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Department of Computer Science

University of Kentucky

Lexington, KY 40506–0027

marek@ms.uky.edu, mirek@ms.uky.edu

Abstract

In this paper we show that reflexive autoepistemic logic of Schwarz is a par-
ticularly convenient modal formalism for studying properties of answer sets
for logic programs with classical negation and disjunctive logic programs.
Syntactical properties of logic programs imply that a natural interpreta-
tion of default logic in the logic of minimal knowledge (nonmonotonic S4F)
provides also a modal representation of logic programs. Moreover, in the
case of logic programs one can use reflexive autoepistemic logic which is
stronger and possesses simpler semantical characterizations than the logic of
minimal knowledge. Reflexive autoepistemic logic and autoepistemic logic
are bi-interpretable. Consequently, our results provide embeddings of logic
programs with classical negation and disjunctive programs in autoepistemic
logic.

1 Introduction

One of the problems driving recent investigations in logic programming is
to provide a declarative account of logic programs. Two main problems
arise. First, logic program clauses are rules that allow us to compute the
head assuming that all conjuncts in the body have already been computed.
Hence, they behave as inference rules rather than material implications.
Secondly, the negation of p in logic programming is treated as the inability
of a program to prove p rather than the falsity of p, and is often referred
to as negation as failure (to prove). Clearly, the inability of a program to
prove p does not mean that ¬p is true. Hence, the classical interpretation of
negation is inappropriate.

A significant amount of research on the semantics of the negation-as-
failure operator originated from an observation that this form of negation
behaves similarly to a modal operator not provable. As a result, the re-
lationship between logic programming and modal logics has been studied
extensively. The idea is to find a modal formalism whose interpretation of
modal formulas would be well-suited for modeling the inference-rule nature



of logic program clauses as well as negation-as-failure operator. The seman-
tics of this formalism could then be adapted (translated) to the case of logic
programs.

This general approach resulted in a spectacular achievement — the defi-
nition of a stable model of a logic program by Gelfond and Lifschitz [GL88].
The modal logic roots disappeared from their paper, but the definition
was motivated by an embedding of logic programs into autoepistemic logic
[Gel87, Gel90]. By means of this embedding the semantically defined con-
cept of a stable expansion [Moo85] was adapted to the case of logic programs
and yielded the class of stable models. In this fashion autoepistemic logic
provided a declarative account of negation as failure.

As a result of this success we have witnessed a proliferation of modal log-
ics proposed for modeling logic programs. These logics, usually patterned
after autoepistemic logic, provided semantic justifications for several variants
of negation, closely related but often different from the negation character-
ized by the stable model semantics ([Bon90, KM91, Prz91]).

Recently, two important extensions of logic programming have been pro-
posed by Gelfond and Lifschitz. In [GL90] they proposed logic programs
with classical negation in which clauses are built of literals rather than atoms
(hence, classical negation is allowed). In addition, the negation-as-failure op-
erator is applied to some of the literals in the body. To define the meaning
of programs with classical negation Gelfond and Lifschitz introduced the no-
tion of an answer set. Then, in [GL91], Gelfond and Lifschitz proposed an
additional extension of the language by allowing nonclassical disjunctions in
the heads. They called the resulting class of programs disjunctive. They ex-
tended the notion of an answer set from the case of programs with classical
negation to the case of disjunctive programs. Gelfond and Lifschitz proved
that answer sets coincide with stable models in the case of standard logic
programs.

Both in the case of programs with classical negation and of disjunctive
programs the notion of an answer set is defined in a procedural and not in
a declarative fashion. An obvious attempt to find a declarative characteri-
zation, patterned after Gelfond’s use of autoepistemic logic to characterize
stable models, fails in this case. The original Gelfond interpretation of logic
programs as autoepistemic theories [Gel87] can not be lifted to logic pro-
grams with classical negation (we discuss this issue in more detail below).
The question whether logic programs with classical negation (and, more
generally, disjunctive programs) can be embedded into a modal logic (in
particular, autoepistemic logic) has been left open.

The notion of an answer set is based on two fundamental principles. First,
clauses work as inference rules and serve the purpose of computing. Second,
the interpretation of negation as failure is patterned after the principle of
“jumping to conclusions subject to the lack of evidence to the contrary”.
Modal formalisms for answer sets must be capable of modeling both princi-
ples.



Autoepistemic logic is a logic of self-belief rather than knowledge. In
particular, it allows cyclic arguments: believing in ϕ justifies including ϕ
into a belief set. On the other hand, interpretation of clauses as inference
rules does not allow cyclic arguments: the clause p← p does not justify the
inclusion of p into an answer set. Hence, the modality of autoepistemic logic
cannot be used directly to capture computational character of clauses. It is
easy to see that interpreting the rule p← p as the implication Lp ⊃ p leads
to an expansion containing p.

Default logic reflects both principles that we outlined above. Therefore,
not surprisingly, logic programming with answer sets may be regarded as a
fragment of (disjunctive) default logic [BF91, MT89, GL90, GLPT91].

Our approach to the problem of modal characterizations of logic pro-
grams builds on an earlier work [Tru91b, Tru91a, ST92]. In these papers the
nonmonotonic logic S4F was proposed as the modal logic for (disjunctive)
default reasoning. It follows, then, that logic programs can be interpreted
within the nonmonotonic modal logic S4F. It is an interesting result because
the nonmonotonic logic S4F is closely related with the minimal knowledge
paradigm in knowledge representation ([HM85, Moo84, Lev90, LS90]). In
particular, expansions in the nonmonotonic logic S4F have a preferred-model
semantics ([Sch92, ST92]) which can be adapted easily to the case of answer
sets. In this way a declarative description of answer sets can be provided.

Why then should we keep looking for better logics? There are at least
two reasons. First, unlike in the case of autoepistemic logic, no propositional
characterization of the nonmonotonic logic S4F is known so far. Secondly,
the preference semantics of the nonmonotonic logic S4F is more complicated
than that of autoepistemic logic.

But, can we find any better logic? It is known [ST92] that the nonmono-
tonic logic S4F is a maximal logic suitable for modeling default reasonings.
However, the formalism of logic programs is syntactically simpler than that
of default logic. Clauses of disjunctive logic programs are built of literals,
disjunctions of literals are allowed in the heads, and not of arbitrary formulas
as in the case of default logic. Because of this syntactic simplicity of logic
programs we can do better than in the case of default logic.

In [Sch91], reflexive autoepistemic logic was proposed as an alternative
to autoepistemic logic. This logic has all the attractive properties of the
autoepistemic logic (several almost identical semantic characterizations of
expansions) but defines the modality so that it models knowledge (which
limits cyclic arguments) rather than belief (which allows them). Some ap-
plications of reflexive autoepistemic logic to logic programming have been
mentioned in [Sch91] but its full potential has not been explored until now.

The main result of our paper shows an intuitively motivated and simple
interpretation of clauses by modal formulas (in fact two interpretations)
under which both logic programs with classical negation and disjunctive
programs can uniformly be embedded into reflexive autoepistemic logic.

Reflexive autoepistemic logic is equivalent to autoepistemic logic. Specif-



ically, there exist translations from each logic to the other one preserving
the notion of expansion. Consequently, our embeddings of logic programs
into reflexive autoepistemic logic yield the corresponding embeddings into
autoepistemic logic. Autoepistemic logic interprets the modality as the op-
erator of belief and not of knowledge. Speaking informally, the idea is to
simulate the modality of knowing, needed to interpret logic programs, with
the modality of belief available in autoepistemic logic. Once this is done,
negation as failure can be described in autoepistemic logic as ¬L. A partic-
ularly appealing interpretation of logic programs in autoepistemic logic has
been found by Lifschitz and Schwarz [LS93] and Chen [Che93] (see Section
4).

In the case of logic programs with classical negation (but without dis-
junctions in the heads) another, slightly different, embedding into autoepis-
temic logic is possible. Using this translation and a characterization result
for autoepistemic expansions [MT91a] one gets a very elegant description of
answer sets for such programs.

We hope that the reader will find in this paper arguments for our con-
tention that reflexive autoepistemic logic is an appealing and powerful tool
for studies of logic programming. Its capability to model properly both the
rule character of logic programming clauses and also the negation as failure,
coupled with an elegant semantics makes it a natural candidate for studies
of semantical properties of logic programming with classical negation and
disjunctive logic programs.

Our results as well as the results of [LS93, Che93] show that disjunc-
tive logic programs can be embedded into autoepistemic logic. However,
despite of this result and despite of the formal equivalence of reflexive au-
toepistemic and autoepistemic logics it is reflexive autoepistemic logic and
not autoepistemic logic that better reflects default logic roots of answer sets
for logic programs. It allows us to express logic programs as modal theories
using (essentially) the same embedding that leads to a correct modal inter-
pretation of default theories. Moreover, while the embedding into reflexive
autoepistemic logic represents logic program clauses by clauses of the modal
language, it is no longer true for the embedding into autoepistemic logic.

Due to size restrictions, this paper does not contain proofs of the results,
In addition, we were not able to include two applications of the main result:
a declarative description of answer sets, and the result showing that the
formalism of nonmonotonic rule systems ([MNR90]) can be embedded (at a
cost of introducing new atoms) into reflexive autoepistemic logic.

2 Modal interpretations of logic programming

In this section we will review past attempts at relating logic programming
and modal nonmonotonic logics.



A logic program is a collection of clauses of the form

c← a1, . . . , am,not(b1), . . . ,not(bn), (1)

where all ai, bi and c are atoms. We will identify a program with the set of
its all grounded Herbrand substitutions. Therefore, from now on, we restrict
our attention only to propositional programs.

In our paper we also allow ai, bi and c to be literals. This yields a class of
programs with classical negation [GL90]. We will also consider the case when
c = d1 ⊔ . . . ⊔ dk, where di’s are literals. The operator ⊔ stands here for a
nonstandard, “effective” disjunction. Programs with classical negation and
with disjunctions of literals in the heads are called disjunctive. In [GL88,
GL91] Gelfond and Lifschitz discussed the benefits of these extensions of logic
programming for applications in knowledge representation, and introduced
the concept of an answer set to specify the meaning of programs in these
classes.

Let us recall the notion of an answer set for a disjunctive logic program
P . A set of literals S is closed under a disjunctive clause

d1 ⊔ . . . ⊔ dk ← a1, . . . , am,

if for some i, 1 ≤ i ≤ k, di ∈ S, or for some i, 1 ≤ i ≤ m, ai /∈ S. Next, given
a set of literals S and an extended disjunctive logic program P , define the
reduct of P with respect to S (PS) to be the set of not-free clauses obtained
from P by removing each clause containing a literal not(a), where a ∈ S,
and by removing all literals of the form not(a) from the remaining clauses.
Finally, we say that S is an answer set for P if S is a minimal set of literals
such that

1. S is closed under the rules in PS ,

2. S is consistent or S consists of all literals.

The definition of an answer set is procedural in its nature. Our goal in
this paper is to find declarative characterizations of this notion. To this end
we embed logic programs in a modal nonmonotonic logic.

As long as we are dealing with Horn programs (no negation as failure),
there is little room for controversy. A clause

c← a1, . . . , am

can be interpreted as:
a1 ∧ . . . ∧ am ⊃ c, (2)

La1 ∧ . . . ∧ Lam ⊃ c, or (3)

La1 ∧ . . . ∧ Lam ⊃ Lc. (4)

Some other interpretations are also possible. An important thing is that
under all these interpretations no matter what modal logic contained in S5



is used, the property of the existence of the least model of the Horn program
in one way or another carries over to the modal case.

Now, a difficult part. What modality to use as an interpretation of not?
And, what modal logic to select?

First attempts were made by Gelfond [Gel87] and Konolige [Kon88].
They interpret the fact that p does not follow from a program as ¬Lp (p
is not believed). When coupled with the interpretation (2) it yields the
following modal formula for the clause (1):

a1 ∧ . . . ∧ am ∧ ¬Lb1 ∧ . . . ∧ ¬Lbn ⊃ c (5)

If the interpretation (3) is used, we get

La1 ∧ . . . ∧ Lam ∧ ¬Lb1 ∧ . . . ∧ ¬Lbn ⊃ c (6)

as a modal image of (1).
The nonmonotonic nature of the operator not requires us to use a modal

nonmonotonic logic as means of reasoning from modal images of programs.
Both interpretations (5) and (6) were studied in the context of autoepistemic
logic. Gelfond [Gel87, Gel90] proved that the interpretability of Horn pro-
grams in autoepistemic logic can be lifted, via the translation (5), to the case
of programs with not and yields the notion of a stable model. Specifically,
Gelfond proved that M is a stable model of a program P if and only if M
is the set of atoms contained in a stable expansion of the image of P under
(5).

This approach does not work for any of the two extensions of logic pro-
grams mentioned earlier (classical negation, disjunctions in the heads).

Example 2.1 Let P = {a← b, ¬a←}. Then, the theory I = {b ⊃ a, ¬a}
is the modal image of P under the translation (5). P has exactly one answer
set: {¬a}. The theory I has one autoepistemic expansion, but it contains
¬b in addition to ¬a, as well. So, if classical negation is allowed, Gelfond’s
approach fails even if not does not appear in a program.

Now, consider the disjunctive program P = {a ⊔ b ←}. It has two
answer sets: {a} and {b}. On the other hand, if a standard interpretation
of disjunction is used, that is a ∨ b, then the modal image of P , the theory
{a∨ b} has exactly one expansion generated by a∨ b and containing neither
a nor b. 2

The interpretation (6) has been considered in two contexts. In [MS89,
MT91b] it is shown that embedding programs into autoepistemic logic using
the translation (6) yields the concept of a supported model (and not the sta-
ble one). Moreover, this correspondence carries over to the class of programs
with classical negation. Secondly, the interpretation (6) has been used in an
early efforts to embed default logic in autoepistemic logic [Kon88].



A clause (1) can also be given a default interpretation as the default

a1 ∧ . . . ∧ am : M¬b1, . . . ,M¬bn
c

. (7)

This embedding is faithful both in the case of “standard” logic programs
and programs with classical negation [BF91, MT89, GL90] and a similar
embedding into the disjunctive default logic exists in the case of disjunctive
programs [GLPT91].

Default logic can be embedded in the nonmonotonic logic S4F (see
[MST91] for the definition of this and other modal logics considered in
this paper) by means of each of the following two interpretations ([Tru91b,
Tru91a]:

ϕ : Mβ1, . . . ,Mβn

γ
7→ Lϕ ∧ LMβ1 ∧ . . . ∧ LMβn ⊃ γ (8)

ϕ : Mβ1, . . . ,Mβn

γ
7→ Lϕ ∧ LMβ1 ∧ . . . ∧ LMβn ⊃ Lγ (9)

As a corollary, we obtain that answer sets of logic programs with classical
negation (hence, also stable models of “standard” logic programs) can be
described as expansions in the nonmonotonic S4F. One has to use any of
the following two interpretations of a clause (1):

La1 ∧ . . . ∧ Lam ∧ LM¬b1 ∧ . . . ∧ LM¬bn ⊃ c (10)

or
La1 ∧ . . . ∧ Lam ∧ LM¬b1 ∧ . . . ∧ LM¬bn ⊃ Lc (11)

In addition, a variant of the interpretation (11):

La1 ∧ . . . ∧ Lam ∧ LM¬b1 ∧ . . . ∧ LM¬bn ⊃ Ld1 ∨ . . . ∨ Ldk, (12)

providing a modal image for a disjunctive clause with the head d1 ⊔ . . .⊔ dk,
leads to a characterization of answer sets for disjunctive programs.

The main goal of this paper is to show that slightly modified versions of
the embeddings (10) - (12) uniformly embed logic programming and logic
programming with classical negation into reflexive autoepistemic logic, which
has much simpler characterizations than the nonmonotonic logic S4F. More-
over, we will show that a versions of (12) provides a uniform modal interpre-
tation in reflexive autoepistemic logic for all three classes of logic programs
considered here: “standard” logic programs, logic programs with classical
negation and disjunctive logic programs.

3 Reflexive autoepistemic logic and logic prog-rams

Reflexive autoepistemic logic was introduced by Schwarz [Sch91]. It as-
signs to a modal theory I theories called reflexive expansions, which describe



knowledge sets one can construct on the basis of I. Formally, a modal theory
T is a reflexive expansion of I if

T = Cn(I ∪ {ϕ ≡ Lϕ:ϕ ∈ T} ∪ {¬Lϕ:ϕ /∈ T}). (13)

One should note a close analogy with the definition of autoepistemic expan-
sions [Moo85]: T is an autoepistemic expansion of I if

T = Cn(I ∪ {Lϕ:ϕ ∈ T} ∪ {¬Lϕ:ϕ /∈ T}).

The main difference between these two logics is that, for ϕ ∈ T , autoepis-
temic logic uses Lϕ as a premise in the process of reasoning, whereas re-
flexive autoepistemic logic uses the equivalence ϕ ≡ Lϕ. Hence, in reflexive
autoepistemic logic if a formula ϕ is assumed to be known then ϕ and Lϕ
have the same logical value. This means that the modality is treated as “is
known” rather than “is believed”. It is also important to note a similarity of
reflexive autoepistemic logic and the modal logic described by Przymusinski
[Prz91]. The logic defined in [Prz91] also satisfies the requirement that ϕ
and Lϕ be equivalent. The difference is that in [Prz91] GCWA is used for
generating negative information whereas here CWA with respect to modal
atoms is used.

It turns out that reflexive autoepistemic logic is closely related to the
modal logic SW5. We will recall now the definition of the logic SW5. The
reader is referred to [HC84] for the detailed exposition of the concepts in
modal logics that we use in our discussion.

A Kripke model M = 〈M,R, V 〉 (where, as usual, M stands for a
nonempty set of worlds, R denotes an accessibility relation on worlds and
V assigns to each world a propositional valuation) is an SW5-model if
R = M ×M or R = {(a, a)} ∪ (({a} ∪M)×M), for some a /∈M .

The notions of satisfiability, 〈M, b〉 |= ϕ and M |= ϕ, are defined in a
standard way. The logic determined by the class of SW5-models is called the
logic SW5. Once the logic is defined, one can also define the corresponding
notion of entailment, I |= ϕ.

It is not hard to see that the same logic is defined if we require that the
valuations assigned to the worlds in M are different. Each SW5-model can,
hence, be represented by a singleton 〈V 〉 or a pair 〈v, V 〉, where V is a set
of propositional valuations representing valuations in the worlds of M , and
v is a propositional valuation in the world a. From now on we assume that
SW5-models are of this form.

The semantic definition of SW5 has a proof-theoretic counterpart. The
logic SW5 can equivalently be defined as the normal modal logic based on
the axioms of the modal logic S4 and the following consequence of the axiom
5:

W5: ¬L¬Lϕ ⊃ (ϕ ⊃ Lϕ).



With each modal logic one can associate its nonmonotonic variant. The
method was introduced in [MD80, McD82] and investigated in detail in
[MST91]. The key notion here is that of an expansion. Given a modal
logic S, we define a modal theory T to be an S-expansion of a modal theory
I if

T = CnS(I ∪ {¬Lϕ:ϕ /∈ T}). (14)

Theorem 3.1 (Schwarz [Shv90, Sch91]) Let T be a propositionally con-
sistent modal theory. For every theory I:

1. the theory T is an autoepistemic expansion of I if and only if T is a
KD45-expansion of I;

2. the theory T is a reflexive expansion of I if and only if T is an SW5-
expansion of I. 2

Since logic KD45 has a similar semantic characterization to SW5 (the
only difference being that the world a is not reflexive), this result points
to more analogies between autoepistemic and reflexive autoepistemic logics.
Moreover, the presence of the axiom T in SW5 and its absence from KD45
is an additional indication that autoepistemic logic interprets its modality
as “is believed” while SW5 interprets it as “is known”.

The nonmonotonic logic SW5, and hence reflexive autoepistemic logic,
can be characterized in terms of most preferred Kripke models. An SW5-
model V = 〈V 〉 is most preferred for a theory I if

1. V |= I; and

2. for every valuation v, if 〈v, V 〉 |= I then v ∈ V .

Informally, M is most preferred if it cannot be extended by adding a new,
essentially different, world in front of the cluster V .

Theorem 3.2 (Schwarz [Sch92]) A consistent theory T is an SW5-ex-
pansion of a theory I if and only if T is the theory of a most preferred model
for I. 2

This characterization of SW5 establishes one more similarity with the
autoepistemic logic which was described in analogous terms in [Moo84].

Our first theorem illustrates this point by showing that the concept of
the answer set can be modeled within reflexive autoepistemic logic. To this
end, we introduce the following two intuitive modal encodings of a clause
(1):

La1 ∧ . . . ∧ Lam ∧ L¬Lb1 ∧ . . . ∧ L¬Lbn ⊃ c (15)

and, in the case of a disjunctive clause when c = d1 ⊔ . . . ⊔ dk,

La1 ∧ . . . ∧ Lam ∧ L¬Lb1 ∧ . . . ∧ L¬Lbn ⊃ Ld1 ∨ . . . ∨ Ldk. (16)



This latter interpretation can also be applied for programs without disjunc-
tions (when c = d1).

Both translations are quite intuitive. For example, (16) can be read as:

If for every i, 1 ≤ i ≤ m, ai is known and, for every i, 1 ≤ i ≤ n,
it is known that bi is not known (¬bi is possible), then at least
one di is known.

That is, we interpret a clause as an inference rule which, in order to be
applied has to have all its premises established (all premises have to be
known). To achieve this effect the modal atom Lai appears in the antecedent
of the modal translation. Similarly, we need modal atoms to express that
we know about not(bi). Since not(bi) can be read as “bi not known”, the
fact that the premise not(bi) is known is expressed as L¬Lbi.

In what follows we will focus on formulas of the form:

La1 ∧ . . . ∧ Lam ∧ L¬Lb1 ∧ . . . ∧ L¬Lbn ⊃ Ld1 ∨ . . . ∨ Ldk, (17)

where all ai, bi and di are literals. We will call such formulas lp-clauses.
Hence, lp-clauses are variants of the interpretation (12). The difference is
that when we eliminate the operator M by means ¬L¬ we also reduce the
double negation of bi.

Let us observe that an lp-clause, that is, a formula of the form (17), is
valid in (i.e. true in every world of) a model 〈v, V 〉 if and only if the following
two conditions hold:

(LP1) whenever all ai, 1 ≤ i ≤ m, are true in all valuations of {v}∪V and,
for each i, 1 ≤ i ≤ n, bi is not true in at least one valuation from V ,
then at least one di is true in all valuations of {v} ∪ V ;

(LP2) whenever all ai, 1 ≤ i ≤ m, are true in all valuations from V and,
for each i, 1 ≤ i ≤ n, bi is not true in at least one valuation from V ,
then at least one di is true in all valuations of V .

Using this observation we will prove now two simple properties of most
preferred models of theories consisting of lp-clauses.

Proposition 3.3 Let I consist of lp-clauses. Let 〈V 〉 be a most preferred
model for I and let M be the set of all literals true in all valuations in V .
Then, for every valuation w, if all the literals in M are true in w, then
w ∈ V .

Proposition 3.4 Let I consist of lp-clauses. Let 〈V 〉 be a most preferred
model of I. Then for every model 〈V ′〉 of I, if V ⊆ V ′ then V = V ′.

A theory T in the modal language is stable if it is closed under propo-
sitional provability and is closed under positive and negative introspection.



That is, for every ϕ ∈ T , Lϕ ∈ T (positive introspection), and for every
ϕ /∈ T , ¬Lϕ ∈ T (negative introspection). It is well known that a modal-free
theory S there exists a unique stable theory T such that the modal-free part
of T is Cn(S) ([Moo85]). We will denote this theory by ST(S).

We have the following theorem establishing adequacy of reflexive au-
toepistemic logic for logic programming applications.

Theorem 3.5 Let S ⊆ L be a consistent set of literals. Then, S is an
answer set for a disjunctive logic program P if and only if ST(S) is a reflexive
expansion for the image of P under (16).

For a translation (15) we obtain a similar result.

Theorem 3.6 Let S be a consistent set of literals. Let P be a logic program
with classical negation (no disjunctions in the heads). Then S is an answer
set for P if and only if ST(S) is a reflexive autoepistemic expansion for the
image of P under translation (15). 2

4 Answer sets and autoepistemic logic

In Section 2 we noticed that although the stable semantics for logic pro-
grams can be faithfully represented in autoepistemic logic (nonmonotonic
KD45), a similar result for logic programs with classical negation and for
disjunctive programs cannot be obtained by a simple extension of Gelfond’s
translation. In this section we develop a technique to embed disjunctive logic
programs (and, in particular, logic programs with classical negation) into au-
toepistemic logic. These embeddings connect answer sets and autoepistemic
expansions. Our line of reasoning uses a mutual interpretability result for
nonmonotonic KD45 and SW5 [Sch91]. We will be interested here in the
interpretation of SW5 in KD45.

Definition 4.1 For every modal formula ϕ we recursively define the formula
ϕB:

1. (p)B = p, for every atom p;

2. (¬ϕ)B = ¬(ϕB);

3. (ϕ ◦ ψ)B = ϕB ◦ ψB, where ◦ stands for a binary boolean connective;

4. (Lϕ)B = ϕB ∧ L(ϕB).

For a theory I we define IB = {ϕB : ϕ ∈ I}. 2

The following result connects nonmonotonic SW5 and nonmonotonic
KD45 (that is autoepistemic logic).



Proposition 4.1 (Schwarz [Sch91]) Let I ⊆ LL. Then for every consis-
tent stable theory T , T is an SW5-expansion of I if and only if T is an
KD45-expansion of IB. 2

The transformation (·)B treats “knowledge” as “true belief”, and has been
investigated before, for instance in the context of provability logics, see
[Smo85] for further details. For the sake of completeness let us mention
that there exists a translation converse to (·)B, with similar properties.

Let us compose our embedding (16) of (disjunctive) logic programs with
the translation (·)B and use properties of logic KD45. As a result, we get a
translation of logic programming clauses into the modal language (found by
Lifschitz and Schwarz [LS93], and Chen [Che93]):

(a1∧La1)∧ . . .∧(am∧Lam)∧¬Lb1∧ . . .∧¬Lbn ⊃ (d1∧Ld1)∨ . . .∨(dk∧Ldk).
(18)

In particular, we obtain an alternative argument for the following theo-
rem of Lifschitz and Schwarz [LS93].

Theorem 4.2 Let P be a disjunctive logic program and S a consistent set of
literals. Then S is an answer set for P if and only if ST (S) is an autoepis-
temic expansion of the theory obtained from P by applying the translation
(18). 2

We will compare now the embedding (16) into reflexive autoepistemic
logic and the embedding (18) into autoepistemic logic. The first of them
transforms a disjunctive program clause into a clause, that is, (up to a
simple propositional logic transformation) a disjunction of modal literals.
The embedding (18) does not share this property. A formula (18) is not
a clause. It can be represented as a conjunction of clauses consisting of
modal and propositional literals. Such a transformation is, however, very
expensive. The reason is that the formula in the head:

(d1 ∧ Ld1) ∨ . . . ∨ (dk ∧ Ldk)

generates 2k clauses:

dj1 ∨ . . . ∨ djr
∨ Ldi1 ∨ . . . ∨ Ldis ,

where {i1, . . . , is}∩{j1, . . . , jr} = ∅ and {i1, . . . , is}∪{j1, . . . , jr} = {1, . . . , k}.
Therefore every formula of the form (18) requires 2k clauses of the form:

a1∧La1∧ . . . an∧Lam∧¬Lb1∧ . . .∧¬Lbn ⊃ dj1 ∨ . . .∨djr
∨Ldi1 ∨ . . .∨Ldis .

Hence, the size of the clausal representation of translation (18) may be ex-
ponential.

In the case of programs without disjunction in the heads just two clauses
suffice. However, a particularly elegant embedding of logic programs with



classical negation into autoepistemic logic is obtained when we use the trans-
lation (15) instead of (16). That is when we do not have Lc in the head but
put c instead. In this fashion the clause

c← a1, . . . , am,not(b1), . . .not(bn)

is expressed by

La1 ∧ . . . ∧ Lam ∧ L¬Lb1 ∧ . . . ∧ L¬Lbn ⊃ c.

When we combine this translation with the translation (·)B of reflexive au-
toepistemic logic into autoepistemic logic and then apply axioms of KD45
for simplifying modalities, we get:

a1 ∧ La1 ∧ . . . ∧ an ∧ Lam ∧ ¬Lb1 ∧ . . . ∧ ¬Lbn ⊃ c

This formula, in turn, can be transformed in propositional logic into:

La1 ∧ . . . ∧ Lam ∧ ¬Lb1 ∧ . . . ∧ ¬Lbn ⊃ (a1 ∧ . . . ∧ am ⊃ c) (19)

Thus we obtain the following result.

Theorem 4.3 Let S be a consistent set of literals. Let P be a logic program
with classical negation. Let I be the image of P under translation (19). Then
S is an answer set for P if and only if ST(S) is an autoepistemic expansion
of I. 2

The translation (19) provides a very clear illustration how autoepistemic
logic can be used to represent inference-rule nature of clauses with classical
negation (but without disjunctions). To represent a program clause

c← a1, . . . , am,not(b1), . . .not(bn)

in autoepistemic logic we have to require that positive premises are believed
and negative ones are not. But these beliefs must imply a weaker conclusion.
Namely, instead of c, we have the formula a1∧ . . .∧am ⊃ c in the consequent
of the implication. This formula can be used in the process of deriving c but
does not guarantee that c will be actually derived.

As another application of Theorem 4.3 we obtain a clean characterization
of answer sets for logic programs with classical negation. It is based on the
notion of the strong reduct and refers to the “logic” interpretation of a not-
free program clause

c← a1, . . . , am,

as the implication
a1 ∧ . . . ∧ am ⊃ c.

We will define now the notion of the strong S-reduct of a program P .
Recall that in the original reduct of a program [GL88, GL90], the clause

c← a1, . . . , am,not(b1), . . .not(bn)



is eliminated if and only if some bi does belong to S. In the strong S-reduct
we eliminate more clauses. Specifically, we eliminate a clause also if some ai

does not belong to S. From the remaining clauses we remove their negative
part. That is, the strong S-reduct consists of those clauses c ← a1, . . . , am

of the reduct, for which a1, . . . , am ∈ S. We shall denote by PS the strong
S-reduct of P .

Let us apply the characterization result for autoepistemic expansions
[MT91a] to the image of a logic program P under the translation (19). A
formula of the form (19) has, as the objective part the formula

a1 ∧ . . . ∧ am ⊃ c.

But such formula will be used in the process of generating ST(S) only if all
aj belong to S, and no bi does. That is precisely when

c← a1, . . . , am

belongs to the strong S-reduct of P ! Consequently, the following result can
be derived.

Proposition 4.4 Let P be a logic program with classical negation and let S
be a consistent set of literals. Then, S is an answer set for P if and only if
S is the set of literals entailed by “logical” images of clauses from PS, that
is, by the set of formulas

{a1 ∧ . . . ∧ am ⊃ c: c← a1, . . . , am ∈ PS}. 2

It is important to note that the assertion of Proposition 4.4 fails for the
original notion of reduct. The program of Example 2.1 is an illustration of
this phenomenon.

5 Conclusions

We have shown that reflexive autoepistemic logic (nonmonotonic SW5) is
a convenient and natural tool to study answer sets for disjunctive logic pro-
grams and logic programs with classical negation.

Our results provide embeddings of disjunctive logic programs into au-
toepistemic logic. One of these embeddings gives a very elegant characteri-
zation of answer sets of logic programs with classical negation (but with no
disjunctions in heads).

Despite the fact that logic programs can be embedded into autoepistemic
logic, we believe that it is reflexive autoepistemic logic that is particularly
well suited for modal representations of logic programs. The embedding
into reflexive autoepistemic logic is (essentially) the same as embedding of
defaults into the modal language. Moreover, clauses of disjunctive logic
programs are represented in this embedding as clauses of the modal language
and not by “non-clausal” formulas as in the case of the embedding into
autoepistemic logic.
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