occur ip. Then
Io A... Nl = @ is atautology

» Let D be an noncontradictory elementary conjunction, and lesgarae that
D = ¢ is atautology. LetD’ be the conjunction of those literals in which
occur inp. ThenD’ = ¢ is a tautology

» (Craig Lemma, strong form) If ¢ = ¢ is a tautology then there is an interpolant
with the property that whenever a variable occurs then it occurs inp, ¢ (and
also inv) with the same polarities.




» Of course not, if we have CNF of the consequent we can do the sam

» We can either transform = ¢ into ~¢ = — and use the previos technique, or
prove analogous lemmata for CNF in the consequent

» We can also compute a "canonical candidate for interpolant”




» Formulayp is positiveif it has no negative occurrences of variables
» Formulay is negativef it has no positive occurrences of variables

» Valuationl satisfies positive formulas and so sets of positive formatas
satisfiable.

» ValuationO satisfies negative formulas and so sets of negative fornanéas
satisfiable.




» A Horn clause: at most one positive literal

» Basic classification of Horn clauses
o facts
e program clauses
e constraints




» A family F of sets is closed under intersections if for every nonempty C &,
(1Y belongs taY

» Families of sets closed under intersections appear all©@8esind Mathematics
» We will use representation of valuationssaets of variables

» Let At be a finite set of atoms and I8tC P(At) be a nonempty family of sets.

Thens is of the formMod (H) for some collectiond of Horn clauses oveAt if
and only ifS is closed under intersections.




Program clause: Horn clause with exactly one positivediter
Constraint clause: Horn clause with no positive literals
CNFs consisting of program clauses are satisfiable

CNFs consisting of program clauses has a least model

vV v. v v Y

CNFs consisting of constraint clauses are satisfiable




Each Horn theoryd decomposes into program paf and constraint partl,
If H is Horn, thenH is satisfiable if and only if least model &f, satisfiesH,

>
=

» Associating an operatd@y g with the Horn prograntd

» Opgy IS monotone and continuous (regardless of the siZEuo)
=

Least model of the Horn prografid coincides with the least fixpoint @ 4




» If Var is finite then for every monotone operatarn P( Var) there is program
H suchthaOD = Oy

» Dowling-Gallier algorithm for computation of least modél & for programsH

» Testing satisfiability of Horr in linear time

» Completeness of unit resolution for querying the least moflelorn theory




» Dual Horn clause — at most one negative literal
» Permutation/nv

» Permutation/nv is consistent and transforms Horn formulas to dual Horn and
conversely

» M = Fifandonlyif Var \ M = Inv(F)
» Inv is complement operation

» Inv acts on families of sets, and transforrms families closeteumtersections
to families closed under unions




Various results on Horn theories are lifted to dual-Horrecas
BUT: operator associated with dual-Horn theories is mometo
There is largest fixpoint, and this is the largest modei df

Unit resolution complete for dual-Horn theories, but nove arf inputs can be
required to be negative literal ¢




v v v Y

2-clause, oKrom clausea clause with at most two literals
The set of 2-clauses is closed under resolution
There isO(n?) 2-clauses

Thus in DP the space used by the algorithm (and thus time)usdexd by
polynomial

DP solves the satisfiability problem for sets of 2-clausgsoiynomial time (but
we will see better performance)




Let K be a 2-CNF, and ldtbe a literal such thdt ! ¢ BCP(K). Let
v =BCP(K U{l}), and letK; = reduct(K,v). Then:

1. K1 CK
2. If v is consistent thenk is consistent if and only if(; is consistent

3. If v is consistent then a satisfying valuation fércan be computed fromand a
satisfying valuation foi’<; in linear time.




» A partial valuationw touchesclauseC if Varc N Var, # 0

» If F' consists of 2-clauses then for every liteliaf w = BCP(F U {l}) is
consistent them satisfies every clause i which w touches

» If F' consists of 2-clauses thémnis satisfiable if and only if for every literd| at
least one oBCP(F U {I}), BCP(F U {I}) is satisfiable

» Autarkies for Krom formulas




» After initialization the resulting formuld’ is a subset of’ and each clause has
exactly 2 literals

» \ertices ofG r: Literals of Var

» Edges ofG'r: whenevel v m belongs taF, generate two edgegt, m), (m, 1)
» G is adirected graph




» A strong componen$ of a directed graph: for every,y € S, x # y, there is a
directed cycle containing bothandy

» If [, m are in same strongly connected componen® gfthen
BCP(F U{l}) = BCP(F U{m})

» Fa2-CNF, all clauses of length ThenF' is satisfiable if and only if no strong
connected component 6f» contains a pair of dual literals

» Complexity of testing satisfiability of 2-CNF




» GivenC, a class of CNFs, renamealileall formulas which can be obtained from
formulas ofC' by consistent permutations of literals

» Shift permutation: does not change underlying variabley ordy change sign

» F'is renameable Horn if for some renamingr(F’) is Horn, thus if for some
shift 7, 7 (F') is Horn




» There is a one-to-one correspondence between shift parongand sets of
atoms of the fornshift(x)

» Representing shifting into Horn clauses Given a clause
C:=p1V...Vpr Vg1 V...V q

Define a collectior of 2-clauses consisting of three groups:
Group 1. shift(p;) V shift(p;), 1 <1 <3<k

Group 2. —shift(q;) V —shift(q;), 1 < i < j <l

Group 3. —shift(q;) V shift(p;), 1 <i<1,1<j<k.




> Sp = UCeF Sc
> SF Is 2-CNF

» There is a one-to-one correspondence between valuatiosysa Sr and
shifts of F into a Horn CNF

» Testing if F' is renameable Horn is polynomial, in fact quadratidin
» ['is renameable Horn if and only if it is renameable dual Horn




Operations, a.k.a. XOR

The structurd BOOL, @, A, L, T) is afield, calledZs

Linear equation over that field: formulain, ..., x, and possiblyT
Special form of Gauss-Jordan elimination o¥gr— add it!

Issues with the number of equations

Triangular form of a set of equations (first pass, Gauss)

vV v v v vV Vv Vv

Substitute (second pass, Jordan)




» 3-clauses

» With additional variables (linear number of variables) vaa ceduce to 3-clauses.
Specifically: for every finite set of formulais there is a set of 3-clauséssuch
that Varg O Varg, Varg contains a special variabig- and there is a
one-to-one correspondence between satisfying valuatoorfs and satisfying
valuations forGG that evaluate: - asl




Treating a set of formulas as an input-output devise

Acyclic digraphs with at most two parents per node

Inputs and outputs

Circuit representing a collection of formulas (one outpeit formula)

vV v. v v Y

3-CNF representation of a circuit




» The problem SAT (i.e. the language consisting of satisfisdoi@uals) is
NP-complete (proof in the notes, via coding of accepting potations of Turing
machines where the length of operation is bounded by a fixgechpmial in the
length of the input)

» Thus, the problem UNSAT is co-NP-complete

» By our reduction, the problem 3-SAT (satisfiability of theéssef clauses
consisting of 3-clauses) is also NP-complete

» Thus, the problem 3-UNSAT is also co-NP-complete

» All nontrivial combinations of “easy” classes considered in this lectls®e a
result in NP-complete classes (for instance: unions of Fmihdual-Horn are
NP-complete)

» But there isplentyof other “easy classes”
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