
Algorithms for Maintaining AuthorizationBaseWilliam Brooks, V. Wiktor Marek, Miroslaw TruszczynskiDepartment of Computer of ScienceUniversity of KentuckyLexington, KY 40506-0046{bbrooks|marek|mirek}@cs.engr.uky.edu
AbstractWe present algorithms for access rights control in multiuser, object-oriented databases.These algorithms follow the model of authorization introduced in [6]. We show how thethree basic operations: AccessControl, Grant, and Revoke can be e�ciently implementedusing techniques for manipulating partially ordered sets. Several techniques for main-tenance of authorization bases are presented and the complexity of the algorithms isestablished.1 IntroductionMultiuser databases require a mechanism to control access rights to objects that arestored in them. Di�erent users may and will have di�erent access rights to di�erentobjects in the database. A proposal for a mechanism to grant access rights on objectsto the users is described in [6]. It is based on the concept of an authorization base. Theauthors identify three sets: a set S of subjects (users of a database), a set O of objectsstored in the database, and a set A of access types. A triple (s; o;+a), where s 2 S,o 2 O and a 2 A, is called an explicit strong positive authorization. The intuition is thatuser s has access a to object o. Similarly, a triple (s; o;�a) is called an explicit strongnegative authorization and its informal meaning is that user s does not have access a toobject o (though it may have access of some other type to this object). An authorization1

base is a collection AB of explicit strong positive and negative authorizations satisfyingsome additional closure constraints.To describe these constraints, observe that all three sets S, O and A are endowedwith a hierarchy (partial ordering). For instance, the hierarchy of users may reecttheir positions in the organizational structure of a company that owns the database.Similarly, there is a natural hierarchy of objects, the accumulation hierarchy, in whichobjects serving as attribute values of other objects precede them. Finally, orderings areimposed on sets of access types. For instance, write access to an object implies readaccess to the object. Users higher in their hierarchy have at least the same access rightsas their subordinates. Once the user has access of type a to an object o, s/he has alsoat least the same access to all objects lower than o in the object hierarchy. Finally, oncethe user has access of type a to an object o, it has also accesses of weaker types (inthe hierarchy of access types) to the object o. These rules are concerned with positiveauthorizations. They have their dual forms for negative authorizations. For instance,subordinates of a user with negative authorization for the access of type a to an objecto (that is, with no access a to object o) must also have such negative authorization (noaccess a to o). Authorization bases are those sets of positive and negative authorizationsthat are closed under these rules.The fundamental role of an authorization base is to provide decisions concerning theaccess rights of users to objects. Given a triple (s; o; a), we can have one of the followingfour situations:1. the authorization base has no information on whether user s has access a to objecto2. the authorization base contains (and, thus, implies) only the positive authorizationfor s to access a on o3. the authorization base contains (and, thus, implies) only the negative authorizationfor s to access a on o4. the authorization base contains both authorizations, positive and negative.The possibilities (1) and (4) are undesirable. Possibility (1) means that (s; o; a) is under-de�ned and possibility (4) means that (s; o; a) is overde�ned. Hence, they do not providea unique answer to whether the access right should be granted. The goal is to propose asystem in which for every triple (s; o; a) either (2) or (3) holds. This need was recognizedin [6] and some solutions were proposed there.2

In this paper, we propose an abstract model of the concept of an authorization baseexploiting properties of partial orderings. We propose to use the Closed World Assump-tion of Reiter [7] to simplify the problem of representation of an authorization base andto enforce that for every triple (s; o; a), exactly one of the possibilities (2) and (3) willhold. We will further study the issue of representability of authorization bases. We willconsider several di�erent approaches to this problem. In one of them, an authorizationbase is represented by means of an antichain. Another one is somewhat related to theoriginal proposal of [6]. The idea is to represent an authorization base as a sequence(rather than a set) of positive and negative authorizations.Each representation mechanism must support algorithms for three basic operationson authorization bases:1. AccessControl: a procedure that given an authorization base AB and a triple(s; o; a) returns TRUE if user s has access of type a to object o, and FALSE,otherwise.2. Grant: a procedure that adds to authorization base AB a new authorization x andall authorizations implied by x. No other authorizations are added. The result willbe denoted by AB + x.3. Revoke: a procedure that eliminates from an authorization base AB an authoriza-tion x and all authorizations that imply x. No other authorizations are removed.The result will be denoted by AB � x.In the paper we will describe these procedures for each of our representations of autho-rization bases.2 Formal model of authorizationAs in [6] (see also [1] and [5]) we consider the following three sets: the set S of subjects, Oof objects and A of access types (called authorizations in [6]). Subsets AB of S �O�A(satisfying some additional conditions discussed below) are called authorization bases.We interpret the fact that (s; o; a) 2 AB as: \user s has access type a on object o".In other words, authorization bases in our sense consist only of positive authorizations.The negative authorizations are obtained by Closed World Assumption [7]. That is, ABimplies a negative authorization (s; o;�a) if and only if (s; o; a) 62 AB. Consequently, for3

every triple (s; o; a), either a positive or negative authorization is implied by AB (butnot both).We will now formalize the closure properties required of authorization bases. Let usrecall that each of the sets S, O and A has its own hierarchy. In [6] these hierarchies aremodeled by partial orderings: �S;�O, and �A, respectively. Consider an authorization(s0; o0; a0). It means that user s0 has access a0 to object o0. Consider now user s suchthat s0 �S s (that is, user s is higher than s0 in the hierarchy of users). Then user s alsomust have access a0 to object o0. Even more, if for some object o, o �O o0 (that is, o is a\part" of o0), then s should have access a0 to o, as well. Finally, if access type a is weakerthan a0, a �A a0, then s should have access a to o. In other words, if s is higher in thehierarchy of users than s0 (or s = s0), and o is a part of o0 (or o = o0), and a is weakerthan a0 (or a = a0), then if s0 has access a0 to o0 then s has access a to o. This intuitionmotivates the following partial ordering on the set of authorizations S � O � A:(s0; o0; a0) � (s; o; a) if and only if (s0 �S s) ^ (o �O o0) ^ (a �A a0)The idea is that authorizations imply all authorizations that are greater or equal in thisordering �.This ordering and the Closed World Assumption allow us to replace the closure prin-ciples discussed in the introduction with a single rule (upward closure rule UC):UC: if (s0; o0; a0) 2 AB and (s0; o0; a0) � (s; o; a), then (s; o; a) 2 AB.We are now ready to provide a complete formal de�nition of authorization bases. Byan authorization space we mean the partially ordered set (S � O � A;�), and by anauthorization base we mean any subset AB of the authorization space which satis�esthe rule UC. The rule UC guarantees that authorization bases satisfy the three closurerules for positive authorizations introduced in [6] and discussed in the introduction. Infact, this rule is equivalent to their conjunction. In addition, the rule UC implies thatauthorization bases satisfy also the following downward closure rule (DC):DC: if (s0; o0; a0) 62 AB and (s; o; a) � (s0; o0; a0), then (s; o; a) 62 AB.This observation implies that if Closed World Assumption is used to provide informationon negative authorizations, then the set of negative authorizations implied by AB satis�esthe three closure rules for negative authorizations mentioned in the introduction.In this paper we will discuss methods to represent authorization bases, that is, subsetsof S �O�A satisfying the rule UC. We will also describe algorithms for the procedures4

ControlAccess, Grant and Revoke. To this end, we will use a more general setting ofarbitrary partial orders (we will call it an abstract setting for authorization bases). Atthe end of the paper, in Section 5, we will further simplify the algorithms by utilizingthe fact that the authorization space is the product of three smaller sets S, O and A.3 Abstract model of authorization basesWe are now in a position to formulate the abstract version of the model of authorizationbases. In this abstract model, an authorization space is an arbitrary partially orderedset (U;�) (for U = S�O�A and � de�ned as above, we obtain the situation discussedin the previous section).A subset T � U is called upward closed (UC, in short) if8x;y((x 2 T ^ x � y)) y 2 T):Similarly, a subset T � U is called downward closed (DC, in short) if8x;y((x 2 T ^ y � x)) y 2 T):UC sets capture the intuition of authorization bases as introduced above (in fact,we will often refer to UC sets as authorization bases). Similarly, DC sets describe thecomplements of the authorization bases. The DC sets will be needed in the discussion ofthe process of revoking authorizations.We de�ne now closure operators Cl"(T) and Cl#(T) as follows:Cl"(T) = fx : 9y2T y � xgCl#(T) = fx : 9y2Tx � yg:Informally, Cl"(T) consists of these authorizations that have to be granted once autho-rizations from T are granted, and Cl#(T) consists of these authorizations that must berevoked once the authorizations from T are revoked.We now list without proof a number of properties of upward and downward closedsets and of the closure operators.Proposition 3.1 1. If X; Y are UC sets then X\Y and X[Y are UC sets. Similarlyfor DC sets. 5

2. If X is a UC set and Y is a DC set, then X n Y is a UC set and Y nX is a DCset.3. For every X � U , Cl"(X) is a UC set and Cl#(X) is a DC set.It follows from Proposition 3.1 that if X is a UC set then X [Cl"(fxg) is a UC set,as well. In fact, it is the least UC set containing X [fxg. We will denote it by X + x. IfX is an authorization base and x is an authorization to be granted, it is clear that X +xis exactly the intended result of Grant(X; x). Similarly, X n Cl#(fxg) is the largest UCset included in X and not containing x. We will denote it by X � x. It is the intendedresult of Revoke(X; x).A straightforward approach to the problem of maintaining authorization bases is toexplicitly store the whole UC set (authorization base) X. Under this representation,ControlAccess(X; x) is a procedure returning TRUE if x 2 X and FALSE, otherwise.The procedure Grant(X; x) replaces X by X + x, that is, by X [Cl"(fxg). Similarly,the procedure Revoke(X; x) replaces X by X � x, that is, by X n Cl#(fxg).These procedures can be implemented as follows. Let us assume that we maintainthe Hasse diagram H of (U;�). That is, assume that for each vertex u 2 U we maintaintwo lists: in(u) containing all immediate predecessors of u, and out(u) containing allimmediate successors of u. Let us denote the size of this representation of H by h. Wewill use this notation throughout the paper.We maintain an authorization base X by marking all nodes of X by black. Underthis representation, ControlAccess(X; x) takes O(1) (assuming that we can access eachnode from U in H in constant time). Grant(X; x) can be implemented by performinga depth-�rst search from x, using lists in(u), and marking each visited vertex black.Similarly, Revoke(X; x) can be implemented by performing a depth-�rst search from x,using the lists out(u), and unmarking each visited black vertex. Hence, these procedurestake linear time in the size of the Hasse diagram.A major problem with this approach is that it requires that the Hasse diagram H,which may be very large, be explicitly maintained. In the next section we will introducetwo di�erent proposals. In the case when U = S�O�A, they can be implemented usinga much more economical representation of the Hasse diagram H.
6

4 Techniques for maintenance of authorization basesLet us start with an example. Let S = fbill; victor;mirekg, O = fo1; : : : ; o7g andA = fsc; r; wg, where sc denotes the right to see the scheme of the object (record), r isthe read access and w is the write access. Assume also that these sets are endowed withthe partial orderings whose Hasse diagrams are shown in Figure 1.
bill

victor mirek

o o

o

o

o

o

o

w

r

sc

3

7

65

4

2

1

Objects ActionsSubjectsFigure 1: Hasse diagrams of �S , �O and �ALet us consider the authorization base in which mirek has complete access to all ob-jects, victor has r and sc access to o2, o4, o5 and o6 and, sc access to o7, and �nally,bill has r access to o5 and o6 and sc access to o2, o4, o5 and o6. In other words, theauthorization base AB consists of the following elements:(mirek; o1; w); (mirek; o2; w); : : : ; (mirek; o7; w),(mirek; o1; r); (mirek; o2; r); : : : ; (mirek; o7; r),(mirek; o1; sc); (mirek; o2; sc); : : : ; (mirek; o7; sc),(victor; o2; r), (victor; o4; r), (victor; o5; r), (victor; o6; r),(victor; o2; sc), (victor; o4; sc), (victor; o5; sc), (victor; o6; sc), (victor; o7; sc),(bill; o5; r), (bill; o6; r),(bill; o2; sc), (bill; o4; sc), (bill; o5; sc), (bill; o6; sc),This set consists of 36 elements. However, it is uniquely determined by a much smallerset, say D, of its minimal elements, which contains just 8 elements:7

(mirek; o1; w);(victor; o2; r), (victor; o4; r),(victor; o7; sc),(bill; o5; r), (bill; o6; r),(bill; o2; sc), (bill; o4; sc).It can be checked that Cl"(D) = AB. Hence, to decide whether x 2 AB, it is enoughto decide whether x 2 Cl"(D), that is, whether there is an element d 2 D such thatd � x. For example, assume that we have a query (victor; o6; sc). Since (victor; o2; r) isin D and (victor; o2; r) � (victor; o6; sc), access sc to object o6 should be approved forvictor.On the other hand, (bill; o2; r) is not approved since there is no tuple (s; o; a) 2 Dsuch that (s; o; a) � (bill; o2; r).In the following subsections we will describe two techniques for maintenance of au-thorization bases using the ideas employed in the example above.4.1 Representing authorization bases by antichainsAn antichain is a subset D of U such that for all x; y 2 D, if x 6= y then :(x � y)^:(y �x). We have the following proposition showing that UC sets can be represented as upwardclosures of antichains. A dual result holds for DC sets.Proposition 4.1 Let (U;�) be a �nite partially ordered set. A subset T � U is a UCset if and only if there exists an antichain D such that T = Cl"(D). Moreover, such anantichain D is unique and consists precisely of the minimal elements of T . Similarly, aset X � U is a DCS if and only if there exists an antichain E such that X = Cl#(E).Moreover, such antichain E is unique and consists of the maximal elements in X.Proposition 4.1 states that for every authorization base AB there is a unique antichainD such that AB = Cl " (D). Moreover, D consists of all minimal elements in AB.Hence, authorization bases can be represented by antichains of their minimal elements.8

We will use this representation now. This will require modi�cations in the proceduresControlAccess, Grant and Revoke.In the procedure ControlAccess(D; x), we assume thatD is the antichain of all minimalelements of an authorization base AB, that is, AB = Cl"(D). Moreover, x is an elementof an authorization space. The procedure returns TRUE if x 2 AB and FALSE otherwise.ControlAccess(D; x)if x 2 Cl"(D) then returnfTRUEgelse returnfFALSEgLet us assume that we maintain the Hasse diagram H of the authorization space(U;�) by means of two lists: in(u), u 2 U , of immediate predecessors of u, and out(u),u 2 U , of immediate successors of u. Then, the test to check if x 2 Cl"(D) can beperformed by executing the depth-�rst search from D upwards (using the lists in(u)).Clearly, this search takes linear time in h (recall that h denotes the size of H). Hence,the procedure ControlAccess can be implemented to run in time O(h).The problem of adding a new authorization is not much more complex. The corre-sponding procedure Grant(D; x) is described below. We assume here D is the antichainof all minimal elements of an authorization base AB, that is, AB = Cl"(D). Moreover,x is an element of an authorization space. The procedure replaces D by a new antichainof minimal elements of AB + x.Grant(D; x)if x 2 Cl"(D) then stopelse D := (D n Cl"(fxg)) [fxgAs before, if the Hasse diagram H of the authorization space (U;�) is maintainedas two sets of lists in(u) and out(u), u 2 U , the test whether x 2 Cl " (D) can beperformed in linear time by using a depth-�rst search upward from D. In addition, if wemark the nodes from D in the Hasse diagram (which can be done in linear time), thenD n Cl"(fxg) can also be computed in linear time by running a depth-�rst search fromx upwards. Hence, Grant(D; x) can be implemented to run in linear time in h.Proposition 4.2 The procedure Grant(D; x) is correct.Proof: Assume x 2 AB. Then, x 2 Cl"(D). In this case, the same set D has to bereturned and this is exactly what our procedure does. In the case when x 62 AB, then9

the set of minimal elements of AB + x is (D n Cl"(fxg)) [fxg. This is again preciselythe e�ect of the procedure. 2Revoke is the most complex of the three operations. On input, D is an antichain thatrepresents an authorization base AB and x is an authorization that is to be revoked. Onoutput, the set D contains the antichain representing the updated authorization base,that is, the result of the deletion of x from AB: AB n Cl#(fxg).Revoke(D; x)ND := ;for every y 2 Cl"(D) nD doif Cl"(D) \ in(y) � Cl#(fxg) then ND := ND [fygD := ND [(D n Cl#(fxg))Again assume that the Hasse diagram H is represented by the lists in(u) and out(u),u 2 U . Then, Cl"(D) n D can be computed in linear time in h. By marking black allnodes of H which are in Cl"(D) and by marking red all elements of H which are inCl#(fxg) (both tasks can be accomplished by performing a depth-�rst search, up from Dand down from x, respectively), the total time for all the tests Cl"(D)\ in(y) � Cl#(fxg)is also linear in h. Consequently, the whole procedure can be implemented in time O(h).Proposition 4.3 Procedure Revoke(D; x) is correct.Proof: Let Di denote the antichain D on input and let Do will be the result of theprocedure. Clearly, any element in Di which is not in Cl#(fxg) is minimal in the setCl"(Di) n Cl#(fxg). All these elements are included in Do by the procedure. All otherelements of Di must be removed. However, some new minimal elements still need tobe added to Do. They all belong to Cl"(Di) n Di. An element y 2 Cl"(Di) n Di isminimal in Cl"(Di) n Cl#(fxg) if and only if each its predecessor does not belong toCl"(Di) nCl#(fxg). To check this, it is enough to verify that each predecessor of y whichbelongs to Cl"(Di) belongs also to Cl#(fxg). But this is exactly what our proceduretests when generating the set ND. 2As it is now, this approach is worse than the approach proposed before. All proceduresrun in linear time in the size h of the Hasse diagram H, while in our �rst approachControlAccess takes constant time and Grant and Revoke take linear time in h. In Section5 we will show that at a cost of some preprocessing, the running time of the procedurespresented in this section will be signi�cantly reduced. Moreover, there will be no needto maintain the entire Hasse diagram. 10

4.2 Lazy maintenance of authorization basesWe will now present another technique for the maintenance of authorization bases. Thekey observation here is that, with an increase in the cost of ControlAccess we can reducethe cost of Grant and Revoke to constant.By an elementary update we mean a pair (�; x) where � 2 f+;�g and x 2 U . Suchpair (�; x) can be treated as an operator on authorization bases. Speci�cally, the e�ectof (�; x) on AB is AB�x. That is, if � = + then the result is AB + x, and if � = � thenthe e�ect is AB � x.An authorization base AB can be represented as Cl"(D), where D = fx1; : : : ; xng isthe antichain of the minimal elements of AB. Consequently, we haveAB = ((: : : (;+ x1) + x2) : : :) + xn:However, every sequence of elementary updates determines an authorization base.That is, for an arbitrary sequence of elementary updatesa = ((�1; x1); : : : ; (�n; xn))the corresponding authorization base is:((: : : (;�1x1)�2x2) : : :)�nxnThus, for instance, if a = ((+; x); (+; y); (�; t)) then the authorization base de�ned by ais ((;+ x) + y)� t = (Cl"(fxg) [Cl"(fyg)) n Cl#(ftg).Notice that we just gave a semantics to the sequences of elementary updates. Thissemantics allows us to represent authorization bases as sequences of elementary updates.As a consequence, the Grant and Revoke procedures consist only of appending the se-quence with a new elementary update and, thus, take constant time.The price that we are going to pay is in the e�ciency of ControlAccess procedure.We will describe this procedure now. We assume that a = ((�1; x1); : : : ; (�n; xn)) is asequence of elementary updates and x is an element of the authorization space.ControlAccess(a; x)for m = n downto 1 doif �m = + and xm 2 Cl#(fxg) then returnfTRUEgif �m = � and xm 2 Cl"(fxg) then returnfFALSEgreturnfFALSEg 11

Proposition 4.4 Procedure ControlAccess is correct.Proof: By induction on n. If n = 0, then the authorization base determined by a isempty. Consequently, only the last instruction is invoked and the procedure returnsFALSE, as needed.Let us now assume that the statement is valid for sequences of length n. Observethat (((: : : ((;�1x1)�2x2) : : :)�nxn)�n+1; xn+1) = AB0�n+1xn+1;where AB0 = ((: : : ((;�1x1)�2x2) : : :)�nxnThus, all we need to do is to see the e�ect of one step in our algorithm. When �n+1 = +then if xn+1 2 Cl#(fxg) we answer TRUE, otherwise we use the inductive assumptionand test if x belongs to ((: : : ((;�1x1)�2x2) : : :)�nxn. Now, observe that x 2 AB0 + xn+1 ifand only if x 2 AB0 or xn+1 2 Cl#(fxg). Similarly, if �n+1 = � then x does not belongto AB0 � xn+1 if and only if xn+1 2 Cl"(fxg) or x =2 AB0. 2Notice that the complexity of the algorithm ControlAccess is O(nh), where n is thelength of the sequence of updates a and h is the size of the Hasse diagram H.This indicates that as the number n grows, there will be a moment when it is worthto replace a by a shorter sequence of updates representing the same authorization base,for instance, the one given by the antichain of minimal elements of AB.One should also note that our algorithm gives the priority to checking most recentupdates. That is, we always check which of the most recent updates a�ected the statusof x and fall back on previous states of the base if x was nor a�ected.To summarize, under the lazy maintenance approach ControlAccess takes O(nh) stepsand Grant and Revoke take constant time. The performance of the ControlAccess proce-dure will be further improved in the next section.5 Implementations when U = S �O �AUntil now we used an abstract representation of the authorization space U and its ordering� without taking into account the fact that in the context of the model presented inSection 2, U is the product of S, O, and A. Let us recall that in Section 2 � is de�nedby reference to orderings �S, �O, and �A:(s; o; a) � (s0; o0; a0) if and only if (s �S s0) ^ (o0 �O o) ^ (a0 �A a)12

The ordering � is the product of orderings �S, ��1O and ��1A (see [3]). Given Hassediagrams for �O and �A, the Hasse diagrams for ��1O and ��1A can be easily obtainedby switching the roles of in and out lists.Given the Hasse diagrams of the orderings �S, ��1O and ��1A , the Hasse diagram ofthe ordering � can be easily computed. But it should be clear that we do not want tomaintain the Hasse diagram of � due to its big size. We will see below that maintainingonly the Hasse diagrams of the orderings �S, �O and �A provides us with enough in-formation to perform depth-�rst searches needed in the procedures described earlier butis substantially more e�cient. We will denote by HS, HO and HA the Hasse diagramsof �S, �O and �A, respectively. By hS, hO and hA, we denote the sizes of their repre-sentations by means of adjacency lists inS and outS, inO and outO and inA and outA,respectively.We will now describe the relationship between the Hasse diagrams of �S, �O and �Aand the Hasse diagram of �. Namely,(s; o; a) 2 in(s0; o0; a0) if and only if (s 2 inS(s0) ^ o = o0 ^ a = a0)_(s = s0 ^ o0 2 inO(o) ^ a = a0)_(s = s0 ^ o = o0 ^ a0 2 inA(a)):A dual relationship holds for the out lists.It follows that the Hasse diagrams HS, HA and HS allow us to reproduce the lists inand out for H, in time linear in the size of these lists. In the same time, the total sizehS + hO + hA of the representations of HS, HA and HS is substantially smaller than h.It is easy to see that h is of the orderO(hS � hO � kA + hS � kO � hA + kS � hO � hA + hS � hO � hA);where jSj = kS, jOj = kO, and jAj = kA. Thus the fact that H may be large is not aproblem | all we need to do is to maintain HS, HO and HA.We will now present a method to improve the e�ciency of the algorithms presentedearlier in Section 4. Our approach is to precompute the transitive closures of the Hassediagrams of �S, �O and �A. This can be done in time O(kS � hS) for �S , O(kO � hO) for�O and O(kA � hA) for �A. The resulting transitive closures can be stored as adjacencymatrices at the total space cost O(k2S+k2O+k2A). From this point on we will assume thatcomparisons s �S s0, o �O o0, and a �A a0 take constant time.We will now present versions of the algorithms introduced earlier. We will �rst13

consider the case when authorization bases are represented as antichains. Recall thatU = S �O � A and thus D consists of triples of the form (s; o; a).ControlAccess(D; (s0; o0; a0))for (s; o; a) 2 D doif s �S s0 and o0 �O o and a0 �A a then returnfTRUEgreturnfFALSEgThis algorithm runs in time O(jDj), a substantial improvement over the general ver-sion.Grant(D; (s0; o0; a0))for (s; o; a) 2 D doif s �S s0 and o0 �O o and a0 �A a then stopfor (s; o; a) 2 D doif s0 �S s and o �O o0 and a �A a0 then D := D n f(s; o; a)gD := D [f(s0; o0; a0)gAlso the Grant procedure runs in time O(jDj) (rather than in time linear in h).As concerns the procedure Revoke, there is no gain in time e�ciency. It still runs intime linear in the size h of the Hasse diagram of �. It should be mentioned though thatit can be implemented so that it requires only the Hasse diagrams HS, HO and HA.Finally, we will show that in the case of lazy maintenance, the performance ofthe procedure ControlAccess also improves substantially. We assume here that a =((�1; (s1; o1; a1)); : : : ; (�n; (sn; on; an))).ControlAccess(a; (s0; o0; a0))for m = n downto 1 doif �m = + and sm �S s0 and o0 �O om and a0 �A am then returnfTRUEgif �m = � and s0 �S sm and om �O o0 and am �A a0 then returnfFALSEgreturnfFALSEgIt is clear that this procedure runs in time O(n) (and not O(nh)), as before.14

6 Further researchIn [6], the authors considered two classi�cations of authorizations: into positive and neg-ative and into strong and weak. The weak authorizations allow us to handle exceptions.The idea is that weak authorizations are inherited provided there is no strong authoriza-tion blocking the inheritance. It is possible to provide a semantics for both strong andweak authorizations using Reiter's default logic [8]. We will deal with this problem in aseparate paper.AcknowledgmentsResearch of the second and third authors has been partially supported by NSF grantIRI-9400568.References[1] E. Bertino and L. Martino. Object-Oriented Database Systems: Concepts and Architec-tures Addison-Wesley Publishing Company, 1993.[2] E. Bertino, and H. Weigand. An approach to authorization modeling in object-orienteddatabase systems. Data and Knowledge Engineering 12, 1994.[3] D.A. Davey and H.A. Priestley. Introduction to Lattices and Order. Cambridge UniversityPress, 1990.[4] S. Castano, M.G. Fugini, G. Martella, and P. Samarati. Database Security. ACM Press,Addison-Wesley Publishing Company, 1995.[5] T. Lunt. Authorization in Object-Oriented Databases. In: W. Kim, Modern Database Sys-tems, pp. 130{145, Addison Wesley, Reading, MA., 1994.[6] F. Rabitti, E. Bertino, W. Kim, and D. Woelk. A model of authorization for next-generationdatabases. ACM Transaction on Database Systems 16:88{131, 1991[7] R. Reiter. On closed world data bases. In H. Gallaire and J. Minker, editors, Logic anddata bases, pages 55{76. New York, NY: Plenum Press, 1978.[8] R. Reiter. A logic for default reasoning. Arti�cial Intelligence, 13:81{132, 1980.15

