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Abstract

In this paper, we describe an automated reasoning system, called DeReS. DeReS implements

default logic of Reiter by supporting several basic reasoning tasks such as testing whether

extensions exist, finding one or all extensions (if at least one exists) and querying if a formula

belongs to one or all extensions. If an input theory is a logic program, DeReS computes stable

models of this program and supports queries on membership of an atom in some or all stable

models. The paper contains an account of our preliminary experiments with DeReS and a

discussion of the results. We show that a choice of a propositional prover is critical for the

efficiency of DeReS. We also present a general technique that eliminates the need for some

global consistency checks and results in substantial speedups. We experimentally demonstrate

the potential of the concept of stratification for making automated reasoning systems practical.
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1 Introduction

The area of nonmonotonic logics was originated about twenty years ago [Rei78, Rei80,
MD80, McC80] in an effort to build efficient knowledge representation formalisms. Since
then solid theoretical foundations of nonmonotonic logics have been established. The
efforts of the past two decades culminated in several research monographs [Eth88, Bes89,
Bre91, MT93] describing major nonmonotonic systems: default logic, logic programming
with negation as failure, autoepistemic logics and circumscription.

It was expected that nonmonotonic logics would be able to model formal aspects of
commonsense reasoning and that their computational properties would be better than
those of classical logic. Computational complexity results obtained in recent years were,
however, discouraging. Decision problems associated with nonmonotonic reasoning, even
when restricted to the propositional case, are very complex. For example, in the case
of logic programming with stable model semantics they are NP-complete or co-NP-
complete. In the case of default logic, they are ΣP

2 -complete or ΠP
2 -complete.

However, the complexity results do not necessarily disqualify nonmonotonic logics
as a computational knowledge representation mechanism. Decision problems in classical
logic are also highly computationally complex — NP- and co-NP-complete in the propo-
sitional case. These tasks become even more complex in the case of quantified Boolean
formulas [MS72]. In the same time, recent experimental results on satisfiability indicate
that propositional logic can serve as a computational tool, and is capable of handling
large collections of variables and clauses [SLM92, SKC93]. Complexity results alone are
also insufficient to determine whether classical logic or nonmonotonic logics are better
suited as the basis for an automated reasoning system. In particular, the results of
[CDS94, GKPS95] show that higher computational complexity of nonmonotonic logics
may be offset by more concise encodings than those possible with propositional logic.

Hence, despite the tremendous progress in our understanding of the basic principles
of nonmonotonic logics, a major question of their viability as a computational tool
remains unresolved. Systematic implementation and experimentation effort is necessary
to provide us with better insights into the computational properties of nonmonotonic
logics. Despite evident importance of experimental studies of nonmonotonic logics, there
has been little work reported in the literature. While several algorithms were published
and some implementations described [MW88, BNN+93, BNN+94, BEP94, NS95] the
results are far from conclusive. This state of affairs can be attributed to the lack of
systematic experimentation with implemented systems. A possible reason for this was
the absence of commonly accepted benchmarking systems. In particular, a convincing
and useful for experimentation model of a random logic program has yet to be proposed.

To address the issue of benchmarks we developed a system, called TheoryBase, gener-
ating propositional logic programs and default theories [CMMT95]. This system allows
the users to systematically generate interesting families of logic programs and default
theories for experimentation. A key feature of TheoryBase is that it provides an identifier
(label) for every theory it generates. This can greatly facilitate experimental comparisons
between implemented systems. TheoryBase has already been used by several research
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groups around the world. Most notably, Niemelä and Simmons [Nie95, NS95] used the
ideas behind TheoryBase to study their implementation of a system for computing stable
models of logic programs.

In this paper we report on the project to design and implement a program, Default
Reasoning System DeReS, that supports basic automated reasoning tasks for default
logic [Rei80] and for logic programming with stable model semantics [GL88]. We de-
scribe basic features of DeReS. We also present experimental results obtained by running
DeReS on default theories encoding graph problems generated by TheoryBase1.

Our current version of DeReS is built around the notion of stratification [ABW88,
Cho95c, Cho95a]. Stratification allows us to use a divide-and-conquer approach when
computing extensions. An original default theory is partitioned into several smaller sub-
theories, called strata. The extensions of the original theory are then reconstructed from
the extensions of its strata. The notion of stratification considered here is a relaxed ver-
sion of the original concept as introduced in [ABW88]. In particular, a theory stratified
in our sense may possess no extension (stable model) or, if it does, not necessarily a
unique one. In the paper, we show that stratification leads to dramatic speedups. Thus,
whenever possible, problems should be encoded by default theories so that to maximize
the effects of stratification.

In the paper we also study the effects of different propositional theorem provers on
the efficiency of DeReS. We observe that full theorem provers, which check for global
consistency when deciding whether a theory proves a formula, result in performing pro-
hibitive amount of redundant computation. A weaker notion of a limited prover, sound
but not complete, can also be used to correctly implement DeReS and results in sub-
stantial improvements in time performance.

Our results show that there are classes of theories that DeReS can handle very
efficiently. However, if stratification does not yield a partition of an input theory into
small strata, the efficiency of DeReS may be poor. In this context, it is interesting to
relate our work to the work of Niemelä and Simmons [NS95]. The two implementations
are difficult to compare as they attack different aspects of the same problem. While our
research focused on techniques to exploit stratification and limit the number of global
consistency checks, Niemelä and Simmons studied techniques to deal with individual
strata. It seems that the next generation implementations of nonmonotonic systems,
in order to be effective in a large range of different applications, must combine the
techniques developed in both projects.

The paper is organized as follows. In the next section, we describe DeReS. We
briefly describe basic properties of stratification, introduce limited provers and present
the benchmark problem generator, TheoryBase. Then, in Section 3 we show how to use
these tools in our implementation of DeReS. We also present and discuss the results of
our experimentation. The last section contains conclusions.

1To date, both systems: TheoryBase and DeReS, have been installed and tested in Bern, Ithaca,
Karlsruhe, Lexington, Riverside and San Diego. They are currently available by anonymous ftp
from al.cs.engr.uky.edu. The file names are: TheoryBase.tar.gz and DeReS.tar.gz in the directory
/cs/software/logic.
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2 Overview of DeReS

DeReS is a comprehensive software package for nonmonotonic reasoning. The focus of
DeReS is on automated reasoning with default logic and logic programming (although
some other nonmonotonic formalisms are also supported). The programs are written in
C and run under UNIX operating system. The package was developed on a Sun SPARC-
station 20 with the SunOS 5.4 operating system. Nevertheless, no special features of
this environment are used and DeReS can be installed on any machine running SYSV
or BSD version of UNIX. The main components of DeReS are:
user interface — the module facilitating interactive work with stored default theories,
scanner — the module accepting default theory, checking for errors, and building in-
ternal data structures,
default engine — a library of routines for reasoning with a given default theory,
provers — the module providing several propositional theorem provers that can be
called by the default engine module,
graphical interface — an optional graphical interface for displaying the progress of
computation and the results.

DeReS computes extensions for finite propositional default theories. There are no
syntactic restrictions on formulas which can occur in the input. In particular, DeReS
can compute the list of all extensions for a given default theory or check whether a
given default theory has an extension. It also outputs basic time characteristics for
each solved query – the total time spent processing the query and the number of calls
to propositional provability routine. The user communicates with DeReS via its shell,
which accepts user commands and starts desired tasks.

We will now focus on the main aspects of DeReS. We will also provide a short
overview of TheoryBase. Two main questions that we study are:
(1) What is the effect of propositional provers on the efficiency of DeReS?
(2) What is the role of stratification in efficient implementations of nonmonotonic logics?
These questions are further expanded in Sections 2.1 and 2.2. We discuss TheoryBase
in Section 2.3. Section 3 contains the description of the experiments and our findings.

2.1 Propositional provers

The prover module of DeReS system is used as a propositional provability oracle by all
reasoning routines. Since the computational complexity of basic decision problems in
nonmonotonic reasoning is very high, special care is needed to design efficient provers,
or to design techniques to use provers more efficiently. DeReS is equipped with the
following propositional provability procedures:
(1) Full prover — sound and complete propositional tableaux theorem prover,
(2) Limited prover — local provability propositional tableaux theorem prover (sound
but not complete),
(3) df-lookup — table lookup method for disjunction-free theories.
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Full prover, implemented using the propositional tableaux method, was provided to
allow DeReS to work with arbitrary propositional theories. Limited prover is also based
on the tableaux method. It differs from the full prover in that it does not, in general,
perform global consistency checks. Finally, a df-lookup prover is a table lookup method
applicable for disjunction-free theories. A default theory (D,W ) is disjunction-free if
all formulas in W , all prerequisites, justifications and conclusions of defaults in D are
conjunctions of literals. For disjunction-free theories provability problems can be decided
by determining membership of a literal a in a set of literals T (assuming that T does not
contain contradictory literals — in such a case, the df-lookup returns true). Clearly,
the df-lookup can be implemented in time O(1), which results in dramatic performance
improvement. The class of disjunction-free default theories is simple yet quite powerful.
In particular, it subsumes the class of extended logic programs.

We will now describe the idea behind a limited prover. Although this approach
does not improve the worst case complexity of the reasoning algorithms it usually yields
significant speedups. Let L be any propositional language. Consider a propositional
theory T contained in L. Let ϕ be a formula in L and let Var(ϕ) denotes the set of
propositional variables in the formula ϕ.

A theory T proves a formula ϕ (T |= ϕ) in standard propositional logic if either the
information contained in T and concerning the propositional variables occurring in ϕ

allows us to derive ϕ, or if T is inconsistent.

Definition 2.1 Let T be a set of propositional formulas. The incidence graph GT is a
simple undirected graph GT = (T,E) such that for any ϕ, ψ ∈ T

{ϕ, ψ} ∈ E if and only if Var(ϕ) ∩ Var(ψ) 6= ∅

By Tϕ we denote the set of vertices of the connected component of GT which contains ϕ.

Intuitively, local provability of ϕ by a theory T means that ϕ is entailed by the part of
T consisting of formulas containing variables relevant to ϕ, and not because T contains
inconsistent data. A careful formalization of this idea yields the following definition.

Definition 2.2 A theory T locally proves a formula ϕ (denoted T |=loc ϕ) if (T∪{ϕ})ϕ\
{ϕ} |= ϕ

Let us consider now standard propositional provability routines, such as tableaux or
resolution based algorithms. Suppose we want to use them to answer the query T |=loc ϕ.
The modifications required in these algorithms to implement local provability are very
simple. All one has to do is to block expanding the tableaux tree or the resolution list by
formulas which have no common variables with the variables mentioned in the structure
(the tree or the list) so far. This way the prover remains restricted to the component of
GT∪{ϕ} containing the formula ϕ.
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Clearly, local provers are faster than full provers as, in general, they do not consider
all formulas in the input theory. The exact amount of savings depends on the structure
of the underlying theory T and the input formula ϕ or, more precisely, on the structure
of the incidence graph GT∪{ϕ}. We gather some immediate consequences of Definition
2.2 in the following theorem.

Theorem 2.1 For arbitrary theory T and formula ϕ the following holds:
(1) If T |=loc ϕ then T |= ϕ.
(2) If T is consistent then T |= ϕ if and only if T |=loc ϕ.

(3) If GT∪{ϕ} is connected then T |= ϕ if and only if T |=loc ϕ.

(4) T |= ϕ if and only if either T is inconsistent or T |=loc ϕ. 2

Theorem 2.1 yields a technique to compute extensions using a local prover directly. Let
(D,W ) be an input default theory. Assume that the task is to find an extension (or
generate all of them). To simplify the discussion, we will assume that each default in
D has at least one justification. Under this assumption, (D,W ) has either a unique
inconsistent extension (if W is inconsistent), or all extensions of (D,W ) are consistent
(if W is consistent). Hence, a single call to a full propositional prover is sufficient to
decide which of the two possibilities holds. If it is the first one, we stop. So, from now
on we will assume that W is consistent.

It is well known that extensions of a default theory (D,W ) are determined by the
sets of formulas of the form W ∪c(U), where U ⊆ D and c(U) consists of the consequents
of defaults in U ([MT93]). In order to verify whether W ∪ c(U) generates an extension,
DeReS has to decide several provability problems of the form W ∪c(U) ⊢ ϕ. If W ∪c(U)
is consistent, the local prover can be used instead of the full prover.

To search through all such sets, DeReS considers systematically all subsets U of D,
starting with U = ∅. Then W ∪ c(U) = W which, by our assumption, is consistent.
Hence, the local prover can be used to decide if W ∪ c(U) generates an extension. Each
next set of defaults, say U ′, is obtained from the current set U by removing or adding
one default, say d. In the first case, the resulting set of formulas W ∪ c(U ′) is consistent
and the local prover can be used to decide whether it generates an extension. In the
second case, W ∪ c(U ′) is consistent if and only if W ∪ c(U) 6⊢ ¬c(d). Since W ∪ c(U)
is consistent, this condition can be tested by a call to the local prover. If W ∪ c(U ′) is
inconsistent, DeReS removes U ′, as well as all its supersets, from the search space and
backtracks to W ∪ c(U). Otherwise, W ∪ c(U ′) is consistent and, again, the local prover
can be used to test whether W ∪ c(U ′) is an extension 2.

2.2 Stratification

To improve efficiency of reasoning with default logic one can check if a given theory
belongs to a subclass for which reasoning can be performed faster. A common technique

2Eliminating global consistency checks by local provers is analogous to ommitting occur check in
logic programming.
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is to stratify a theory. Stratification consists of partitioning a given theory into a se-
quence of smaller theories for which extensions can be computed faster. This approach
was studied in the cases of logic programming [CH82, ABW88, VG88, Prz88] and au-
toepistemic logic [Gel87, MT91]. Some results of applying this approach to default logic
were obtained by Etherington [Eth88] and Kautz and Selman [KS89]. DeReS uses a
relaxed variant of stratification adopted for general default theories. That is, no syntac-
tic restrictions on formulas appearing in defaults are imposed. Instead more restrictive
conditions on dependencies between defaults are required. See [Cho95c] and [Cho95a]
for details on stratification for default theories.

Given an input default theory (D,W ) and its stratification D1, . . . , Dk, DeReS builds
extensions gradually, dealing with consecutive strata “one at a time”. DeReS assumes
a fixed linear order (topological sort) of strata. The nodes of the search tree are pairs
(Di, E) where Di is the current stratum and E is an extension for the default theory
(D1 ∪ . . .∪Di−1,W ). The children of this node are of the form (Di+1, E

′) where Di+1 is
the next stratum and E ′ is an extension for the default theory (D1 ∪ . . . ∪Di,W ). It is
known [Cho95c] that all such extensions are exactly the extensions for (Di, E). DeReS
uses an additional (local) search tree to find extensions for each default theory (Di, E).

2.3 TheoryBase

To test and experiment with an automated reasoning system, one requires a diversified
collection of benchmark theories. In our case, to test DeReS, we needed default theories
and logic programs. They should be easily generated, realistic and meaningful. They
should be easy to reproduce and disseminate to facilitate experimental comparisons
of different implementations of nonmonotonic reasoning systems. These requirements
prompted another project – TheoryBase [CMMT95]. TheoryBase automatically gen-
erates families of default theories and logic programs. It is based on the observation
that graph problems such as existence of colorings, kernels and hamilton cycles can be
encoded as default theories and logic programs, with extensions (stable models) corre-
sponding to combinatorial objects in question. Hence, the TheoryBase first generates
a graph and then produces an encoding — a default theory or a logic program — of a
combinatorial problem for this particular graph. Several such encodings were described
in [CMMT95]. Most important of them are:
(1) existence of a kernel,
(2) existence of a coloring,
(3) existence of a hamiltonian cycle.
In order to generate graphs, TheoryBase uses the system, Stanford GraphBase, devel-
oped by Knuth [Knu93]. This software system can generate a large variety of graphs,
each with a unique identifier. The system of Stanford GraphBase identifiers is extended
in TheoryBase to default theories and logic programs. Each default theory and logic
program generated by TheoryBase receives an identifier which allows for an easy recon-
struction of the corresponding theory or program.

TheoryBase can easily be extended by new encodings of combinatorial problems as
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default theories, logic programs, disjunctive logic programs, as well as propositional the-
ories. Our intention is for TheoryBase to evolve into a commonly accepted benchmarking
system to support research in automated reasoning.

3 Results

In this section we discuss some of the experiments that were run on DeReS. The test
theories were generated by TheoryBase and their identifiers are provided here. Two
main questions that we studied were (1) the impact of a propositional prover on the
efficiency of DeReS and (2) the impact of stratification of the efficiency of DeReS. In our
tests we focused on two tasks: to decide the existence of extensions, and to generate all
extensions of an input default theory.

In the presentation of the results we use the following notation: timef denotes the
CPU time for queries processed with full propositional tableaux, timel denotes the CPU
time for queries processed with limited propositional tableaux, timea denotes CPU time
for queries processed with df-lookup prover. Further, NCPP stands for the number of
calls to propositional provability routine, CAND stands for the number of candidate
theories tested for an extension. We denote the total number of extensions for the
input theory by EXT. By D we denote the set of defaults of default theories used in
experimentation. We set N = |D|. Finally, V and E denote the vertex set and the edge
set of the graphs underlying default theories used in experimentation.

All times are given in seconds. A bar (–) symbol in tables indicates that the pro-
gram was running for more than 2 hours without reaching the final answer and then
was interrupted. To capture the reasoning time we measure the CPU time from the
point when an input default theory is already represented and stored, together with its
stratification, as a DeReS data structure to the point when the answer is returned.

3.1 Computing graph kernels with DeReS

We start our presentation of the experiments with DeReS with the problem of computing
kernels in graphs. We considered the family of graphs Gn,m = board(n,m, 0, 0, 5, 3, 1)
from Stanford GraphBase. The graph Gn,m is the graph of chess-knight moves on a
wrapped n ×m chessboard. Moreover, the edges are directed according to the lexico-
graphical order on the pairs of coordinates for the chess-board squares.

To compute kernels in the graphs Gn,m = board(n,m, 0, 0, 5, 3, 1) the encodings with
identifiers kernel.board n,m, 0, 0, 5, 3, 1 were generated by TheoryBase.3 In particular,
we studied the graphs G8,m. The size of these graphs grows proportionally to m. The
same holds for the size of the TheoryBase encodings of the kernel existence problem for
these graphs. We propose this sequence of default theories as a benchmark problem for
non-monotonic reasoning.

3Since the theories are saved as UNIX files, the system of identifiers uses underscores instead of
parentheses.
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kernel.board 8,m,0,0,5,3,1 , single solution

m |V | |E| N NCPP CAND timef timel timea

2 16 64 112 1939 851 2.34 0.14 0.01
4 32 128 224 14804 6845 69.95 1.45 0.07
6 48 192 336 121249 56298 1532.87 16.49 0.57
8 64 256 448 308910 143677 – 53.40 1.45

10 80 320 560 1982796 921464 – 421.74 9.14

Table 1: Searching for a kernel in board(8,m, 0, 0, 5, 3, 1).

kernel.board 8,m,0,0,5,3,1 , all solutions

m |V | |E| N NCPP CAND timef timel timea EXT

2 16 64 112 3337 1473 4.03 0.24 0.02 2
4 32 128 224 65704 30016 365.59 6.70 0.32 6
6 48 192 336 421082 192175 5239.54 57.34 1.90 5
8 64 256 448 4130579 1888829 – 720.22 18.97 134

10 80 320 560 31630658 14466688 – 6819.35 141.74 267

Table 2: Computing all kernels in board(8,m, 0, 0, 5, 3, 1).

In Table 1 we show times which DeReS needed to find one kernel in graphs G8,m =
board(8,m, 0, 0, 5, 3, 1), 2 ≤ m ≤ 10. In Table 2 we show the times required to compute
all the kernels. In both cases time grows exponentially with the size of the underlying
default theory. In the same time, this example illustrates that DeReS is capable to
deal with default theories containing hundreds of defaults. It is due to the effective use
of stratification in the encoding ∆3

ker, which results in the partition of the theory into
relatively small clusters. Consequently, the provability routine performs very efficiently
and the answers are found within seconds.

Let us look more closely at times corresponding to different provability routines. In
all cases, the total time required to decide all relevant provability problems using the
df-lookup prover is proportional to the total number of calls to the prover. Hence, the
time per call is constant. The time grows exponentially and has order Θ(3N/56) (recall
that N is the number of defaults in D). That is, it grows at a much smaller rate than
the theoretical bound O(N2 2N) [MT93]. Similarly, the times timea(m) for finding one
extension are of the order Θ(2N/56). These speedups are due to the fact that we were
able to stratify input default theories into chains of clusters of defaults and construct
extensions by considering several subproblems of small sizes instead of one large set set
of defaults.

When tableau provers are used, the times are larger because more time is needed for
each call to propositional provability. In the case of limited prover, the time required
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kernel.b.board 4,m,0,0,5,3,1 , single solution

m |V | |E| N NCPP CAND timef timel timea

2 8 32 32 52931 2351 8.34 1.28 0.13
3 12 48 48 241868873 9814692 – – 438.46
4 16 64 64 – – – – –

Table 3: Searching for a kernel in board(4,m, 0, 0, 5, 3, 1).

for a single call grows proportionally with m which implies the total time of the order
Θ(N 3N/56).

Full propositional prover scans the input theory O(m) times per each query. Con-
sequently, the time needed to solve each such query is O(m2) (quadratic in the size of
theory), and the total time of finding all extensions is of the order Θ(N2 3N/56).

These results show that efficiency of provers have substantial effect on the perfor-
mance of DeReS. One general lesson is that local provers should be used instead of full
provers, especially in view of the fact that local provers do not impose any restrictions on
input theories. Although our results were obtained for a full and local tableaux provers,
we believe the same speedups would be obtained if any other full prover is replaced by
its local version. That is, consistency checks performed each time when the prover is
called can and should be avoided.

Secondly, even though the theories that arise in this example are very simple, both
local and full tableaux provers are outperformed by the df-lookup prover. This indicates
that when using DeReS as a knowledge representation tool, it is useful to encode domain
knowledge as a disjunction-free theory, as this allows DeReS to refer to the df-lookup
prover when reasoning.

To discuss in more detail the effects of stratification, we will consider the same class
of graphs but the kernel existence problem will be encoded differently. This time, we will
use the encoding ∆1

ker, also described in [CMMT95]. The corresponding theories gener-
ated by TheoryBase have identifiers (kernel.b.board n,m, 0, 0, 5, 3, 1 ). Table 3 contains
the experimental results. It is clear that DeReS performs much worse on these theo-
ries. The lack of good stratification for the theories (kernel.b.board n,m, 0, 0, 5, 3, 1 )
is to blame. Hence, encoding domain knowledge in DeReS, as in any other knowledge
representation language, requires some skill. In the case of DeReS, the same problem
can be encoded efficiently (∆3

ker) and inefficiently (∆1
ker). A general lesson is that while

encoding domain knowledge in DeReS, encodings that admit fine stratification should
be used.

3.2 Coloring ladder graphs

In [NS95], the problem to find a 3-coloring of a ladder graph was proposed as a bench-
mark for testing non-monotonic reasoning systems. The ladder graph, Ln, is defined as
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color3.board n,2,0,0,1,0,0 , one solution

n |V | |E| N NCPP CAND timef timel timea

200 400 598 2994 7988 2594 1427.50 6.45 0.18
400 800 1198 5994 15988 5194 – 28.72 0.34
600 1200 1798 8994 23988 7794 – 68.74 0.50
800 1600 2398 11994 31988 10394 – 128.17 0.68

1000 2000 2998 14994 39988 12994 – 209.14 0.84

Table 4: Finding a coloring for Ln = board(n, 2, 0, 0, 1, 0, 0).

follows. Its vertices are points (x, y) in the real plane such that, x = 0, 1, . . . , n and
y = 0, 1. Two vertices are joined by an edge if the euclidean distance between them
equals 1. Graph Ln can be generated using The Stanford GraphBase and has label
board(n, 2, 0, 0, 1, 0, 0). We use default theory chrom3(G) from [CMMT95] to encode
3-colorings for graph G. These encodings were generated using TheoryBase system and
have TheoryBase labels color3.board n, 2, 0, 0, 1, 0, 0 .

DeReS times obtained for the query find one extension are shown in Table 4. In this
case, the number of calls to propositional provability routine and the number of tested
candidates grow linearly with respect to the size (the number of vertices) of the graph.
All three provers which we use behave in the same way as in the previous example. That
is, df-lookup prover runs in constant time per call, limited tableau prover in linear time
and full tableau prover in quadratic time. Consequently, the time for finding an extension
(coloring of the ladder graph Ln) is Θ(n) for df-lookup prover, Θ(n2) for limited tableau
and Θ(n3) for full tableau method.

Hence, when efficient provability method is used, DeReS can find a 3-coloring for a
ladder graph within a second even when the corresponding encoding contains almost 15
thousand defaults. The success of DeReS is again due to the structure of the encoding
used — it allows for stratification into small strata. The method for computing stable
models of logic programs, developed in [NS95], also did very well for this particular
class of problems. Hence, both our results and the results in [NS95] indicate that the
3-coloring problem for ladder graphs is too easy to serve as a useful benchmark problem
for nonmonotonic reasoning systems. This is due to the large number of 3-colorings that
the ladder graphs admit. Hence, any search method is likely to find a 3-coloring quickly.
In fact, there are 3n−1 non-isomorphic 3-colorings for Ln. This yields 2 × 3n extensions
for default theory color3.board n,2,0,0,1,0,0 . This is also the reason why we did not
provide time for the task of finding all extensions of theories color3.board n,2,0,0,1,0,0 .
Times to find a single extension are short but the list of all solutions is exponentially
large.
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kernel.board n,0,0,0,1,1,1 , compute extensions

n |V | |E| N NCPP CAND timef timel timea

175 175 175 700 5235 2618 414.07 1.46 0.08
375 375 375 1500 11235 5618 4294.84 6.50 0.15
575 575 575 2300 17235 8618 – 15.06 0.24
775 775 775 3100 23235 11618 – 27.25 0.32
975 975 975 3900 29235 14618 – 42.98 0.39

Table 5: Searching for kernels in Cn = board(n, 0, 0, 0, 1, 1, 1).

3.3 Computing with DeReS when no extensions exist

To get a complete picture of the performance of an automated reasoning method (or any
search-based algorithm) it is necessary to test the method on instances for which solution
do not exist and, hence, the method has to run a complete search. As a benchmark for
such tests we use the problem of finding kernels in directed cycles with odd number of
vertices. Default theories which we use to encode this problem have no extensions. The
objective of this experiment was to find out how long will it take for DeReS to answer
that no solution exists. In this case the reasoning time is the same for the query find
one extension and for the query find all extensions.

We use directed cycles Cn of odd length. In Stanford GraphBase Cn is labeled
board(n,0,0,0,1,1,1). To encode kernels we use the TheoryBase encoding ∆3

ker and the
resulting theories have labels kernel.board n,0,0,0,1,1,1 . In this case, intermediate ex-
tensions exist for all strata but the last one. Hence, the entire D must be analyzed
before the conclusion that no extensions exist can be drawn. Times needed by DeReS
to conclude that no solution exists are shown in Table 5. Since in this case whole set of
defaults must be considered to find out that there are no extensions number of calls to
propositional provability procedure is not constant. It grows linearly – 100 additional
nodes in the circuit require exactly 3000 extra calls to propositional provability routine.
This yields linear reasoning time, O(N), when df-lookup prover is used and quadratic,
O(N2) reasoning time, in the case of limited tableau method. The results presented in
this section show that stratification plays a critical role also when determining that no
solutions exist.

Also in this case it is important to use an appropriate encoding. Representing the
existence of kernel problem for graphs board(n,0,0,0,1,1,1) by theories with the labels
kernel.b.board n,0,0,0,1,1,1 (∆1

ker in [CMMT95]) leads to a dramatic loss of performance.

4 Conclusions

We have presented several experimental results of using default logic to solve problems
from a domain of independent interest – graph theory. In our study we focused on the
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kernel.b.board n,0,0,0,1,1,1 , compute extensions

n |V | |E| N NCPP CAND timef timel timea

15 15 15 15 36178 2583 2.53 0.79 0.10
19 19 19 19 318800 17710 30.79 7.27 0.80
23 23 23 23 2670648 121392 334.62 62.49 6.46
27 27 27 27 21633042 832039 3509.69 521.95 51.67
31 31 31 31 171086612 5702886 – 4288.25 403.07

Table 6: Searching for kernels in Cn = board(n, 0, 0, 0, 1, 1, 1).

following two aspects of default reasoning:
(1) how the ability to stratify a default theory affects the computational time,
(2) which methods of propositional provability are suitable as an oracle for default
reasoning.
Consequently, we did not consider any specific method of dealing with a single cluster of
defaults. We used a generic reduct-based algorithm to compute extensions for a single
stratum of defaults. We expect that stratification would affect the performance of DeReS
in the same way for any other method to process clusters. This claim, however, still
needs to be confirmed experimentally.

The results presented in this paper confirmed the theoretical results on stratification
given in [Cho95c]. That is, using stratification we were able to find extensions for
default theories consisting of hundreds and thousands of defaults. Of course, this level
of performance is not guaranteed unless the input theory admits a fine stratification,
that is, when there is a constant bound on the size of the largest stratum. We showed
that stratification, in general, does not eliminate the exponential time complexity but
rather reduces the complexity so that substantial instances can be solved in reasonable
time.

We investigated three different methods of implementing provability procedure which
is used as an oracle in default reasoning. The three algorithms which we used could have
solved a single provability query in amortized times O(1), O(N) and O(N2) per query.
Our results did not depend on any particular algorithm for propositional provability.
The same (up to constants) results can be obtained under the assumption that we have
three provers which run in constant, linear and quadratic time per query. Two impor-
tant conclusions are:
(1) Performance of DeReS and other nonmonotonic systems can be dramatically im-
proved if limited provers are used allowing us to reduce the number of global consistency
checks.
(2) To keep reasoning time as small as possible, the simplest prover which can handle
the class of formulas appearing in an input default theory should be used.

Finally, this work demonstrates usability of TheoryBase as a benchmarking system
for nonmonotonic reasoning.
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[Cho95c] P. Cholewiński. Stratified default theories. In Proceedings of CSL’94.
Berlin: Springer-Verlag, 1995. Lecture Notes in Computer Science 933.
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