
Satisfiability

Victor W. Marek

Computer Science

University of Kentucky

Spring Semester 2005

Satisfiability – p.1/97

Satisfiability story

I Satisfiability - invented in the20ies of XX century by philosophers and
mathematicians (Wittgenstein, Tarski)I Shannon (late20ies) applications to what was then known as electrical
engineeringI Fundamental developments:60ies and70ies – both mathematics of it, and
fundamental algorithmsI 90ies - progress in computing speed and solving moderately large problemsI Emergence of “killer applications” in Computer Engineering, Bounded Model
Checking

Satisfiability – p.2/97

Current situation

I SAT solvers as a class of softwareI Solving large cases generated by industrial applicationsI Vibrant area of research both in Computer Science and in Computer Engineering� Various CS meetings (SAT, AAAI, CP)� Various CE meetings (CAV, FMCAD, DATE)� CE meetings Stressing applications

Satisfiability – p.3/97

This Course

I Providing mathematical and computer science foundations of SAT� General mathematical foundations� Two- and Three- valued logics� Complete sets of functors� Normal forms (includingite)� Compactness of propositional logic� Resolution rule, completeness of resolution, semantical resolution� Fundamental algorithms for SAT� Craig Lemma

Satisfiability – p.4/97

And if there is enough of time and will...

I Easy cases of SAT� Horn� 2SAT� Linear formulasI And if there is time (but notes will be provided anyway)� Expressing runs of polynomial-time NDTM as SAT, NP completeness� “Mix and match”� Learning in SAT, partial closure under resolution� Bounded Model Checking

Satisfiability – p.5/97

Various remarks

I Expected involvement of Dr. TruszczynskiI An extensive set of notes (> 200 pages), covering most of topics will be provided
f.o.c. to registered students (in installments)I No claim to absolute correctness madeI Syllabus: http://www.cs.uky.edu/ marek/htmldid.dir/686.htmlI Homeworks every other weekI MidtermI Individually-negotiated project� Write your own SAT solver a� Modify Chaff� Use SAT solver for some reasonable taskI Questions?

aHic Rhodes, Hic Salta

Satisfiability – p.6/97

Basic concepts

I Sets and operations on setsI RelationsI Partial orderings (posets)I Elements’ classificationI LatticesI Boolean AlgebrasI Chains in posets, Zorn LemmaI Well-orderings, ordinals, inductionI Inductive proofsI Inductive definability

Satisfiability – p.7/97

Fixpoint theorem

I Complete LatticesI Monotone operators (functions) in latticesI (Knaster-Tarski Fixpoint Theorem) If L is a complete lattice andf : L! L is
monotone operator inL thenf possesses a fixpoint. In fact fixpoints off form a
complete lattice under the ordering ofL, and thus there is a least and largest
fixpoint of fI Continuous monotone functionsI The least fixpoint (butnot the largest fixpoint) of a continuous operator reached
in ! or less stepsI Generalizations of fixpoint theorem

Satisfiability – p.8/97

Syntax of propositional logic

I Variables of some (problem-dependent) setVarI For each setVar a separate propositional logicI Inductive definition of the set of formulasFormVarI Thinking about formulas as binary trees, the rank of formula

Satisfiability – p.9/97

Semantics

I Valuations of variablesI Partial valuations of variablesI Two-valued logic and valuationsI TypeBoolI Tables for operations inBoolI Valuations acting on formulasI Valuationsuniquelyextend from variables to formulasI Characterizing valuations as complete sets of literalsI Characterizing valuations as sets of variablesI Two-valued truth functionv2I Satisfaction relationj=I Consistent theories

Satisfiability – p.10/97

Localization and joint-consistency

I Interactions between sets of variablesI Restrictions of valuationsI Localization theorem: If Var1 � Var2 and' 2 LVar1 , v is a valuation ofVar2,v0 is the restriction ofv toVar1 j= ' thenv j= ' if and only if v0 j= 'I Complete sets of formulasI Lemma: Complete sets of formulas determine valuations and conversely,
valuations determine completes sets of formulasI (Robinson joint-consistency) LetT1, T2 are two sets of formulas inVar1, Var2

resp. Let us assume thatVar = Var1 \Var2 and that bothT1, T2 are complete
for Var and coincide. ThenT1 [T2 is consistent

Satisfiability – p.11/97

Partial valuations, 3-valued logic

I Need for partial valuations?I Partial valuation as complete valuations but inf0; 1; ugI Post ordering and Kleene ordering in the setf0; 1; ugI Product orderingI Post ordering and Kleene ordering in the multiple-copies product off0; 1; ug,�p

and�kI Getting Kleene and Post orderings of partial valuationsI Valuations as maximal partial valuations

Satisfiability – p.12/97

Tables for Kleene 3-valued logic

I Three-valued truth functionv3I v2 andv3 coincide ifv is a (two-valued) valuationI If v �k w then for every formula', v3(') �k w3(')I AutarkiesI Fundamental effect of this result in SATI Restriction result for 3-valued valuations

Satisfiability – p.13/97

Tautologies and Satisfiability

I A tautology- formula true under all valuation of its variablesI Satisfiable formulasI A formula' is satisfiable if and only if:' is not a tautologyI Consequences of this fact: satisfiability checkers as tautology checkersI Common tautologiesI How many are there tautologies?

Satisfiability – p.14/97

Substitutions to formulas

I Substitution p1 : : : pn 1 : : : n!I Valuations acting on substitutionsI Substitution Lemma: Let ' 2 Formfp1;:::;pmg be a formula in propositional
variablesp1; : : : ; pm and leth 1; : : : ; mi be a sequence of propositional
formulas. Letv be a valuation of all variables occurring in 1; : : : ; m. Finally,
let v0 be a valuation of variablesp1; : : : ; pm defined byv0(pj) = v(j),1 � j � m. Then v0(') = v ' p1 : : : pn 1 : : : n!! :

Satisfiability – p.15/97

Substitutions to formulas, cont’d

I Let ' be a tautology, with variables of' amongp1; : : : ; pn. Then for every

choice of formulash 1; : : : ; ni, the formula' p1 : : : pn 1 : : : n! is a tautology.I There are infinitely many tautologies

Satisfiability – p.16/97

Lindenbaum Algebra

I Relation�: ' � if for all valuationsv (of all variables occurring in',)v(') = v()I � is an equivalence relationI ' � iff the formula' � is a tautologyI We can form the cosetsForm= �I Operations inForm= �I Independence from the choice of representativesI Lindenbaum AlgebraI Lindenbaum Algebra is a Boolean Algebra

Satisfiability – p.17/97

Permutations of atoms and literals

I Permutations of atomsI Permutations of literals, consistent permutations of literalsI ShiftsI Consistent permutations form a groupI Decomposing consistent permutations of literals into shifts and permutation of
variablesI There is2n � n! of consistent permutations of literals over a setVar of sizenI Consistent permutations of literals (and thus permutations of variables) preserve
completeness of sets of literalsI Every consistent and complete set of literals can be mapped onto any other
consistent and complete set of literals by a suitably chosenconsistent
permutation of literals

Satisfiability – p.18/97

Permutations and formulas

I Permutations act on formulasI (Permutation Theorem) If ' is a formula,v is a valuation and� a consistent
permutation of literals thenv j= ' if and only if �(v) j= �(')I Set-representation of valuations and permutation

Satisfiability – p.19/97

Semantical consequence

I OperationCn, entailment of the (sets of) formulasCn(F) = f' : 8v(v j= F) v j= ')gI Cn is an operator in the complete Boolean algebra of sets of formulasI For all setsF , F � Cn(F)I Cn is monotone and idempotentI Cn is continuous (but we have no means to prove it, yet)I Cn(;) consists of tautologies and nothing else

Satisfiability – p.20/97

Deduction Theorem

I Implication functor and consequence operationI The following are equivalent� ') # 2 Cn(F)� # 2 Cn(F [f'g)
Satisfiability – p.21/97

Operations Mod and Th

I From sets of formulas to valuations:Mod(F) = fv : v j= FgI From sets of valuations to formulasTh(V) = f' : for all v 2 V , v j= 'gI Connection: Letv be a valuation andV a set of valuations. Thenv 2 Mod(Th(V)) if and only if for every finite set of variablesA there is a
valuationw 2 V such thatv jA= w jA.I LetA be a finite set of propositional variables. LetV be a collections of
valuations of setA andv be a valuation ofA. Thenv j= Mod(Th(V)) if and
only if v 2 V .I Mod(Th(Mod(F))) = Mod(Cn(F)) = Mod(F)I Th(Mod(Th(V))) = Th(V):

Satisfiability – p.22/97

Functors and formulas

I An n-ary functor is an-ary function inBoolI There are22n n-ary functorsI Table - Boolean function of finite number of variablesI Altogether there is infinitely many tablesI Given a setC of names for functors we can formFormC - the set of formulas
based onC (obvious syntactic restrictions)

Satisfiability – p.23/97

Completeness of sets of functors

I Valuations as before, functions onVar into BoolI Assigning tables to well-formed formulas (i.e. trees, but no longer binary trees)I T' table associated with'I C is completeif every tableT is equal toT' for some' 2 FormC

Satisfiability – p.24/97

Completeness of sets of functors, cont’d

I If C; C1 are two sets of functors,C is complete andC � C1 thenC1 is also
complete.I The setf:;^;_g is a complete set of functors.I Thusf:;^;_;);�g is a complete set of functors.I Let C1 andC2 be two sets of functors. Let us assume thatC2 is a complete set of
functors, and that for every functor
 2 C2 there is a formula' 2 FormC1 such
that the tableT
 is identical with the tableT'. ThenC1 is also a complete set of
functors.I Let C1 andC2 be two sets of functors. Let us assume thatC2 is a complete set of
functors, and that for every functor
 2 C2 there is a formula' 2 FormC1 such
that the formula
(x1; : : : ; xn) � '(x1; : : : ; xn) is a tautology. ThenC1 is a
complete set of functors.

Satisfiability – p.25/97

Completeness of sets of functors, cont’d

I f:;^g is a complete set of functorsI f:;_g is a complete set of functorsI f)g is a complete set of functors.I But in this last case we allowed use of?I fiteg is complete, but use of constants neededI Beautiful property ofite:
Let ' be a propositional formula and letx be a variable. Then for all variablesy

and formulas and# the equivalence

'� xite(y; ; #)� � ite(y; '�x �; '�x#�)

is a tautology.

Satisfiability – p.26/97

More on completeness

I The setf^;_g is not a complete set of functors, even in the weak sense.I The setf�g is not complete

Satisfiability – p.27/97

Normal Forms, starting with negation

I Negation normal form, pushing negation downwardsI Double negation rewrite ruleI De Morgan laws as rewrite rulesI Canonical negation normal form

Satisfiability – p.28/97

Occurrences of variables

I Inductive definition of positive and negative occurrencesI A variable may occur both positively and negatively in a formulaI Canonical negative normal form preserves both positive andnegative occurrences
of variables

Satisfiability – p.29/97

Alternative way of getting the occurrences result

I Treating formulas as treesI Counting negations on the unique path from the leaf to the rootI Positive occurrrence if this number is even, odd occurrenceo/wI Rewrite rules, when interpreted as operations on trees preserve even and odd
number of occurrences on pathsI In
NN(') number of occurrences0 or 1

Satisfiability – p.30/97

cDNF, cCNF

I Canonical disjunctive and conjunctive normal forms:I Four distributive rules� ' ^ (_ #) � (' ^) _ (' ^ #)� (_ #) ^ ' � (^ ') _ (# ^ ')� ' _ (^ #) � (' _) ^ (' _ #)� (^ #) _ ' � (_ ') ^ (# _ ')

Satisfiability – p.31/97

Handling cDNF

I Formula' is already in cNN form�
DNF(a) = a if a is a variable�
DNF(:a) = :a if a is a variable� AssumingD11 _D12 _ : : : _D1m1 =
DNF(1) andD21 _D22 _ : : : _D2m2=
DNF(2), define
1.
DNF(1 ^ 2) = Wi�m1;j�m2 D1i ^D2j
2.
DNF(1 _ 2) =
DNF(1) _
DNF(2)I For every formula' in negation normal form, the formula
DNF(') is in

disjunctive normal form. Moreover,' �
DNF(').I (Preparing for the complete DNF).
For every formula' and a variablep 2 Var' there exist two formulas i,i = 1; 2 such that
1. p =2 Var i , i = 1; 2
2. The formula' � ((p ^ 1) _ (:p ^ 2)) is a tautology.

Satisfiability – p.32/97

Conjunctive Normal Form

I Assuming' in cNN formI
CNF(a) = a if a is a variableI
CNF(:a) = :a if a is a variableI AssumingC11 ^ C12 ^ : : : ^ C1m1 =
CNF(1) andC21 ^ C22 ^ : : : ^ C2m2=
CNF(2), define

1.
CNF(1 _ 2) = Vi�m1;j�m2 C1i _ C2j
2.
CNF(1 ^ 2) =
CNF(1) ^
CNF(2)I For every formula' in negation normal form, the formula
CNF(') is in

conjunctive normal form. Moreover,' �
CNF(').

Satisfiability – p.33/97

What if only positive (negative) occurrences?

I If a variablep has only positive occurences inF , fpg does not have to be an
autarky, but...I Let F be a set of formulas in which a variablep has only positive (resp. negative)
occurrences. ThenF is satisfiable if and only ifF [fpg (resp.F [f:pg) is
satisfiable. In other words,F is satisfiable if and only if it is satisfiable by a
valuationv such thatv(p) = 1 (resp.v(p) = 0).I Look at the proof: it shows equivalent formulas may not have same autarkies

Satisfiability – p.34/97

Reduced Normal Forms

I A clauseC = p1 _ : : : _ pk _ :q1 _ : : : _ :ql is a tautology if and only if for
somei, 1 � i � k andj, 1 � j � l, pi = qjI Given two clausesC1 andC2, C1 j= C2 if and only if all literals occurring inC1

occur inC2, that isC1 subsumesC2.I Reduced CNF: no subsumption between clausesI Subsumption can be eliminated in polynomial time (but it still may be too much
work)I Similar result for DNFI CNF machine a device to convert' to
CNF(')I CNF machine as a DNF machine

Satisfiability – p.35/97

Complete Normal Forms

I A mintermis an elementary conjunction containing one literal from each setfp;:pgI For every formula' and every mintermt, either the formula(' ^ t) � t is a
tautology, or' ^ t is false.I Given a valuationv of finite set of variables,tv is conjunction of literalsl such
thatv(l) = 1I d' = Wv2Mod(') tvI Eachdv entails'I For every formula', ' � d' is a tautology. Up to the order of variables, and the
listing of minterms the representation' 7! d' is unique.

Satisfiability – p.36/97

More on canonical forms

I Minterms: just rows in the table where the value is1I Maxclauses: clauses non-tautological clauses mentioningall variablesI Formula
' - conjunction of maxclauses entailed by'I For every formula', ' �
' is a tautology. Up to the order of variables, and the
listing of maxclauses the representation' 7!
' is unique.

Satisfiability – p.37/97

Consequences for Lindenbaum Algebra

I Equivalence classes of minterms are atoms in the LindenbaumAlgebraI Since there are2n minterms, Lindedenbaum algebra has2n atoms (n - number of
variables)I Hence for finite setVar the Lindenbaum algebra ofVar is a finite Boolean
algebraI Not every finite Boolean algebra is Lindenbaum algebraI But if a finite Boolean algebra has2n atoms then it is a Lindenbaum algebra

Satisfiability – p.38/97

Other normal forms

I Implication normal form (only implication,? and variables)I Hence by adding additional variables we can reduce every formula to collection
of implicationsI if-then-else normal form

Satisfiability – p.39/97

Compactness of propositional logic

I König Lemma: an infinite, finitely splitting tree possesses an infinite branchI (Compactness Theorem) If a set of formulasF is unsatisfiable then there is a
finite subsetF0 � F such thatF is unsatisfiableI Equivalently: when all finite subsets ofF are satisfiable thenF is satisfiableI Constructing a tree associated with a family of clausesI Corollary: The operatorCn is continuous

Satisfiability – p.40/97

Resolution

I Clausal logic: logic where only formulas are clausesI Alternative approach: negation and infinitely many functors,n-ary disjunctions,
each with its own tableI Such logic expresses the same theories as the full propositional logicI Since such disjunctions are commutative w.r.t. all permutations we treat clauses
as sets of literals, no repetitionI Fundamental operation on clauses: resolutionl _ C1 �l _ C2C1 _ C2 :I Resolution rule issound

Satisfiability – p.41/97

Closure under Resolution

I Given a set of clausesF there is a least set of clausesG such that
1. F � G

2. WheneverD1 andD2 are two clauses inG and the operationRes(D1; D2) is
executable and results in a non-tautological clause thenRes(D1; D2)
belongs toG.I OperatorresF (in the complete lattice of subsets of the set of clauses)resF (G) = F [fRes(C1; C2) : C1; C2 2 F [G

andRes(C1; C2) is defined and non-tautologicalg:I resF has a least fixpoint. This is the closure under resolution

Satisfiability – p.42/97

Derivations, proof-theoretic approach

I Derivation of a clause: a labeled binary tree: leaves labeled with elements ofF ,
internal nodes labeled with resolventsI Proof-theorists invert those trees. Root is at the bottomI As every ordered tree, such trees can be represented as strings (with depth-first
traversal)I In this way we can define proofs as sequences of clauses:
1. Conclusion of the rule application application occurs always later than

premises
2. If a clause occurs in the sequence then it belongs toF or is a conclusion of

an application of resolution to earlier elements of the clause
3. The proven clause is last element of the sequenceI Both approaches (trees, proofs) are equivalentI DerF set of clauses that have proof

Satisfiability – p.43/97

Is resolution complete?

I Resolution alone is not complete. That is there are clauses semantically entailed,
but not provable by resolutionI Reason: resolution does not add variablesI Example:F := fp _ qg, C := p _ q _ r. ClearlyF j= C, but the only thing we
can prove (using resolution) is the only clause inF

Satisfiability – p.44/97

Minimal Resolution Consequence

I Elements ofRes(F) - resolution consequencesI Inclusion-minimal elements ofRes(F) - minimal resolution consequencesI If C is a resolution consequence ofF , then there must be minimal resolution
consequence ofF C 0 included inC

Satisfiability – p.45/97

Subsumption rule

I Subsumption rule: CC _DI Subsumption rule is soundI We can define the notion of derivation (tree) using subsumption and resolutionI We can define the the notion of proof (sequence of clauses)I Whatever can be proved with one can be proved with the other

Satisfiability – p.46/97

Quine theorem, completeness

I A non-tautological clauseC is a consequence of a set of clausesF if and only if
there is a Resolution consequence ofF ,D, such thatD � C.I A non-tautological clauseC is a consequence of a CNFF if and only if for some
minimal Resolution consequenceD of F ,D � C.I A CNF F is satisfiable if and only if; =2 Res(F).I (Quine Theorem Proof system consisting of Resolution and Subsumption rules is
complete for clausal logic. That is, given a set of clausesF and a clauseC,F j= C if and only if there exists a derivation (using Resolution and
Subsumption rules) that provesCI We can limit the proof to admit a single application of Subsumption.

Satisfiability – p.47/97

Resolution refutation

I Given a clauseC, :C = f�l : l 2 CgI If C is a clause then:C is a set of unit clausesI We say thatC follows fromF by Resolution refutationif the closure under
Resolution ofF [:C contains an empty clause (i.e. is inconsistent).I Let F be a CNF, and letC be a clause. ThenF j= C if and only ifC follows
from F by Resolution refutation.

Satisfiability – p.48/97

The basis of resolution consequences

I BasisG of Res(F)

1. G � Res(F)

2. Cn(F) = Cn(G)

3. G forms an antichain, i.e. forC1; C2 2 G, if C1 � C2 thenC1 = C2

4. Every element ofRes(F) is subsumed by some element ofGI Let F be a set of clauses. ThenF possesses a unique basisI How to compute a basis w/o computing the entireRes(F)?

Satisfiability – p.49/97

Basis, cont’d

I Start with an CNFF . Due to the discussion above we can assume thatF is
subsumption-free.I Non-deterministically, select fromF a pair of resolvable clausesC1 andC2
which has not been previously resolved.I If Res(C1; C2) is subsumed by some other clause inF or is a tautology, do
nothing and select next pair.I If D := Res(C1; C2) is notsubsumed by some other clause inF , do two things:
(a) ComputeR := fE 2 F : D � Eg. Eliminate fromF all clauses subsumed
byD, that isF := F nR
(b) SetF := F [fDg.I Do this untilF does not change.

Satisfiability – p.50/97

Basis, cont’d

I Two invariants:� Antichain� ConsequencesI This implies termination

Satisfiability – p.51/97

Another preprocessing for query ans.

I PruningF , givenC:F=C = fD : D 2 F andD can not be resolved withCg:I F j= C if and only ifF=C j= C
Satisfiability – p.52/97

Davis-Putnam reduct

I The reductFl is Fl := fC n f�lg : C 2 F ^ l =2 CgI The setF splits into three sets: of clauses mentioningl, of clauses mentioning�l

and those not mentioningjlj at allI Fl arises from the second and the thirdI Let F be a set of non-tautological clauses, and letl be a literal. ThenF is
unsatisfiable if and only if bothFl andF�l are unsatisfiable.I Dual form: LetF be a set of non-tautological clauses, and letl be a literal. ThenF is satisfiable if and only if at least one ofFl, F�l is satisfiable.

Satisfiability – p.53/97

Free literal

I l is free forF if no clause ofF contain�lI Let F be a set of clauses. Ifl is a free literal inF thenF is satisfiable if and only
if Fl is satisfiable.I Moreover, ifv is a valuation satisfyingFl, then a valuationw defined by

w(m) = (v(m) m =2 fl; �lg1 m = l
satisfiesF .

Satisfiability – p.54/97

Semantic Resolution

I F given. Let us fixv. F splits inF0 – clauses ofF unsatisfied byv, F1 clauses ofF satisfied byvI If F unsatisfiable thenF0, F1 nonemptyI Ordering variables induces order of literals in each non-tautological clauses (via
ordering of underlying variables)I Semantic resolution rule (rememberv fixed) applied to anorderedpair (D;E) of
clauses ofF

(a) v(D) = 1

(b) v(E) = 0

(c) D;E are resolved on the literal largest in the ordering�E (i.e. highest inE)

Satisfiability – p.55/97

Semantic Resolution, cont’d

I OperatorresF;v;�(�)resF;v;�(G) = fC : C 2 F _ 9D;E(D 2 F [G^E 2 F [G ^ v(D) = 1 ^ v(E) = 0 ^ C = Resv;�(D;E))g:I The operatorresF;v;� is monotone. Thus it possesses a least fixpoint.I Resv;�(F)I Completeness of semantic resolution; givenF , v,�, F is unsatisfiable if and
only if Resv;�(F) contains;

Satisfiability – p.56/97

Testing satisfiability

I Table methodI TableauxI Clausal Logic: Davis-Putnam two-phase algorithmI Clausal Logic: Davis-Putnam-Logemann-Loveland algorithm

Satisfiability – p.57/97

Hintikka Sets

I No immediate contradiction (?, no contradictory atoms)I Standard decomposition principles for:;^;_I Hintikka set is always consistent

Satisfiability – p.58/97

Tableaux

I Binary trees with nodes decorated with signed formulasI Tableau for a theoryTI Open and closed branchesI Managing branches via expansion rulesI Finished tableaux

Satisfiability – p.59/97

Fundamental tableaux theorem

I Open branch in a finished tableau is a Hintikka setI Thus if the a tableau forT has an open branch thenT is satisfiableI Canonical tableau forTI T is satisfiable if and only if the canonical finished tableau for T has an open
branchI T is unsatisfiable if and only if the canonical finished tableaufor T has no open
branchesI (Completeness for tableaux).T j= ' if and only if canonical finished tableau forT [f:'g is closed

Satisfiability – p.60/97

Variable elimination

I OperationF � l, handling free literalsI Variable elimination resolutionResx(F)� Select variablex� If l = x, or if l = �x is free inF , F � l� O/w clauses without occurrence ofx, and clauses obtained by resolving w.r.tx, tautologies eliminatedI ThusResx(F) has no occurrence ofxI Clauses ofF that havex maintained separately

Satisfiability – p.61/97

Variable Elimination

I If v satisfiesF thenv satisfiesResx(F)I We will assume that we have some heuristic functionsele
t(V) selecting a
variable from an input set of variablesVI This heuristic funtion guides variable elimination resolutionI Decomposition ofF w.r.t x:� F 0 = fC 2 F : :x 2 Cg,� F 1 = fC 2 F : x 2 Cg,� F 2 = fC 2 F : x;:x =2 Cg

Satisfiability – p.62/97

Introducing DP algorithm, part 1

I Selection function assumedI Three sequences:hFji, hxji, hSji� F0 := F , x0 := sele
tVarF0 , S0 = F 00 [F 10 , F1 = Resx0(F0)� If VarFj = ;, halt.� O/w xj := sele
tVarFj , Sj = F 0j [F 1j ,Fj+1 = Resxj (Fj)I Possible outcomes:Fn�1 = ; orFn�1 = f;gI In the latter caseF is unsatisfiable because

Si Fi is included inRes(F)I We can stop at any moment once; computed

Satisfiability – p.63/97

Going back, part II of DP algorithm

I We assume part I did not return the string “input theory unsatisfiable"I Sn is empty. Why?I Two possible rasons:� The last variable selected occurred either positively inall clausesor
negatively inall clauses� All we produced during the resolution w.r.t last variables were
tautologies, soResvn�1(Fn�1) is empty

Satisfiability – p.64/97

Going back, part II of DP algorithm, cont’d

I The idea: construct a sequence of partial valuations, goingbackwardsI This partial valuation defined on all variables occurring inSn�1 and
nothing elseI Base Case 1.xn�1 free inSn�1. We setv(xn�1 = 1, all other variables still
occurring inSn�1 zeroed (but we do not have to do so, b.t.w.)I Base Case 2.:xn�1 free inSn�1. We setv(xn�1 = 0, all other variables still
occurring inSn�1 zeroed (but we do not have to do so, b.t.w.)I Base case 3. Some occurrences ofxn�1 in Sn�1 positive, some negative.
Tricky!

Satisfiability – p.65/97

Going back, part II of DP algorithm, cont’d

I Inductive caseI Reduct w.r.t. a partial valuation - eliminating clauses that are already satisfied,
eliminating literals that can not be used for satisfactionI Inductive assumption is that we satisfied all layersSk, k � j with a
valuationvI Goal: SatisfySj�1I We reduceSj�1 by currentv. Variables of currentv no longer
occur in the reduced CNFI We define an extension of currentv to newv so thatv is defined on all
variables ofSj�1, and those occurring in laterSk and nothing else. How?

Satisfiability – p.66/97

Going back, part II of DP algorithm, cont’d

I Four, not three cases possible� Reduct is empty. That is all clauses inSj�1 already satisfied. We zero
any variable occurring inSj�1 but not in currentv� Literal xj�1 is free in the reduct. We set the value ofxj�1 to 1,
zero all other variable� Literal:xj�1 is free in the reduct. We set the value ofxj�1 to 0, zero
all other variable� xj�1 occurs both positively and negatively inSj�1. We proceed
similarly to case 3 of baseI Proof of correctness of this procedure

Satisfiability – p.67/97

Wrapping up DP

I The DP algorithm is complete. That is, ifF is a set of clauses, andsele
t(�) is a selection function, then:
1. If F is satisfiable then the DP algorithm returns on the inputF and

the selection functionSele
t a valuation satisfyingF
2. If F is unsatisfiable, then the DP returns the string ‘input formula

unsatisfiable’.I In the second phase we have plenty of leverage, we do not have to use
anything already computed, but can plug in other partial valuations,
as long as they satisfy the rest

Satisfiability – p.68/97

The tree of partial valuations

I We assume afiniteset of clausesI We arrangepartial valuationin a search tree (i.e. label full binary tree - but see
below - with partial valuations)I We assume that, like in DP algorithm we have a heuristic function sele
t(�) that
assigns to a partial valuationv a variableoutsidethe domain ofv (providingDom(v) 6= VarF)I Then noden has two children:n0, n1. The first one labeled byv [fsele
t(v)g,
the other labeled byv [f:sele
t(v)g

Satisfiability – p.69/97

Pruning, BCP

I Given a set of literalsvb
pF (S) = fl : There isC := l1 _ : : : _ lk _ l 2 F; �l1; : : : ; �lk 2 vgI b
p(�) is a monotone operator in the complete lattice of sets of literalsI BCP(F) is the least fixpoint of the operatorb
p(�)I Proof-theoretic representation of BCP, unit resolution.I Both approaches equivalent

Satisfiability – p.70/97

DPLL algorithm

I Let F be a CNF. ThenF is satisfiable if and only ifBCP(F) consistent and the
reduct ofF w.r.t. BCP(F) is satisfiableI An obvious observation: Given a CNFF , F is satisfiable if and only ifF [fpg

is satisfiable orF [f:pg is satisfiableI If G is the reduct ofF by means ofBCP(F) thenBCP(G) = ;I But often it may happen thatBCP(F) = ; butBCP(F [flg) 6= ;I DPLL: systematic backtracking search of the tree of partialvaluations, with BCP
as a pruning algorithm and user-provide selection functionI DPLL is completeI Improvements to DPLL

Satisfiability – p.71/97

Craig Lemma

I Given a valid implication) ', aninterpolantis any formula# such that both) # and#) ' are validI Craig Lemma: Given a valid implication) ', there is an interpolant# so that
variables in# occurboth in ' and in I Stronger form will be shownI Recent reports of the use of Craig Lemma in Bounded Model Checking

Satisfiability – p.72/97

Few lemmas etc.

I If is DNF, := D1 _ : : : _Dk then) ' is a tautology if and only if for alli, 1 � i � k,Di) ' is a tautologyI If D is an elementary conjunction andX set of variables, thenD jX is the result
of eliminating fromD literals based on variables not inXI LetD be a noncontradictory elementary conjunction, let' be an arbitrary
formula. ThenD) ' is a tautology if and only ifD jVar') ' is a tautologyI Thus, assuming) ' is a tautology, := D1 _ : : : _Dk a DNF, allDi

non-contradictory. ThenD1 jVar' _ : : :Dk jVar') '

is a tatutolgy

Satisfiability – p.73/97

Craig Lemma

I For every formula', the formulaD1 _ : : : _Dk) D1 jVar(') _ : : : _Dk jVar(')
is a tautology.I If) ' is a tautology, then there exists a formula# such thatVar(#) � Var()\Var(') and such that both) # and#) ' are tautologies

Satisfiability – p.74/97

Improving interpolant

I If ' is a formula with only positive occurrences of variablep then there are two
formulas: 1 and 2 with no occurrence ofp so that', ((p ^ 1) _ 2)
is a tautologyI If ' is a formula with only negative occurrences of variablep then there are two
formulas: 1 and 2 with no occurrence ofp so that', ((:p ^ 1) _ 2)
is a tautology

Satisfiability – p.75/97

Eliminating literals

I Assume thatl1 ^ : : : ^ lk) ' is a tautology, andl1 does not occur in'. Thenl2 ^ : : : ^ lk) ' is a tautologyI LetD be an noncontradictory elementary conjunction, and let us assume thatD) ' is a tautology. LetD0 be the conjunction of those literals inD which
occur in'. ThenD0) ' is a tautologyI (Craig Lemma, strong form) If) ' is a tautology then there is an interpolant#

with the property that whenever a variable occurs in# then it occurs in ; ' (and
also in#) with the same polarities.

Satisfiability – p.76/97

Is DNF in predecessor needed?

I Of course not, if we have CNF of the consequent we can do the sameI We can either transform) ' into:') : and use the previos technique, or
prove analogous lemmata for CNF in the consequentI We can also compute a "canonical candidate for interpolant”

Satisfiability – p.77/97

Satisfaction for positive and negative formulas

I Formula' is positiveif it has no negative occurrences of variablesI Formula' is negativeif it has no positive occurrences of variablesI Valuation1 satisfies positive formulas and so sets of positive formulasare
satisfiable.I Valuation0 satisfies negative formulas and so sets of negative formulasare
satisfiable.

Satisfiability – p.78/97

Satisfying Horn formulas

I A Horn clause: at most one positive literalI Basic classification of Horn clauses� facts� program clauses� constraints

Satisfiability – p.79/97

Horn theories and families closed under intersection

I A family F of sets is closed under intersections if for every nonemptyY, Y � X ,TY belongs toXI Families of sets closed under intersections appear all overCS and MathematicsI We will use representation of valuations assets of variablesI LetAt be a finite set of atoms and letS � P(At) be a nonempty family of sets.
ThenS is of the formMod(H) for some collectionH of Horn clauses overAt if
and only ifS is closed under intersections.

Satisfiability – p.80/97

Program clauses and constraints

I Program clause: Horn clause with exactly one positive literalI Constraint clause: Horn clause with no positive literalsI CNFs consisting of program clauses are satisfiableI CNFs consisting of program clauses has a least modelI CNFs consisting of constraint clauses are satisfiable

Satisfiability – p.81/97

Model existence for Horn theories

I Each Horn theoryH decomposes into program partH1 and constraint partH2I If H is Horn, thenH is satisfiable if and only if least model ofH1 satisfiesH2I Associating an operatorOH with the Horn programHI OH is monotone and continuous (regardless of the size ofVar)I Least model of the Horn programH coincides with the least fixpoint ofOH

Satisfiability – p.82/97

Representability of monotone operators

I If Var is finite then for every monotone operatorO in P(Var) there is programH such thatO = OHI Dowling-Gallier algorithm for computation of least model of H for programsHI Testing satisfiability of HornH in linear timeI Completeness of unit resolution for querying the least model of Horn theory

Satisfiability – p.83/97

Dual Horn formulas

I Dual Horn clause – at most one negative literalI PermutationInvI PermutationInv is consistent and transforms Horn formulas to dual Horn and
converselyI M j= F if and only ifVar nM j= Inv(F)I Inv is complement operationI Inv acts on families of sets, and transforrms families closed under intersections
to families closed under unions

Satisfiability – p.84/97

Dual Horn formulas

I Various results on Horn theories are lifted to dual-Horn caseI BUT: operator associated with dual-Horn theories is monotoneI There is largest fixpoint, and this is the largest model ofdHI Unit resolution complete for dual-Horn theories, but now one of inputs can be
required to be negative literal c

Satisfiability – p.85/97

Krom formulas, 2SAT

I 2-clause, orKrom clause, a clause with at most two literalsI The set of 2-clauses is closed under resolutionI There isO(n2) 2-clausesI Thus in DP the space used by the algorithm (and thus time) is bounded by
polynomialI DP solves the satisfiability problem for sets of 2-clauses inpolynomial time (but
we will see better performance)

Satisfiability – p.86/97

A closure property of sets of 2-clauses

LetK be a 2-CNF, and letl be a literal such thatl; �l =2 BCP(K). Letv = BCP(K [flg), and letK1 = redu
t(K; v). Then:

1. K1 � K

2. If v is consistent then:K is consistent if and only ifK1 is consistent

3. If v is consistent then a satisfying valuation forK can be computed fromv and a
satisfying valuation forK1 in linear time.

Satisfiability – p.87/97

BCP and 2-SAT

I A partial valuationv touchesclauseC if VarC \Varv 6= ;I If F consists of 2-clauses then for every literall, if w = BCP(F [flg) is
consistent thenw satisfies every clause inF whichw touchesI If F consists of 2-clauses thenF is satisfiable if and only if for every literall, at
least one ofBCP(F [flg), BCP(F [f�lg) is satisfiableI Autarkies for Krom formulas

Satisfiability – p.88/97

The graphGF
I After initialization the resulting formulaF is a subset ofF and each clause has

exactly 2 literalsI Vertices ofGF : Literals ofVarFI Edges ofGF : wheneverl _m belongs toF , generate two edges:(�l;m), (�m; l)I GF is a directed graph

Satisfiability – p.89/97

Strong components and 2-CNF

I A strong componentS of a directed graph: for everyx; y 2 S, x 6= y, there is a
directed cycle containing bothx andyI If l;m are in same strongly connected component ofGF thenBCP(F [flg) = BCP(F [fmg)I F a 2-CNF, all clauses of length2. ThenF is satisfiable if and only if no strong
connected component ofGF contains a pair of dual literalsI Complexity of testing satisfiability of 2-CNF

Satisfiability – p.90/97

Renameable variants of classes of formulas

I GivenC, a class of CNFs, renameableC, all formulas which can be obtained from
formulas ofC by consistent permutations of literalsI Shift permutation: does not change underlying variable, may only change signI F is renameable Horn if for some renaming�, �(F) is Horn, thus if for some
shift �, �(F) is Horn

Satisfiability – p.91/97

Describing shift permutations

I There is a one-to-one correspondence between shift permutations and sets of
atoms of the formshift(x)I Representing shifting into Horn clauses Given a clauseC := p1 _ : : : _ pk _ :q1 _ : : : _ :ql
Define a collectionSC of 2-clauses consisting of three groups:
Group 1. shift(pi) _ shift(pj), 1 � i < j � k
Group 2. :shift(qi) _ :shift(qj), 1 � i < j � l
Group 3. :shift(qi) _ shift(pj), 1 � i � l, 1 � j � k.

Satisfiability – p.92/97

Carrying on shifting

I SF = SC2F SCI SF is 2-CNFI There is a one-to-one correspondence between valuations satisfying SF and
shifts of F into a Horn CNFI Testing ifF is renameable Horn is polynomial, in fact quadratic inFI F is renameable Horn if and only if it is renameable dual Horn

Satisfiability – p.93/97

Linear formulas

I Operation�, a.k.a. XORI The structurehBOOL;�;^;?;>i is a field, calledZ2I Linear equation over that field: formula inx1; : : : ; xn and possibly>I Special form of Gauss-Jordan elimination overZ2 – add it!I Issues with the number of equationsI Triangular form of a set of equations (first pass, Gauss)I Substitute (second pass, Jordan)

Satisfiability – p.94/97

All you need is 3-CNF

I 3-clausesI With additional variables (linear number of variables) we can reduce to 3-clauses.
Specifically: for every finite set of formulasF there is a set of 3-clausesG such
thatVarG � VarF , VarG contains a special variablenF and there is a
one-to-one correspondence between satisfying valuationsfor F and satisfying
valuations forG that evaluatenF as1

Satisfiability – p.95/97

Combinatorial circuits

I Treating a set of formulas as an input-output deviseI Acyclic digraphs with at most two parents per nodeI Inputs and outputsI Circuit representing a collection of formulas (one output per formula)I 3-CNF representation of a circuit

Satisfiability – p.96/97

Some complexity issues

I The problem SAT (i.e. the language consisting of satisfiableformuals) is
NP-complete (proof in the notes, via coding of accepting computations of Turing
machines where the length of operation is bounded by a fixed polynomial in the
length of the input)I Thus, the problem UNSAT is co-NP-completeI By our reduction, the problem 3-SAT (satisfiability of the sets of clauses
consisting of 3-clauses) is also NP-completeI Thus, the problem 3-UNSAT is also co-NP-completeI All nontrivial combinations of “easy” classes considered in this lecture also
result in NP-complete classes (for instance: unions of Hornand dual-Horn are
NP-complete)I But there isplentyof other “easy classes”

Satisfiability – p.97/97

	Satisfiability story
	Current situation
	This Course
	And if there is enough of time and will...
	Various remarks
	Basic concepts
	Fixpoint theorem
	Syntax of propositional logic
	Semantics
	Localization and joint-consistency
	Partial valuations, 3-valued logic
	Tables for Kleene 3-valued logic
	Tautologies and Satisfiability
	Substitutions to formulas
	Substitutions to formulas, cont'd
	Lindenbaum Algebra
	Permutations of atoms and literals
	Permutations and formulas
	Semantical consequence
	Deduction Theorem
	Operations {em Mod} and {em Th}
	Functors and formulas
	Completeness of sets of functors
	Completeness of sets of functors, cont'd
	Completeness of sets of functors, cont'd
	More on completeness
	Normal Forms, starting with negation
	Occurrences of variables
	Alternative way of getting the occurrences result
	cDNF, cCNF
	Handling cDNF
	Conjunctive Normal Form
	What if only positive (negative)
occurrences?
	Reduced Normal Forms
	Complete Normal Forms
	More on canonical forms
	Consequences for Lindenbaum Algebra
	Other normal forms
	Compactness of propositional logic
	Resolution
	Closure under Resolution
	Derivations, proof-theoretic approach
	Is resolution complete?
	Minimal Resolution Consequence
	Subsumption rule
	Quine theorem, completeness
	Resolution refutation
	The basis of resolution consequences
	Basis, cont'd
	Basis, cont'd
	Another preprocessing for query ans.
	Davis-Putnam reduct
	Free literal
	Semantic Resolution
	Semantic Resolution, cont'd
	Testing satisfiability
	Hintikka Sets
	Tableaux
	Fundamental tableaux theorem
	Variable elimination
	Variable Elimination
	Introducing DP algorithm, part 1
	Going back, part II of DP algorithm
	Going back, part II of DP algorithm, cont'd
	Going back, part II of DP algorithm, cont'd
	Going back, part II of DP algorithm, cont'd
	Wrapping up DP
	The tree of partial valuations
	Pruning, BCP
	DPLL algorithm
	Craig Lemma
	Few lemmas etc.
	Craig Lemma
	Improving interpolant
	Eliminating literals
	Is DNF in predecessor needed?
	Satisfaction for positive and negative formulas
	Satisfying Horn formulas
	Horn theories and families closed under intersection
	Program clauses and constraints
	Model existence for Horn theories
	Representability of monotone operators
	Dual Horn formulas
	Dual Horn formulas
	Krom formulas, 2SAT
	A closure property of sets of 2-clauses
	BCP and 2-SAT
	The graph G_F
	Strong components and 2-CNF
	Renameable variants of classes of formulas
	Describing shift permutations
	Carrying on shifting
	Linear formulas
	All you need is 3-CNF
	Combinatorial circuits
	Some complexity issues

