
Nonmonotonic Reasoning

V.W. Marek and A. Nerode

Classical logic is the study of ”safe” formal reasoning. Western Philosophers de-

veloped classical logic over a period of thirty-three centuries after its introduction in

the form of syllogistic by Aristotle [1] in the third century B. C. Beginning in the

nineteenth century with De Morgan [2] and Boole [3], responsibility for the develop-

ment of classical logic moved from the philosophical to the mathematical community.

Boole [3], Peirce [4], Frege [5], Schröder [6], Russell [7], Hilbert [8], Gödel [9], and

Tarski [10] showed how to make classical logic into a mathematical discipline which

led to model theory, set theory, recursion theory, and proof theory. The discovery

of recursive function theory by Church [11], Gödel [12], Herbrand [13], Kleene [14],

and Turing [15] in the nineteen thirties, the development of digital computers with

a Von Neumann architecture in the 1950’s, the interest in machine simulation of hu-

1

man intelligence (AI) in the 1960’s, and the development of mathematical linguistics

led to many new applications of classical logic. The logical needs of these subjects

outstrip all previously existing developments and present many new challenges which

require non-traditional logics tailored to computer science. New problems suggested

by computer science and artificial intelligence have led to an unprecedented multi-

plicity of intellectual challenges. As a result there now more research effort in logics

for computer science than there ever was in traditional logics.

Some of the needed logics are extensions of classical logic by new operators. Ex-

ample are modal and temporal logic [16, 17]. These are useful as logics of programs

and logics of agents. Some needed logics are restrictions of classical logic. Examples

are intuitionistic logic which can be used to extract programs from proofs and ideal

PROLOG [18], where the program specification is the program itself. Some needed

logics develop aspects of higher-order logics. These received little attention previ-

ously. These include Huet-Coquand’s Theory of Constructions [19], based on Girard’s

strong normalization theorem for higher order intuitionistic logics [20]. Another is

Constable’s NUPRL [21], based on the normalization theorem of Martin-Löf’s pred-

icative higher order logics [22]. All thus far mentioned are extensions or restrictions

of classical logics.

An outstanding feature of classical logics and their extensions and restrictions is

that once the premises of an argument have been accepted and an inference of a

conclusion from these premises has been made, that conclusion enters the body of

2

knowledge and is never withdrawn so long as the premises are maintained. This gives

rise to a unique deductive closure of the set of premises, consisting of all deductive

consequences of the premises. Thus it was that we have accumulated over thousands of

years a larger and larger body of theorems in classical mathematics, all consequences

of a few premises which are now called the axioms of set theory by a fixed set of rules

of inference, all part of the deductive closure of the premises using the logical calculi

taught in the conventional courses of logic. These logics are ”monotone”, that is,

conclusions, once established, are never retracted. Larger sets of premises give larger

sets of conclusions.

Non-monotone logics have been developed recently which describe commonsense

reasoning which is neither a restriction nor an extension of classical logic. Conse-

quences of premises are drawn as much due to the absence as to the presence of

knowledge. When more knowledge is acquired, conclusions previously drawn may

have to be withdrawn because the rules of inference that led to them no longer are

active. Intelligent decision makers use this form of commonsense reasoning to infer

actions to be performed from premises which cannot be made by classical logic in-

ference, because they simply have to make decisions whether or not there is enough

information for a classical logical deduction.

To see what this means, we have to explain in what sense classical logic and its

restrictions and extensions encompass all ”safe” modes of reasoning. A ”safe” mode

of reasoning is one in which every conclusion drawn from premises by this mode of

3

reasoning is true in all intended interpretations (or models) in which the premises

are true. A ”completeness and correctness theorem” for a system says that the

”safe” rules of deduction in the textbooks generate exactly all those conclusions from

premises which are true in every interpretation in which all the premises are true.

Thus any extension or restriction of classical logic with a notion of interpretation or

model and a completeness and correctness theorem for that notion does not need any

new ”safe” rules of inference, except perhaps to expedite deductions.

So the extra element in commonsense reasoning that allows different conclusions

to be drawn than in classical logics is the use of rules of inference which are not ”safe”.

They are to be used not because they are safe or unsafe, but because they usually

give conclusions useful for decision making that can not otherwise be obtained. For

a rule to be ”unsafe” means there exist interpretations, or states of the world, in

which the premises of the rule hold, but the conclusions do not. The intention is

that we use such rules when we expect exceptions to be rare. Such unsafe rules of

inference are characteristically used when conclusions must be drawn and decisions

made but our knowledge and past experience is too limited, too uncontrolled, or too

unmodelled to draw a decision by classical logical or statistical inference. Formalized

commonsense reasoning is provide a a principled method of ”jumping to conclusions”

based on premises that are merely ”rules of thumb”.

Formalization of commonsense reasoning can be said to have started with Aristo-

tle’s introduction of the modal logic of possibility and necessity. C. I. Lewis formalized

4

such logics in the Monist in 1915 and in his Survey of Symbolic Logic with Langford

in 1928. More recently, there has been much activity in formalizing the logics of ”I

know ...”, and ”I believe... P”. But it is only since 1980 or so, under the influence

of John McCarthy, that non-monotonic reasoning as such has been systematically

formalized. McCarthy, building on the efforts of earlier philosophers stemming from

those mentioned above, showed how to formalize at least some commonsense reason-

ing [23]. This discovery formed the impetus for pioneering investigations of of Reiter,

[24, 25], McDermott and Doyle, [26, 27] and others. All this led to the development

of what is now a popular area of research, Nonmonotonic Logics – which we shall

outline in this article.

We believe that the development and computer implementation of non-monotonic

systems is a necessary prolegomena to the development of future intelligent systems

capable of simulating higher human cognitive functions.

1 Classical Logic

Classical Logic, be it in its propositional fragment, predicate fragment or other logics

(modal and intuitionistic ones) is based on the notion of consequence. In this general

framework a logic is represented by its syntax i.e. the set of its well-formed formulas

and semantics which provides the meaning to that syntax. Thus, usually, we have a

certain set of formulas constructed inductively from some primitive (atomic) formulas

by means of appropriate functors. Next we assign to such language a semantics These

5

are valuations of propositional variables (in case of propositional logic), relational

structures (in case of predicate logic) or Kripke structures (for intuitionistic and

modal logics). Semantics always generates a semantic consequence relation defined

by means of semantic entailment. Let us see how it works in the case of propositional

logic. We say that a formula ϕ is a semantic consequence of a set of formulas T

(is semantically entailed by, in symbols T |= ϕ) if every valuation satisfying every

formula from T , satisfies ϕ as well. The propositional logic is decidable, that is

there is an algorithm for testing if a formula ϕ is entailed by a finite set of formulas,

T . The technique of tableaux provides one such method. Moreover we can list all

the valuations of variables appearing in T and ϕ and check them. In the case of

predicate logic such technique is not available. The reason is that one has to take

into account infinite relational structure. Moreover there is infinitely many of them.

This implies that the semantic entailment relation T |= ϕ is not effective. Therefore it

is desirable to have a syntactic technique for testing entailment. Specifically we seek

methods that use formula manipulation to test entailment. This is done by means

of provability. This relationship is denoted by T ⊢ ϕ. There are various techniques

for the syntactic entailment. These include: natural deduction, [28], Hilbert-style

systems, [8], resolution refutation, [29] and semantic tableaux, [30, 31]. It always

involves manipulation of formulas and derivation of additional formulas by syntactic

means. The key result in such techniques is always a completeness property which says

that T |= ϕ if and only if T ⊢ ϕ. There are several completeness theorems, for each

6

of the logics mentioned above separately. Since the proofs are finite, completeness

property implies compactness property, that is the statement that T |= ϕ if and

only if for some finite subtheory T ′ ⊆ T , T ′ |= ϕ. This also implies that the set of

consequences of a theory T is recursively enumerable in T .

Let us look now at the abstract form of the consequence operation described

above. Let Cn(T) be the set of semantic consequences of the theory T . Since a larger

theory has less models, and T is the intersection of the sets of formulas true in all

these models, we find the following property of theories, called monotonicity

T1 ⊆ T2 implies Cn(T1) ⊆ T2

Consequence operations have other properties as well, for instance it is easy to see

that Cn is idempotent, that is Cn(Cn(T) = Cn(T), but monotonicity is a fundamen-

tal property. It tells us that once we established a fact on the basis of our theory, we

will never have to withdraw it as long as we only add new premises. Any future addi-

tional observations can only confirm it. This property governs the way our knowledge

accumulates. Whatever is proved using logic remains true. Thus, in spite of the fact

that our knowledge grows, the formal results in Mathematics accumulate. Whatever

was proved, stays proved forever as long as the assumptions grow.

7

2 Commonsense Reasoning

Although the logical consequences of formulas in which we believe should also be

believed (after all, if we believe that all men are mortal and Socrates is a man, then

we have to believe that Socrates is mortal), in commonsense we often employ, in

addition to classical logic reasonings, some other methods of reaching conclusions.

There are numerous types of argumentation used in commonsense reasoning. For

instance we often make a tacit assumptions that we have a complete information

about some fact. Then, it is enough to list explicitly only those which are true –

the remaining are inferred false by our tacit assumption. Clearly such reasoning is

not monotonic. Indeed, let T consists of facts that are assumed to be true. Now,

if we add another fact, not in T , then previously it was assumed to be false, but

now it is true, so the monotonicity property is violated. Similarly, we often reason

using “default reasoning”, that is we make assertions simply because we do not have

information which blocks making such inferences. But, again, such reasoning cannot

be monotonic. If our beliefs are augmented by new facts blocking the inferences,

then the inference which led to the specific conclusion may be blocked. Yet another

method of reasoning (related to the the previous one) is reasoning from both belief

and absence of thereof. If we use in our reasoning the fact that we do not have a

fact among beliefs then our reasoning may become invalid if a new belief is asserted.

Yet another method of reasoning is when we reason about the effects of actions. We

then tend to think that only those aspects of the world that are directly related to

8

the action performed could have changed. But, of course, such reasoning must be

nonmonotonic, as additional things could change by unrelated reasons.

The formal proposals which we will discuss in the subsequent sections of this

review address the technical developments addressing the above modes of reasoning.

What is most amazing in the theory we present is that they can be formalized at all.

Thus we will present Closed World Assumption, Default Logic, Modal Nonmonotonic

Logics, and Circumscription. We will also discuss some nonmonotonic aspects of

Logic Programming and a general mechanism for treating nonmonotonicity in logic.

The subject of this article is discussed in several monographs. These include:

[32, 33, 34, 35, 36, 31]. The theory of nonmonotonic reasoning is, at present, an active

area of research in Artificial Intelligence and many monographs will, undoubtedly,

follow.

3 Closed World Assumption

Closed World Assumption (CWA for short) is historically the earliest form of non-

monotonic reasoning. It is due to Reiter, [24]. Reiter analyzed the way in which

information is extracted out of databases and realized that a database contains, im-

plicitly, a great wealth of negative information. That is, every elementary fact that

can be stored in a database but is not, is assumed to be false. This is the reason

why, when asking an airline phone operator for a flight from New York City to San

Francisco arriving at 7:45 am you get either yes or no answer, but (in principle) no “I

9

do not know” for an answer. The reason is that the lack of information is processed

as falsity. More formally, given a database encoded as a first-order theory T , define,

for an atomic ground statement p

T ⊢CWA ¬p if T 6⊢ p

Then define CWA(T) = Cn(T ∪ {¬p : p is a ground atom, T ⊢CWA ¬p}).

When T is a propositional theory then CWA(T) is a complete theory. The reason

is that for each atom p, p ∈ CWA(T) or ¬p ∈ CWA(T).

In general, CWA is not a safe mode of reasoning. In fact for a consistent theory

T CWA(T) may be inconsistent. For instance the theory T = {p ∨ q} is consistent

whereas CWA(T) is inconsistent. Generally, CWA handles disjunctive information

poorly. The basic result on reasoning under CWA, due to Reiter, [24], is that for a

Horn theories (that is theories consisting of clauses which have at most one positive

literal) CWA is a safe mode of reasoning. That is, if T is consistent and Horn theory,

then CWA(T) is consistent too.

The operator described by CWA is nonmonotonic. That is T1 ⊆ T2 does not imply

CWA(T1) ⊆ CWA(T2). This follows immediately from our remark that CWA(T) is

complete in propositional case.

CWA is closely related to Logic Programming. Specifically, if P is a (Horn) logic

program, Pground is the set of ground instances of clauses of P , then CWA(Pground)

is precisely the propositional theory of the least Herbrand model of P . This implies

10

that the answers to the ground atomic queries to P coincide with the results of SLD

resolution with respect to P . More information on CWA and Logic Programming

can be found in, [37].

4 Default Logic

Default logic is one of the better understood formalisms in Nonmonotonic Reasoning.

It admits various interpretations, but the most popular is that it assigns meaning to

the quantifier “under usual circumstances”. The idea here is to capture the meaning

of this concept not by means of a probabilistic interpretation, but rather by controlling

how the derivations are made, that is by syntactic means. The derivations are made

by usual type reasoning systems, except that the rules carry the list of “exceptional

cases” making the application of such rule invalid.

Formally, Reiter, [25] introduced the concept of default theory. A default theory

is a pair 〈D,W 〉 where W is a set of sentences of the underlying language L and D

consists of default rules. A default rules is an entity of the form

r =
α : Mβ1, . . . ,Mβk

γ
(1)

where α, β1, . . . , βk, γ are sentences of the underlying language L.

A rule of the form (1) is sometimes interpreted as: “if α has been established,

and all β1, . . . , βk are all possible then derive γ”. The main issue here is how we

interpret the word “possible”. Specifically, possible with respect to what? Since the

11

first-order logic (be it propositional or predicate) offer a way of interpreting “possible

β” as “possible with respect to a theory T” (namely as T 6⊢ ¬β) the question arises

which T should be selected. Reiter offered an elegant solution to this problem. In

order to formally define the way the rules are applied and, subsequently, define the

consequences of default theory we introduce a notion of T -consequences of a default

theory 〈D,W 〉. Namely, if T ⊆ L, then the T -consequences of 〈D,W 〉 is the smallest

set S of formulas satisfying these conditions:

1. W ⊆ S

2. Cn(S) = S (here Cn is the consequence relation of L)

3. For all rules r ∈ D of the form (1), if α ∈ S and ¬β1 /∈ Cn(T), . . . ,¬βk /∈ Cn(T)

then γ ∈ S.

Clearly, such least set exists for any T . T controls which rules are applicable in the

process of making the derivation. Following Reiter denote Γ(T) the set so constructed.

Clearly, Γ depends on both D and W .

Now we can see why we were talking about reasoning “in usual circumstances”.

Namely, the rule of the form (1) carries within itself the description of the exceptions

of its applicability. These exceptions are: ¬β1, . . . ,¬βk. None of the exception may

happen if we want the rule applied. The context, T tells us where are we supposed

to look for information concerning the applicability. Thus T is mentally perceived as

the state of affairs. The derivations can be made in its presence. Now we have to

12

define which are “correct” states of affairs from the point of view of a default theory

〈D,W 〉.

Reiter, [25] defines an extension as the fixpoint of the operator Γ that is any

solution of the equation Γ(T) = T . Notice that Γ(T) = Γ(D,W, T), that is both

D,W contribute to the definition. The operator Γ is monotonic in D and in W but

it is antimonotonic in T . That is, with D,W fixed,

T1 ⊆ T2 implies Γ(T2) ⊆ Γ(T1)

Thus the usual ways of computing a fixpoint fail and there is no guarantee that a

fixpoint exist.

Notice that our analysis of the operator Γ implies that the equation Γ(T) = T

means two things:

(a) Every formula in Γ(T) belong to T . That is all formulas which have a derivation

from 〈D,W 〉 using T as a controlling context belong to T . This means that

nothing outside of T will be derived.

(b) Every formula in T possesses a derivation with T serving only as a controlling

context for applicability of rules. That is all the formulas in T can be recon-

structed from W using underlying logic and those rules of D which are not

blocked by T .

As noticed above, there is no guarantee that a default theory possesses an exten-

13

sion. Also, if extensions exist they may be multiple. Hence, in opposition to classical

logic, default logic assigns to a default theory a single, multiple or no consequences

at all.

Given a default rule of the form (1), define c(r) = γ and c(D) = {c(r) : r ∈ D}.

Then it can easily be proved that for every S, Γ(S) ⊆ Cn(W ∪ c(D)). This is a

“bounding principle” which allows us to compute examples.

Example 1 1. W = {p}, D = {p:M¬q

q
} where p, q are distinct propositional vari-

ables. Then according to the above bounding principle there are only two can-

didates for extensions of 〈D,W 〉, T1 = Cn({p}) and T2 = Cn({p, q}). Since

¬¬q /∈ T1, Γ(T1) = Cn({p, q}) 6= T1. Thus T1 is not an extension of 〈D,W 〉.

On the other hand ¬¬q ∈ T2, Γ(T2) = Cn({p}) 6= T2. Thus T2 is also not an

extension of 〈D,W 〉 and so 〈D,W 〉 has no extension.

2. W = {p}, D = {p:M¬q

r
} where p, q and r are distinct propositional variables.

Again we have two candidates for an extension of 〈D,W 〉, T1 = Cn({p}) and

T2 = Cn({p, r}). It is easy to see that Γ(T1) = Cn({p.r}) 6= T1. But again,

Γ(T2) = Cn({p, r}) = T2. Thus T2 is a unique extension of 〈D,W 〉.

3. W = {p}, D = {p:M¬q

r
, p:M¬r

q
} where p, q and r are distinct propositional vari-

ables. The reader will check easily that there are four candidates for extensions

out of which two, T ′ = Cn({p, q}) and T ′′ = Cn({p, r}) are extensions of

〈D,W 〉.

14

If S is a set of formulas then a default rule of the form (1) is called a generating

default for S if α ∈ S, ¬β1 /∈ S, . . . ,¬βk /∈ S. GD(D,S) is the set of all generating

defaults for S belonging to D.

We will formulate a number of fundamental properties of default extensions.

1. (Antichain property) If S1, S2 are distinct extensions of 〈D,W 〉 then S1 6⊆ S2.

2. (Confirmation of evidence) If S is an extension of 〈D,W 〉 and W ′ ⊆ S then S

is an extension of 〈D,W ∪W ′〉.

3. If T is an extension of 〈D,W 〉 then T is a unique extension of 〈GD(D,T),W 〉.

4. If all defaults in D have at least one justification, then 〈D,W 〉 has an inconsis-

tent extension if and only if W is inconsistent.

An important class of default theories consist of normal default theories. A rule r

of the form (1) is normal if k = 1 and γ = β1. That is normal rules are of the form

r =
α : Mγ

γ
(2)

A default theory 〈D,W 〉 is called normal if all rules in D are normal. Normal theories

have much stronger properties.

1. (Existence) A normal default theory always possesses an extension.

2. (Incompatibility) If S1, S2 are two distinct extensions of a normal default theory

〈D,W 〉 then S1 ∪ S2 is inconsistent.

15

3. (Semi-monotonicity) If 〈D1,W 〉, 〈D2,W 〉 are two normal default theories and

D1 ⊆ D2 then for every extension S1 of 〈D1,W 〉 there exists an extension

〈D2,W 〉 such that S1 ⊆ S2.

4. If 〈D,W 〉 is a normal default theory and W ∪ c(D) is consistent then 〈D,W 〉

possesses a unique extension.

Closed World Assumption (discussed in Section 3) can be represented in normal

default logic by the following embedding. Assign to a theory S a default theory

〈DCWA, S〉 where DCWA consists of all defaults :M¬p

¬p
for p being an atom of the

language L. Then S is CWA-consistent if and only if 〈DCWA, S〉 possesses a unique

extension. Moreover, in that case CWA(S) is the unique extension of 〈DCWA, S〉.

Default logic generalizes classical logic. IfD = ∅ then a unique extension of 〈D,W 〉

is Cn(W). It turns out that default logic shares other properties with classical logic.

For instance default logic possesses several normal forms, [38].

Besides normal defaults one often considers seminormal defaults. These rules are

of the form

r =
α : M(β ∧ γ)

γ
(3)

Default theories such that every rule has no justification or i seminormal represent

default logic faithfully. Specifically, for every default theory 〈D,W 〉 there is a default

theory 〈D′,W 〉 such that every rule in D′ is seminormal or has no justification and

with the following properties. First, every extension of 〈D,W 〉 is included in some

16

extension of 〈D′,W 〉. Second there is one-to-one correspondence between extensions

of 〈D′,W 〉 and extensions of 〈D,W 〉.

There are many algorithms for computing extensions of default theories. All of

these are inefficient because the complexity problems associated with default logic

are located, generally, on the second level of the polynomial hierarchy. Specifically,

Gottlob, [39] found the complexity of basic problems for default logic

1. (Existence) The problem: Given a default theory 〈D,W 〉 does 〈D,W 〉 possesses

an extension, is ΣP
2

-complete.

2. (Membership in some extension) The problem: Given a default theory 〈D,W 〉

and a propositional formula ϕ, does there exist an extension S of 〈D,W 〉 such

that ϕ ∈ S is ΣP
2

complete.

3. (Membership in all extensions) The problem: Given a default theory 〈D,W 〉

and a propositional formula ϕ, does ϕ belong to all extension of 〈D,W 〉 is ΠP
2

complete.

In the case of normal default theories the first problem is simple, because every normal

default theory possesses an extension. The second and the third problem have the

same complexity.

Default logic is a formalism based, primarily on extension of syntactic construc-

tions of first order logic. Nevertheless there are several semantical characterizations

17

of extensions. Lifschitz, [40] and Guerreiro and Casanova, [41] introduced semantical

constructions characterizing expansions.

There has been numerous proposals for modifications of default logic. None of

these is widely accepted. Of various proposals, we mention Lukaszewicz, [42] and

Brewka, [34]. These proposals suggested changing the mechanism for computing

objects associated with default theories. Other structures associated with default

theories include well-founded extensions of Baral and Subrahmanian, [43], weak ex-

tensions Marek and Truszczynski, [44] and many others.

Default logic is, currently, best understood among several modes of nonmonotonic

reasoning. There are several monographs devoted to the subject. These include:

Besnard, [32], Lukaszewicz, [36], Brewka, [45] and Marek and Truszczynski, [35].

5 Nonmonotonic Aspects of Logic Programming

A Horn logic program is a finite set of expressions of the form

p(X̄)← q1((̄X)), . . . , qm(X̄) (4)

Here X̄ is a string of variables. Not all variables must appear in all predicates. An ex-

pression (4) is called a clause, p(X̄) is the head of that clause whereas q1((̄X)), . . . , qm(X̄)

is the body of the clause. Such clause possesses a logical interpretation. It is a formula

∀X̄(q1((̄X)) ∧ . . . ∧ qm(X̄) ⊃ p(X̄))

18

ground(P), where P is a program, is the family of all ground substitutions of clauses

from P .

With a program P we associate an operator TP , mapping subsets of Herbrand

base into subsets of Herbrand base, by a the following

TP (I) = {p : ∃
C∈ground

P

I |= body(C) ∧ p = head(C)}

van Emden and Kowalski, [46]. Operator TP is monotone and compact. Hence, by

Knaster-Tarski Lemma, TP possesses the least fixpoint. This fixpoint coincides with

the least Herbrand model MP of P . Moreover, if P1, P2 are two programs, P1 ⊆ P2

then MP1
⊆MP2

.

When we introduce negation into the body of clauses of the program, we get

general logic programs. They consist of clauses of the form:

p(X̄)← q1((̄X)), . . . , qm(X̄),¬r1(X̄), . . . ,¬rn(X̄) (5)

The notion of the logical interpretation and of the operator TP generalize directly to

general logic program in a natural fashion.

Although a general logic program always possesses a model (Herbrand base is

a model of every program), the existence of the least Herbrand model is no longer

guaranteed. There are, however, always minimal models of general logic program.

There may be several minimal models of a general programs. The question how

to assign the meaning of a general program is one of the most important issues in

19

foundations of logic programming. We will look at several proposals for assigning

such meaning.

5.1 Minimal models

As noticed above minimal models of a program always exist. However, a minimal

model may be fairly artificial and may not be connected with the process of com-

putation. To see that look at the program P1 consisting of a single clause p ← ¬q.

Intuitively the “correct” model of P is {p} (q cannot be computed, so p can be), but

P possesses two minimal models (the other is {q}). Moreover, adding new clauses to

a program changes semantics drastically. A minimal model of a larger program does

not need to be minimal as a model of a smaller program. For complexity results on

minimal models see Eiter and Gottlob, [47].

5.2 Supported models

One can assign to a general program its completion Clark, [48]. Completion of the

program is a first order theory obtained from P by the following procedure. For each

predicate p a formula

∀X̄p((̄X)) ≡ (B1 ∨ . . . ∨Bk)

is the completion of p. Here formulas Bj, 1 ≤ j ≤ k are obtained by elimination of

terms in the heads of clauses with head p. Completion of a program is the theory

consisting of completions of predicates of the programs incremented by axioms about

20

equality (so called Clark Equational Theory) A supported structure for P is a model

of completion of P . Such structure is a model of P and so it is called supported model

of P . Apt and van Emden, [49] proved that Herbrand models of completion of P are

characterized as fixpoints of the operator TP .

5.3 Perfect model

Some programs allow for identification of a particular minimal model which has par-

ticularly nice properties. Call a program P stratified Apt, Blair and Walker, [50] if

there is a function rank on the set of predicates of the program P such that when-

ever we have a clause of the form (5) then for all i rank(qi) ≤ rank(p) and for all j,

rank(rj) < rank(p). The intuition is that the negative information necessary to com-

pute the extension of the predicate p in the desired model of P must be computed

before the stage in which p is computed. Checking if P is stratified can be done in

time linear in |P |. The desired model is computed in stages. First, compute exten-

sions of predicates of rank 0. This information is then used to compute extensions

of predicates of rank 1, etc. The resulting model is called the prefect model of P .

Not every program is stratified, and so a perfect model is not always defined. If it

exists then it is unique and does not depend on a particular stratification used in

its construction. Moreover the perfect model of P is a model of completion of P as

well. If P is a propositional program that is stratified than its perfect model can be

computed in time linear in |P |. In predicate case Apt and Blair, [51] show that a

21

program with n strata can compute a Σ0

n complete set. Conversely the perfect model

of a stratified program with n strata is Σ0

n.

A “local” version of stratification is due to Przymusinski, [52]. Here we require that

the rank is defined not on the set of all predicates of the language of the program but

rather on the Herbrand base. The stratification conditions are similar, but pertain

to clauses in ground(P). Again, one can assign to a locally stratified program the

perfect model. There is no difference between stratification and local stratification in

the case of finite propositional programs. In the predicate case testing if P is locally

stratified is Π1

1
-complete, Cholak and Blair, [53], Perfect model of a locally stratified,

recursive program is hyperarithmetical and all hyperarithmetical sets are extensions

of predicates in perfect model of suitably chosen locally stratified program.

5.4 Stable models

Gelfond and Lifschitz, [54] defined the notion of a stable model of a program. Let M

be a subset of the Herbrand base of P . Reduce the program ground(P) as follows.

Given a clause C

p← q1,qm,¬r1, . . . ,¬rn

in ground(P) eliminate C altogether if for some j, rj ∈M . Otherwise let CM be

p← q1,qm

PM consists of CM for those C which are not eliminated. Since PM is a Horn program

it possesses a least model NM . We call M a stable structure for P if NM = M . A

22

stable structure for P (if exists) is a model of P . Moreover it is a model of completion

of P and a minimal model of P . If P is stratified or locally stratified then P possesses a

unique stable model. It is its perfect model. It turns out that stable models of general

logic programs are closely connected with Default Logic, Bidoit and Froidevaux, [55],

Marek and Truszczynski, [56]. There exist programs without stable models. The

existence problem for stable models of propositional general logic programs is NP-

complete, Marek and Truszczynski, [57]. For finite predicate general logic programs

existence of a stable model is a Σ1

1
-complete problem Marek, Nerode and Remmel,

[58].

6 Modal nonmonotonic logics

The modal flavor of nonmonotonic reasoning has been noticed at the very beginning

of developments. In facts, Reiter’s notation suggests that he considered the formulas

in justification as modalized formulas, at least conceptually. McDermott and Doyle,

[26] suggested a construction in the language of modal logic which handles nonmono-

tonicity well. McDermott and Doyle construction is based on the analysis of the

notion of introspection. Let LL be a modal language with modal unary functor L.

Given a theory T , we say that T is closed under positive introspection if

ϕ ∈ T implies Lϕ ∈ T

Thus closure under positive introspection is nothing more that closure under ne-

cessitation rule of modal logic. Similarly, we say that T is closed under negative

23

introspection if

ϕ /∈ T implies ¬Lϕ ∈ T

Negative introspection has a distinctly nonmonotonic flavor – if ϕ is not in T the ¬Lϕ

is in T . Theories closed under propositional provability (in the language of modal

logic) and both forms of introspection are called stable, Stalnaker, [59]. They are

precisely theories of Kripke models with universal accessibility relation.

McDermott and Doyle, [26, 27] considered the following operator

MDD(T) = CnS(I ∪ {¬Lϕ : ϕ /∈ T})

There are two parameters in this operator. First, I – the set of initial beliefs (or

initial knowledge) of a reasoning agent. Second, a modal logic S. The fixpoints of

that operator, that is solutions of the equation

T = CnS(I ∪ {¬Lϕ : ϕ /∈ T})

are called S-expansions of I. The consequence operator CnS used here is stronger

than in usual modal logics – necessitation is applicable to all formulas and not only to

axioms of S. The strength of the McDermott and Doyle construction lies in additional

parameter S. Varying S can lead to very different solutions. McDermott noted that

as long as S contains necessitation, every expansion is a stable theory. Moreover

an S-expansion is closed under S5-consequence. McDermott, [27] noticed that for

S = S5, S-expansions of I coincide with theories of S5-models of I with universal

24

relations. This implies that the formulas true in all S5-expansions of I are precisely

S5-consequences of I. This was considered counterintuitive at a time.

Moore, [60] considered a different operator, explicitly taking into account both

positive and negative introspection with respect to T

Mo(T) = Cn(I ∪ {Lϕ : ϕ ∈ T} ∪ {¬Lϕ : ϕ /∈ T})

and argued that this operator is more natural than McDermott and Doyle operator.

Fixpoints of Moore operator, i.e. solutions to the equation

T = Cn(I ∪ {Lϕ : ϕ ∈ T} ∪ {¬Lϕ : ϕ /∈ T})

are called autoepistemic (or stable) expansions of I. It turned out, however, that

as long as consistent theories are concerned, Moore construction is a special case of

McDermott and Doyle construction, namely S = KD45, Schwarz, [61]. Another

special case is so-called reflexive autoepistemic logic of Schwarz, [62], where reflexive

autoepistemic expansions are solutions of the equation

T = Cn(I ∪ {Lϕ ≡ ϕ : ϕ ∈ T} ∪ {¬Lϕ : ϕ /∈ T})

This is again a special case of McDermott and Doyle construction, corresponding to

modal logic S4.4 (see Chellas, [16] for more information on modal logics). All the

operators mentioned above are nonmonotonic. Logic based on fixpoints of Moore

operator is called autoepistemic logic. It is currently believed that this logic properly

models beliefs of a fully introspective, reasoning, agent.

25

The notion of S-expansion behaves monotonically in S. That is, given I ⊆ LL,

S1 and S2, if S1 ⊆ S2 then every S1-expansion of I is also an S2-expansion of I.

It turns out that different modal logics may generate uniformly in I the same

expansions. This happens, for instance for modal logics 5 (subnormal modal logic

without the scheme K), K5, K45, and KD45. Many other areas (called ranges)

where expansions coincide are known presently. One such area is between S4 and

S4F for all finite theories I Marek, Schwarz and Truszczynski, [63].

The degree of freedom (the choice of S) present in modal nonmonotonic logics

makes them a very powerful mechanism for representation of other forms of non-

monotonic reasoning. There are many representations of nonmonotonic reasonings

in modal nonmonotonic logics with various degree of faithfulness. These include

Konolige interpretation of default logic in autoepistemic logic, [64], Truszczynski in-

terpretation of default logic in nonmonotonic S4F , [65] and many others. Stable

semantics of logic programs can be faithfully represented in both autoepistemic logic,

[66] and in reflexive autoepistemic logic, [67]. Similarly, supported semantics for logic

programs can be faithfully represented in autoepistemic logic, [68].

Lifschitz, [69] introduced a general mechanism for uniform treatment of modal

nonmonotonic logics in a single bimodal logic MBNF .

Computational mechanisms associated with modal nonmonotonic logics vary greatly

in complexity. Because of existence of ranges, there is no simple correlation between

26

the complexity of the underlying modal monotonic logic and the corresponding non-

monotonic modal logic. In the case of logic S4 modal nonmonotonic logic is com-

putationally simpler than modal monotonic S4 Schwarz and Truszczynski, [70]. The

case of autoepistemic logic has been especially thoroughly investigated by Gottlob,

[39] and Niemelä, [71]. Similarly to default logic the problems associated with au-

toepistemic expansions are on the second level of polynomial hierarchy. Specifically,

existence problem is ΣP
2

-complete, membership in some expansion is ΣP
2

-complete

and membership in all expansion a ΠP
2

-complete problem. Generally, the complexity

problems for nonmonotonic logics are not completely solved, yet.

7 Circumscription

Circumscription is a second-order technique for minimizing extensions of predicates.

In its simplest and most natural form circumscription scheme says that a theory

implicitly defines a predicate it circumscribes McCarthy, [72]. Specifically, by cir-

cumscribing a predicate P in a theory T we assume that all the information about

the predicate is given by T . Thus only those models where P is minimal need to be

consider. Formally, let ϕ = ϕ(P) be the conjunction of axioms of a finite theory T in

the first order language containing the predicate P . The result of circumscribing P

is the following second-order statement

ϕ(P) ∧ ¬∃Q(Q ⊆ P ∧ ϕ(Q))

27

where Q is a new predicate (not in the language under consideration. We then say

that Tcirc |= ψ if Circ(T, P) |= ψ. Clearly, circumscription is syntactically a second-

order formula (it quantifies a predicate). In fact for a theory T consisting of these

axioms: ∀x,yR(x, y) ⊃ P (x, y), and ∀x,y,zR(x, y) ∧ P (y, z) ⊃ P (x, z), the result of

circumscribing P by T defines the transitive closure of R – which is not first-order

definable, in general. There are cases when circumscription reduces to first-order

sentence. For instance theory T consisting of a single axiom ∀xQ(x) ∧ R(x) ⊃ P (x)

after circumscribing P gives ∀x(Q(x) ∧R(x)) ≡ P (x). Lifschitz, in a series of papers

[73, 74, 75, 76] analyzed the most important properties of circumscription.

When the theory T is a propositional theory, circumscribing theory T reduces to

minimizing models of T (in general we can minimize some or all proposition vari-

ables in T). Minimization of all propositional variables at once is known as extended

generalized closed world assumption (GCWA) and has been studied by Yahia and

Henschen, [77], see also Minker, [78]. Clearly the entailment problem for proposi-

tional circumscription is decidable. An algorithm has been proposed by Przymusin-

ski, [79]. In the predicate case the circumscription is very complex. Schlipf, [80]

shows that all ∆1

2
ordinal are definable with circumscription, so this mode of rea-

soning goes beyond anything currently accepted as computable. The complexity of

propositional circumscription has been studied by Eiter and Gottlob, [81] who found

that the problems associated with circumscription are, generally, located on the sec-

ond level of polynomial hierarchy. Circumscription is a very powerful technique and

28

it is known Imielinski, [82] that at least fragment of default logic can be embedded

into circumscription.

Suchenek, [83] gave an analysis of various orderings of models and corresponding

circumscriptions.

8 Many-valued interpretations

Many-valued logics has been studied in the context of nonmonotonic reasoning, pri-

marily as a technique to get semantics for some logic programs. A four-valued inter-

pretation is a pair 〈A,B〉 where A,B are two sets of atoms (or elements of Herbrand

base of a program). When A∩B = ∅, we talk about a three-valued interpretation. 3-

and 4- valued logics provide semantics for logic programs. Fitting, [84] noticed that

the operator TP applied to three-valued interpretations is monotone and so has the

least fixpoint. He proposed that fixpoint as a semantics for logic programs. A stronger

semantics, so called well-founded semantics has been introduced by Van Gelder, Ross

and Schlipf, [85]. It turns out that using a three-valued version of stable semantics

one can identify well founded semantics with the least stable 3-valued model of the

program Przymusinski, [86]. Using the theory of bilattices Ginsberg, [87] Fitting, [88]

characterized 3-valued stable models.

Well-founded semantics generalizes perfect semantics for stratified logic programs

and in case when it produces a two-valued interpretation the resulting interpretation

determines a unique stable model of the program. Van Gelder, [89] gave a polyno-

29

mial computational procedure for computing well-founded semantics of propositional

programs. Schlipf, [90] proved that in the predicate case well-founded semantics can

define a complete Π1

1
-set.

9 Truth maintenance and nonmonotonic rule sys-

tems

Doyle, [91] considered truth maintenance systems (TMS). These are systems of rules

consisting of objects of the following form: 〈A,B〉 → c where A,B are finite sets of

atoms, c is an atom. The meaning of such rule is ”when all the atoms in A are IN and

all the atoms in B are OUT then infer c”. Doyle did not give a precise semantics for

such systems. De Kleer, [92, 93] gave a semantics, very close to supported semantics

of logic programs for systems with rules having B = ∅. Elkan, [94] found a semantics

for TMS, essentially the stable semantics of logic programs.

Marek, Nerode and Remmel, [95, 96] considered rules of the form

a1, . . . , am : b1, . . . , bn
c

(6)

with a1, . . . , am, b1, . . . , bn, c from an arbitrary set U (not necessarily of atoms) and

considered nonmonotonic rule systems, i.e. pairs 〈U,N〉 where U is a set and N con-

sists of rules of the form (6). It turns out that manipulating the parameter U one

can provide a proper description of all the first-order forms of nonmonotonic reason-

ing mentioned above, namely default logic stable and supported semantics of logic

programs, McDermott and Doyle systems and truth maintenance systems. Moreover,

30

stripping the systems of specific and unimportant features allows for proving various

properties of such systems in a uniform and efficient way.

10 Implementations

As mentioned above there are various algorithms for computations of structures as-

sociated with nonmonotonic reasoning. These algorithms have been or presently are

being implemented by various groups of researchers. Historically first implementa-

tion of (a fragment of) default logic has been reported by Poole, [97]. Dixon and de

Kleer, [98] reported massively parallel implementation of TMS. Ginsberg, [99] re-

ported implementation of circumscription. Warren, [100] reported an implementation

of well-founded semantics. Bell et al., [101] implemented circumscription and stable

semantics for propositional theories using an interpretation of these nonmonotonic

systems in linear programming. Niemelä, [102] reported a fast implementation of

full autoepistemic logic. Marek and Truszczynski, [103] reported implementation of

a default reasoning system.

11 Conclusions and perspectives

Nonmonotonic reasoning is an active area of research in Artificial Intelligence. This re-

search is actively pursued in many places around the world. Many areas not discussed

in our short review are currently under development. These include abduction, [104],

nonmonotonic probabilistic reasoning, [105], extended logic programming, [106], be-

31

lief revision, [107] and several other areas. Object-oriented programming, especially

its use of classes, inheritance and overriding use technique of inheritance hierarchies

with exceptions, [108] and will, doubtless, drive developments in nonmonotonic rea-

soning. We can expect many discoveries – a definitive description of nonmonotonic

reasoning has not been done yet.

References

[1] Aristotle. Selections. Oxford University Press, Oxford, 1942.

[2] A. De Morgan. Formal Logic, or, the calculus of inference, necessary and prob-

able. Taylor and Walton, London, 1847.

[3] G. Boole. An investigation of laws of thought, on which are founded mathemat-

ical theories of logic and probability. Macmillan, London, 1854.

[4] C.S. Peirce. Collected Papers of Charles Sanders Peirce, volume 3. The Belknap

Press of Harvard University Press, Cambridge, MA, 1933. Formal Logic.

[5] G. Frege. Die Grundlagen der Arithmetic. M. & H. Marcus, Breslau, 1884.

[6] E. Schröder. Vorlesungen über die Algebra der Logik. B.G. Teubner, Leipzig,

1890-1905. 3 vols.

[7] A.N. Whitehead and B. Russel. Principia Mathematica. Cambridge University

Press, Cambridge, 1913.

32

[8] D. Hilbert and W. Ackermann. Principles of Mathematical Logic. Chelsea, New

York, 1950.

[9] K. Gödel. Die Vollständigkeit der Axiome des logische Funktionenkalküls. Mon.

für Math. und Physik, 37:349–360, 1930.

[10] A. Tarski. Logic, semantics, metamathematics. Oxford University Press, Ox-

ford, 1956.

[11] A. Church. A note on Entscheidungsproblem. Journal of Symbolic Logic, 1:40–

41, 1938.

[12] K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und

verwandter Systeme I. Mon. für Math. und Physik, 38:173–198, 1930.

[13] J. Herbrand. Logical Writings. Reidel, Hingham, MA, 1971.

[14] S.C. Kleene. Introduction to Metamathematics. D. Van Nostrand, New York,

1952.

[15] A.M. Turing. On computable numbers with an application to the Entschei-

dungsproblem. Proceedings of London Mathematical Society, 2:230–265, 1936.

[16] B.F. Chellas. Modal logic, an introduction. Cambridge University Press, 1980.

[17] J. van Benthem. Modal Logic and Classical Logic. Bibliopolis, Naples, 1983.

33

[18] A. Colmerauer, H. Kanoui, P. Roussel, and R. Pasero. Un systeme de com-

munication homme-machine en francais. Technical report, Univ. Aix-Marseille,

Groupe de Recherche en Intelligence Artificielle, 1973.

[19] T. Coquand and G. Huet. Constructions: a higher-order proof system for

mechanizing mathematics. Springer Lecture Notes in Computer Science, 242,

1985.

[20] J.-Y. Girard. Proof and Types. Cambridge University Press, Cambridge, 1989.

[21] R. L. Constable, S.F. Allen, H.M. Bromley, W.R. Clea veland, J.F. Cremer,

R.W. Harper, D.J. Howe, T.B. Knoblock, N.P. Mendler, P. Panangaden, J.T.

Sasaki, and S.F. Smith. Implementing Mathematics with the Nuprl Development

System. Prentice-Hall, NJ, 1986.

[22] P. Martin-Löf. Intuitionistic Type Theories. Bibliopolis, Naples, 1984.

[23] J. McCarthy. Formalization of common sense, papers by John McCarthy edited

by V. Lifschitz. Ablex, 1990.

[24] R. Reiter. On closed world data bases. In H. Gallaire and J. Minker, editors,

Logic and data bases, pages 55–76. Plenum Press, 1978.

[25] R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–132, 1980.

[26] D. McDermott and J. Doyle. Nonmonotonic logic I. Artificial Intelligence,

13:41–72, 1980.

34

[27] D. McDermott. Nonmonotonic logic II: nonmonotonic modal theories. Journal

of the ACM, 29:33–57, 1982.

[28] H. Rasiowa and R. Sikorski. Mathematics of metamathematics. Polish Scientific

Publishers, PWN, 1970.

[29] J.A. Robinson. Machine-oriented logic based on resolution principle. Journal

of the ACM, 12:23 – 41, 1965.

[30] R.M. Smullyan. First-order logic. Berlin: Springer-Verlag, 1968.

[31] A. Nerode and R. Shore. Logic and logic programming. Berlin: Springer-Verlag,

1993.

[32] P. Besnard. An introduction to default logic. Springer-Verlag, Berlin, 1989.

[33] D. W. Etherington. Reasoning with incomplete information. Pitman, London,

1988.

[34] G. Brewka. Cumulative default logic: in defense of nonmonotonic inference

rules. Artificial Intelligence, 50:183–205, 1991.

[35] W. Marek and M. Truszczyński. Nonmonotonic logics; context-dependent rea-

soning. Berlin: Springer-Verlag, 1993.

[36] W. Lukaszewicz. Non-monotonic reasoning: formalization of commonsense rea-

soning. Ellis Horwood, 1990.

35

[37] K. Apt. Logic programming. In J. van Leeuven, editor, Handbook of theoretical

computer science, pages 493–574. MIT Press, Cambridge, MA, 1990.

[38] F. Yang, H. Blair, and A. Brown. Programming in default logic. University of

Syracuse, 1992.

[39] G. Gottlob. Complexity results for nonmonotonic logics. Journal of Logic and

Computation, 2:397–425, 1992.

[40] V. Lifschitz. On open defaults. In J. Lloyd, editor, Proceedings of the symposium

on computational logic, pages 80–95. Berlin: Springer-Verlag, 1990. ESPRIT

Basic Research Series.

[41] R. Guerreiro and M. Casanova. An alternative semantics for default logic.

Preprint. The Third International Workshop on Nonmonotonic Reasoning,

South Lake Tahoe, 1990.

[42] W. Lukaszewicz. Considerations on default logic. In R. Reiter, editor, Proceed-

ings of the international workshop on non-monotonic reasoning, pages 165–193,

1984. New Paltz, NY.

[43] C. Baral and V.S. Subrahmanian. Dualities between alternative semantics for

logic programming and nonmonotonic reasoning. In A. Nerode, W. Marek, and

V.S. Subrahmanian, editors, Logic programming and non-monotonic reasoning,

pages 69–86. MIT Press, 1991.

36

[44] W. Marek and M. Truszczyński. Relating autoepistemic and default logics.

In Proceedings of the 1st international conference on principles of knowledge

representation and reasoning, KR ’89, pages 276–288, San Mateo, CA., 1989.

Morgan Kaufmann.

[45] G. Brewka. Nonmonotonic reasoning: logical foundations of commonsense.

Cambridge University Press, Cambridge, UK, 1991.

[46] M.H. van Emden and R.A. Kowalski. The semantics of predicate logic as a

programming language. Journal of the ACM, 23(4):733–742, 1976.

[47] T. Eiter and G. Gottlob. On the complexity of propositional knowledge base

revision, updates and counterfactuals. In ACM Symposium on Principles of

Database Systems, 1992.

[48] K.L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic

and data bases, pages 293–322. Plenum Press, 1978.

[49] K.R. Apt and M.H. van Emden. Contributions to the theory of logic program-

ming. Journal of the ACM, 29:841–862, 1982.

[50] K. Apt, H.A. Blair, and A. Walker. Towards a theory of declarative knowledge.

In J. Minker, editor, Foundations of deductive databases and logic programming,

pages 89–142, Los Altos, CA, 1988. Morgan Kaufmann.

37

[51] K. Apt and H.A. Blair. Arithmetical classification of perfect models of stratified

programs. Fundamenta Informaticae, 12:1–17, 1990.

[52] T. Przymusiński. On the declarative semantics of deductive databases and logic

programs. In Foundations of deductive databases and logic programming, pages

193–216, Los Altos, CA., 1988. Morgan Kaufmann.

[53] P. Cholak and H.A. Blair. The complexity of local stratification. Fundamenta

Informaticae, 1994. To appear.

[54] M. Gelfond and V. Lifschitz. The stable semantics for logic programs. In

R. Kowalski and K. Bowen, editors, Proceedings of the 5th international sym-

posium on logic programming, pages 1070–1080, Cambridge, MA., 1988. MIT

Press.

[55] N. Bidoit and C. Froidevaux. Negation by default and unstratifiable logic pro-

grams. Theoretical Computer Science, 78:85–112, 1991.

[56] W. Marek and M. Truszczyński. Stable semantics for logic programs and de-

fault theories. In E.Lusk and R. Overbeek, editors, Proceedings of the North

American conference on logic programming, pages 243–256, Cambridge, MA.,

1989. MIT Press.

[57] W. Marek and M. Truszczyński. Autoepistemic logic. Journal of the ACM,

38:588–619, 1991.

38

[58] W. Marek, A. Nerode, and J. B. Remmel. The stable models of predicate logic

programs. In Proceedings of international joint conference and symposium on

logic programming, Boston, MA, 1992. MIT Press.

[59] R.C. Stalnaker. A note on nonmonotonic modal logic. Unpublished manuscript,

1980.

[60] R.C. Moore. Semantical considerations on non-monotonic logic. Artificial In-

telligence, 25:75–94, 1985.

[61] G.F. Shvarts. Stable expansions of autoepistemic theories. In Proceedings of the

all-union conference on artificial intelligence, pages 483–487, 1988. In Russian.

[62] G.F. Schwarz. Autoepistemic logic of knowledge. In A. Nerode, W. Marek, and

V.S. Subrahmanian, editors, Logic programming and non-monotonic reasoning,

pages 260–274. MIT Press, 1991.

[63] W. Marek, G.F. Shvarts, and M. Truszczyński. Modal nonmonotonic logics:

ranges, characterization, computation. Journal of the ACM, 40:963–990, 1993.

[64] K. Konolige. On the relation between default and autoepistemic logic. Artificial

Intelligence, 35:343–382, 1988.

[65] M. Truszczyński. Modal interpretations of default logic. In Proceedings of

IJCAI-91, pages 393–398, San Mateo, CA., 1991. Morgan Kaufmann.

39

[66] M. Gelfond. On stratified autoepistemic theories. In Proceedings of AAAI-

87, pages 207–211, Los Altos, CA., 1987. American Association for Artificial

Intelligence, Morgan Kaufmann.

[67] W. Marek and M. Truszczyński. Reflexive autoepistemic logic and logic pro-

gramming. In A. Nerode and L. Pereira, editors, Logic programming and non-

monotonic reasoning. MIT Press, 1993.

[68] W. Marek and V.S. Subrahmanian. The relationship between stable, supported,

default and autoepistemic semantics for general logic programs. Theoretical

Computer Science, 103:365–386, 1992.

[69] V. Lifschitz. Minimal belief and negation as failure. Artificial Intelligence, 1994.

To appear.

[70] G.F. Schwarz and M. Truszczyński. Nonmonotonic reasoning is sometimes eas-

ier. Technical Report 213-92, Department of Computer Science, University of

Kentucky, 1992.

[71] I. Niemelä. On the decidability and complexity of autoepistemic reasoning.

Fundamenta Informaticae, 17:117–155, 1992.

[72] J. McCarthy. Circumscription — a form of non-monotonic reasoning. Artificial

Intelligence, 13:27–39, 1980.

40

[73] V. Lifschitz. Computing circumscription. In Proceedings of IJCAI-85, pages

121–127, Los Altos, CA., 1985. Morgan Kaufmann.

[74] V. Lifschitz. Pointwise circumscription. In M.Ginsberg, editor, Readings in

nonmonotonic reasoning, pages 179–193, Los Altos, CA., 1987. Morgan Kauf-

mann.

[75] V. Lifschitz. Circumscriptive theories: a logic-based framework for knowledge

representation. Journal of Philosophical Logic, 17:391–441, 1988.

[76] V. Lifschitz. Between circumscription and autoepistemic logic. In Proceedings

of the 1st international conference on principles of knowledge representation

and reasoning, pages 235–244, San Mateo, CA., 1989. Morgan Kaufmann.

[77] A. Yahia and L.J. Henschen. Deduction in non-horn databases. Journal of

Automated Reasoning, pages 141–160, 1985.

[78] J. Minker. On indefinite databases and the closed world assumption. Lecture

Notes in Computer Science, 138:292–308, 1982.

[79] T. C. Przymusinski. An algorithm to compute circumscription. Artificial Intel-

ligence, 38:49–73, 1989.

[80] J. Schlipf. Decidability and definability with circumscription. Annals of Pure

and Applied Logic, 35:173–191, 1987.

41

[81] T. Eiter and G. Gottlob. Complexity of reasoning with parsimonious and mod-

erately grounded expansions. Fundamenta Informaticae, 1992. to appear.

[82] T. Imielinski. Results on translating defaults to circumscription. Artificial

Intelligence, 32:131–146, 1987.

[83] M. Suchenek. Preservation properties in deductive data bases. Methods of Logic

in Computer Science, 1994. To appear.

[84] M. C. Fitting. Kripke-Kleene semantics for logic programs. Journal of Logic

Programming, 2:295–312, 1985.

[85] A. Van Gelder, K.A. Ross, and J.S. Schlipf. Unfounded sets and well-founded

semantics for general logic programs. In ACM symposium on principles of

database systems, pages 221–230, 1988.

[86] T. Przymusiński. Three-valued nonmonotonic formalisms and logic program-

ming. In Proceedings of the 1st international conference on principles of knowl-

edge representation and reasoning, KR ’89, pages 341–348, San Mateo, CA.,

1989. Morgan Kaufmann.

[87] M.L. Ginsberg, editor. Readings in nonmonotonic reasoning. Morgan Kauf-

mann, 1987.

42

[88] M.C. Fitting. Well-founded semantics, generalized. In Proceedings of the in-

ternational symposium on logic programming, pages 71–84, Cambridge, MA.,

1991. MIT Press.

[89] A. Van Gelder. The alternating fixpoints of logic programs with negation. In

ACM symposium on principles of database systems, pages 1– 10, 1989.

[90] J. Schlipf. The expressive powers of the logic programming semantics. J.C.S.S,

1994. To appear, A preliminary version appeared in Ninth ACM Symposium

on Principles of Database Systems, 1990.

[91] J. Doyle. A truth maintenance system. Artificial Intelligence, 12:231–272, 1979.

[92] J. de Kleer. An assumption-based TMS. Artificial Intelligence, 28:127–162,

1986.

[93] J. de Kleer. Extending the ATMS. Artificial Intelligence, 28:163–196, 1986.

[94] C. Elkan. A rational reconstruction of nonmonotonic truth maintenance sys-

tems. Artificial Intelligence, 43:219–234, 1990.

[95] W. Marek, A. Nerode, and J.B. Remmel. Nonmonotonic rule systems I. Annals

of Mathematics and Artificial Intelligence, 1:241–273, 1990.

[96] W. Marek, A. Nerode, and J.B. Remmel. Nonmonotonic rule systems II. Annals

of Mathematics and Artificial Intelligence, 5:229–263, 1992.

43

[97] D. Poole. A logical framework for default reasoning. Artificial Intelligence,

36:27–47, 1988.

[98] M. Dixon and J. de Kleer. Massively parallel assumption-based truth mainte-

nance. In M. Reinfrank, J. de Kleer, M.L. Ginsberg, and E. Sandewall, editors,

Non-monotonic reasoning, pages 131–142. Berlin: Springer-Verlag, 1989. Lec-

ture Notes in Artificial Intelligence, 346.

[99] M.L. Ginsberg. A circumscriptive theorem prover. In M. Reinfrank, J. de Kleer,

M.L. Ginsberg, and E. Sandewall, editors, Non-monotonic reasoning, pages

100–114. Berlin: Springer-Verlag, 1989. Lecture Notes in Artificial Intelligence,

346.

[100] D.S. Warren W. Chen, T. Swift. Efficient computation of queries under the

well-founded semantics. Technical Report 93-CSE-33, Southern Methodist Uni-

veristy, 1993.

[101] C. Bell, A. Nerode, R. Ng, W. Pugh, and V.S. Subrahmanian. Implementing

stable semantics by linear programming. In A. Nerode and L. Pereira, editors,

Logic programming and non-monotonic reasoning. MIT Press, 1993.

[102] I. Niemelä. Autoepistemic logic as a unified basis for nonmonotonic reasoning.

Technical Report 24, Helsinki University of Technology, 1993.

[103] W. Marek and M. Truszczyński. Deres – default reasoning system. In prepara-

tion, 1994.

44

[104] A. C. Kakas, R.A. Kowalski, and F. Toni. Abductive logic programming. To

appear, 1992.

[105] J. Pearl. Probabilistic reasoning in Intelligent Systems: Networks of Plausible

Inference. Morgan Kaufmann, 1988.

[106] M. Gelfond and V. Lifschitz. Logic programs with classical negation. In D. War-

ren and P. Szeredi, editors, Proceedings of the 7th international conference on

logic programming, pages 579–597, Cambridge, MA., 1990. MIT Press.

[107] C. E. Alchourrón, P. Gärdenfors, and D. Makinson. On the logic of theory

change: Partial meet contraction and revision functions. Journal of Symbolic

Logic, 50:510–530, 1985.

[108] D. Touretzky. The mathematics of inheritance systems. Pitman, London, 1986.

45

