
A theory of nonmonotonic rule systems II

W. Marek,1 A. Nerode2 and J. Remmel3

Contents

1 Introduction 2

2 Extensions of Highly Recursive Rule Systems 3

2.1 Paths through the Binary Trees and Extensions . . . . . . . . . . . . 4

2.2 Highly Recursive Marriage Problems . . . . . . . . . . . . . . . . . . 11

2.3 Proper k-colorings of graphs for k ≥ 2 . . . . . . . . . . . . . . . . . . 19

2.4 Recursion-theoretic results for extensions . . . . . . . . . . . . . . . . 20

2.5 Some applications to Logical Systems . . . . . . . . . . . . . . . . . . 28

3 Semantical issues and descriptive characterization of various sets

closed under rules 30

3.1 Applications to Default Logic and Logic Programming . . . . . . . . 38

4 Computing extensions, weak extensions, and minimal deductively

closed sets 42

5 Conclusions 51

1Department of Computer Science, University Kentucky, Lexington, KY 40506–0027. Currently

in Mathematical Sciences Institute at Cornell University. Work partially supported by NSF grant

RII-8610671 and Kentucky EPSCoR program and ARO contract DAAL03-89-K-0124.
2Mathematical Sciences Institute, Cornell University, Ithaca, NY 14853. Work partially sup-

ported by NSF grant DMS-8902797 and ARO contract DAAG629-85-C-0018.
3Department of Mathematics, University of California at San Diego, La Jolla, CA 92903. Work

partially supported by NSF grant DMS-8702473.

1



1 Introduction

This is the continuation of [Marek, Nerode and Remmel, 1990]. We often refer to it

as “Part I”, when we quote theorems or definitions.

We continue development of the theory of nonmonotonic rule systems, as intro-

duced in the Part I. There are three directions pursued.

First, we study extensions of “highly recursive” nonmonotonic rule systems. These

are systems 〈U,N〉 where U = ω, is the set of natural numbers, N is a recursive

collection of nonmonotonic rules, and 〈U,N〉 satisfies an additional “boundedness

condition” on the collection of proof schemas. These systems are closely connected

with recursively bounded Π0
1 classes and also with the “marriage problem” for highly

recursive societies. As a corollary we get a large number of facts concerning the stable

semantics of logic programs.

Second, we investigate a semantics for nonmonotonic rule systems. Here the goal is

to get a semantical characterizations of classes of structures associated with nonmono-

tonic rule systems as models of theories in L∞,ω. We get a semantical characterization

of extensions, weak extensions, deductively closed sets and minimal deductively closed

sets. When U = ω, these characterizations provide sharp estimates of the arithmetical

class of sets of extensions, weak extensions, sets closed under rules etc.

Third, we to investigate computation extensions, weak extensions and minimal

closed sets. We apply the tableaux method to compute membership in the least fixed

point of a monotonic operator.

2



2 Extensions of Highly Recursive Rule Systems

In this section we define the notions of recursive and highly recursive nonmonotonic

rule systems. We show that the problem of finding an extension in a highly recursive

nonmonotonic rule system is effectively equivalent to finding an infinite path through a

recursive binary tree. That is, we prove that, given any highly recursive nonmonotonic

rule system S =< U,N >, there is a recursive binary tree TS and an effective one-

to-one degree-preserving correspondence between the set of extensions of S and the

set of infinite paths through TS . Conversely, we show that given any recursive binary

tree T , there is a highly recursive nonmonotonic rule system ST =< UT , NT > such

that there is an effective one-to-one degree of unsolvability preserving correspondence

between the set of infinite paths through T and the set of extensions of ST .

It follows from the result of [Jockusch and Soare, 1972a] that any recursively

bounded Π0
1-class can be coded as the set of infinite paths through a recursive binary

tree. There have been a number of papers in the literature on the study of the set of

the possible degrees of recursively bounded Π0
1-classes. The basic equivalence between

the problem of finding extensions of highly recursive nonmonotonic systems and the

problem of finding infinite paths through recursive binary trees described above allows

us to transfer all the results about degrees of elements of recursively bounded Π0
1-

classes to results about degrees of extensions in highly recursive nonmonotonic rule

systems.

3



2.1 Paths through the Binary Trees and Extensions

To make the program outlined above precise, we first need some notation. Let ω =

{0, 1, 2, . . .} denote the set of natural numbers and let <,>:ω×ω → ω be some fixed

one-to-one and onto recursive pairing function such that the projection functions

π1 and π2 defined by π1(< x, y >) = x and π2(< x, y >) = y are also recursive.

We extend our pairing function to code n-tuples for n > 2 by the usual inductive

definition, that is < x1, . . . , xn >=< x1, < x2, . . . , xn >> for n ≥ 3. We let ω<ω

denote the set of all finite sequences from ω and 2<ω denote the set of all finite

sequences of 0’s and 1’s. Given α =< α1, . . . , αn > and β =< β1, . . . , βk > in ω<ω,

we write α ⊑ β if α is initial segment of β, that is if n ≤ k and αi = βi for i ≤ n.

For the rest of this paper, we identify a finite sequence α =< α1, . . . , αn > with its

code c(α) =< n,< α1, . . . , αn >> in ω. We let 0 be the code of the empty sequence

∅. Thus, when we say a set S ⊆ ω<ω is recursive, recursively enumerable, etc., we

mean the set {c(α):α ∈ S} is recursive, recursively enumerable, etc. A tree T is a

nonempty subset of ω<ω such that T is closed under initial segments. A function

f :ω → ω is an infinite path through T if for all n, < f(0), . . . , f(n) >∈ T . We let

P(T ) denote the set of all infinite paths through T . A set A of functions is a Π0
1-class

if there is a recursive predicate R such that A = {f :ω → ω :∀n(R((f(0), . . . , f(n)))}.

A Π0
1-class A is recursively bounded if there is a recursive function g:ω → ω such

that ∀f∈A∀n(f(n) ≤ g(n)). It is not difficult to see that if A is a Π0
1-class, then

A = P(T ) for some recursive tree T ⊆ ω<ω. We say that a tree T ⊆ ω<ω is highly

recursive if T is a recursive, finitely branching tree such that there is a recursive

4



procedure which, given α =< α1, . . . , αn > in T produces a canonical index of the

set of immediate successors of α in T , that is, produces a canonical index of {β =<

α1, . . . , αn, k >: β ∈ T}. Here we say the canonical index, can(X), of the finite set

X = {x1 < . . . < xn} ⊆ ω is 2x1 + . . . + 2xn and the canonical index of ∅ is 0. We

let Dk denote the finite set whose canonical index is k, that is can(Dk) = k. It is

then the case that if A is a recursively bounded Π0
1-class, then A = P(T ) for some

highly recursive tree T ⊆ ω<ω, see [Jockusch and Soare, 1972a]. We note that if T

is a tree contained in 2<ω, then P(T ) is a collection of {0, 1}-valued functions and

by identifying each f ∈ P(T ) with the set Af , Af = {x: f(x) = 1} of which f is the

characteristic function, we can think of P(T ) as a Π0
1 class of sets.

Next we need to define the notions of recursive and highly recursive nonmonotonic

rule systems S =< U,N >. For the rest of this section we shall assume that U ⊆ ω

and we shall identify a rule r = α1,...,αn:β1,...,βm

ϕ
in N with its code c(r) =< k, l, ϕ >

where Dk = {α1, . . . , αn} and Dl = {β1, . . . , βm}. In this way, we can think of N

as a subset of ω. We say that S =< U,N > is recursive if U and N are recursive

subsets of ω. To define the notion of a highly recursive nonmonotonic rule system

S =< U,N >, we must first introduce the concept of a proof scheme for ϕ in< U,N >.

An (annotated) proof scheme for ϕ is a finite sequence

p =<< ϕ0, r0, can(G0) >, . . . , < ϕm, rm, can(Gm) >> (1)

such that ϕm = ϕ and

(1) If m = 0 then:

(a) ϕ0 is an axiom (that is there exists a rule r ∈ N, r = :
ϕ0

), r0 = r, and G0 = ∅

5



or

(b) ϕ is a conclusion of a rule r = :β1,...,βr

ϕ
, r0 = r, and G0 = {β1, . . . , βr},

(2) m > 0, << ϕi, ri, can(Gi) >>
m−1
i=0 is a proof scheme of length m and ϕm is a

conclusion of r =
ϕi0

,...ϕis :β1,...,βr

ϕm
where i0, . . . , is < m, rm = r, and Gm = Gm−1 ∪

{β1, . . . , βr}

The formula ϕm is called the conclusion of p and denoted by cln(p), the set Gm is

called the support of p and denoted by supp(p).

The idea behind this concept is this: given an S-derivation in the system< U,N >,

say, p, it uses some negative information about S to ensure that the restraints of rules

that were used are outside of S. But this negative information is finite, that is, it

involves a finite subset of complement of S. Thus, there exists a finite subset G of

complement of S, such that as long as G ∩ S1 = ∅, p is an S1 derivation as well. In

the notion of proof scheme we capture this finitary character of S-derivation.

A proof scheme with the conclusion ϕ may include a number of rules irrelevant to

the enterprise of deriving ϕ. There is a natural preordering≺ on proof schemes namely

we say that p ≺ p1 if every rule appearing in p appears in p1 as well. The relation

≺ is not a partial ordering, and it is not a partial ordering if we restrict ourselves to

proof schemes with a fixed conclusion ϕ. Yet it is a well-founded relation, namely, for

every proof scheme p there exists a proof scheme p1 ≺ p such for every p2, if p2 ≺ p1

then p1 ≺ p2. Moreover we can, if desired, require the conclusion of p1 to be the same

as that of p.

We also set p ∼ p1 ≡ (p ≺ p1 ∧ p1 ≺ p) and see that ∼ is an equivalence relation

6



and that its cosets are finite.

We say that the system < U,N > is locally finite if for every ϕ ∈ U there are

finitely many ≺-minimal proof schemes with conclusion ϕ. This concept is motivated

by the fact that, for locally finite systems, for every ϕ there is a finite set of derivations

Drϕ, such that all the derivations of ϕ are inessential extensions of derivations in Drϕ.

That is, if p is a derivation of ϕ, then there is a derivation p1 ∈ Drϕ such that p1 ≺ p.

Finally, we say that S is highly recursive if S is recursive, locally finite, and the map

ϕ 7→ can(Drϕ) is partial recursive, that is, there exists an effective procedure which,

given any ϕ ∈ U , produces a canonical index of the set of all ≺-minimal proof schemes

with conclusion ϕ. We let E(S) denote the set of extensions of S.

Formally, when we say that there is an effective, one-to-one degree preserving

correspondence between the set of extensions E(S) of a highly recursive nonmonotonic

rule system S =< U,N > and the set of infinite paths P(T ) through a highly recursive

tree T , we mean that there are indices e1 and e2 of oracle Turing machines such that

(i) ∀f∈P(T ){e1}
gr(f) = Ef ∈ E(S),

(ii) ∀E∈E(S){e2}
E = fE ∈ P(T ), and

(iii) ∀f∈P(T )∀E∈E(S)({e1}
gr(f) = E if and only if {e2}

E = f).

where {e}B denotes the function computed by the eth oracle machine with oracle B.

We also write {e}B = A for a set A if {e}B is a characteristic function of A, and

for a function f :ω → ω, gr(f) = {< x, f(x) >:x ∈ ω}. Condition (i) says that the

branches of the tree T uniformly produce extensions (via an algorithm with index

e1), and condition (ii) says that extensions of S uniformly produce branches of the

7



tree T (via an algorithm with index e2). Condition (iii) asserts that if {e1}
gr(f) = Ef

then f is Turing equivalent to Ef . In what follows, we shall not explicitly construct

the indices e1 and e2 but it will be clear that such indices exist in each case.

Theorem 2.1 Given a highly recursive nonmonotonic rule system S =< U,N >,

there is a highly recursive tree T ⊆ 2<ω such that there is an effective one-to-one

degree preserving correspondence between E(S) and P(T ).

Proof: First of all, we can assume that U = ω. For if U ⊂ ω, we simply consider

the system < ω,N >. Ther is no harm done by this assumption since if ϕ ∈ ω \ U ,

then ϕ is not a conclusion of any rule r in N , so that the set of minimal derivations

of ϕ, Drϕ, is empty. If ϕ ∈ U , then the set of minimal derivations for ϕ with respect

to < ω,N > is the same as the set of minimal derivations for ϕ with respect to

< U,N >. Thus, since U is a recursive set, it easily follows that < ω,N > is a

highly recursive nonmonotonic rule system. Moreover, since ϕ ∈ ω \ U is also not a

premise or a restraint in any rule in N , it follows that E is an extension of < ω,N >

if and only if E is an extension of < U,N >. Thus assume that U = ω and let Dri

denote the finite set of ≺-minimal derivations of i. Let n(i) denote the largest j such

that j occurs in either a premise, or a restraint or is the conclusion of some rule in

a derivation in Dri. By assumption the map assigning to i the value can(Dri) is

recursive, so that the map i 7→ n(i) is also a recursive function. The import of n(i)

is as follows. For any E ⊆ ω, to decide if i ∈ CE(∅), we only need to know E up to

n(i). That is, since only those j ≤ n(i) can be involved in any minimal derivations of

i, it will be the case that if E,F ⊆ ω and E ∩ {j: j ≤ n(i)} = F ∩ {j: j ≤ n(i)}, then

8



i ∈ CE(∅) if and only if i ∈ CF (∅). Moreover, if we know E ∩ {j: j ≤ n(i)}, then we

can effectively decide if i ∈ CE(∅).

We shall build a recursive tree T ⊆ 2<ω such that f ∈ P(T ) if and only if f = χ(E)

for some E ∈ E(< ω,N >). That is, f is a characteristic function of an extension.

Note that any recursive tree T ⊆ 2<ω is automatically highly recursive so T will be

the highly recursive tree required by our theorem. Our idea is to start with the full bi-

nary tree Bω = 2<ω, and then prune it to get T . We think of each σ =< σ1, . . . , σk >

in Bω as specifying a finite set Sσ = {i − 1:σi = 1}. We put σ into T if and only if

for all i ≤ k = lh(σ) with n(i) ≤ k−1 the following conditions (a) and (b) are satisfied:

(a) If i ∈ Sσ, then there is a derivation p =<< ϕ0, r0, can(g0) >, . . . , < ϕm, rm, can(gm) >>

in Dri as in (1) such that ϕm = i and gm ⊆ {1, . . . , k} \ Sσ.

(b) If i /∈ Sσ, then there is no such derivation p ∈ Dri.

Note that because the maps i 7→ can(Dri) and i 7→ n(i) are recursive, we can

effectively decide if σ ∈ T . Moreover, it is easy to see that σ /∈ T and σ ⊆ τ then

τ /∈ T so that T is a recursive tree.

Now suppose that E ⊆ ω and χ(E) is its characteristic function. If E is not

an extension of < ω,N >, then E 6= CE(∅) so there exists some i such that either

i ∈ E \ CE(∅) or i ∈ CE(∅) \ E. Let σ =< χ(E)(0), . . . , χ(E)(n(i)) > so that

Sσ = E ∩ {0, . . . , n(i)}. If i ∈ E \ CE(∅), then σ fails to satisfy criterion (a) of our

definition for σ to be in T . Similarly, if σ ∈ CE(∅)\E, then σ fails to satisfy condition

(b), thus σ /∈ T and χ(E) /∈ P(T ). If E is an extension of < ω,N >, then it is easy

to see that every σ of the form < χ(E)(0), . . . , χ(E)(n) > does meet both criteria to

9



be in T . Hence P(T ) = {χ(E):E is an extension of < ω,N >} as desired. 2

We can derive several immediate consequences about the degrees of extensions

in highly recursive nonmonotonic rule systems from Theorem 2.1 based on results of

[Jockusch and Soare, 1972a]. For any setA ⊆ ω, as usual letA′ = {e: {e}A(e) is defined}

denote the jump of A and 0′ denote the jump of the empty set ∅. We write A ≤T B

if A is Turing reducible to B and A ≡T B if A ≤T B and B ≤T B. We say that A is

low if A′ ≡T 0′. Thus A is low if the jump of A is as small as possible with respect to

Turing degrees.

Corollary 2.2 Let S = < U,N > be a highly recursive nonmonotonic rule system

such that E(S) 6= ∅. Then

(i) There exists an extension E of S such that E is low and

(ii) If S has only finitely many extensions, then every extension E of S is recursive.

Proof: (i) The Jockusch–Soare Basis Theorem for recursively bounded Π0
1-classes

([Jockusch and Soare, 1972a]) says that every not empty, recursively bounded Π0
1-

class C contains a function f such that f ′ = 0′. Thus given S, we can construct a

highly recursive tree T ⊆ 2<ω such that P(T ) = {χ(E):E ∈ E(S)}. Since P(T ) is a

recursively bounded Π0
1-class, there exists an E ∈ E(S) such that E ′ ≡T χ(e′) ≡T 0′.

For (ii), we use a similar argument plus the fact, also due to Jockusch and Soare

[1972a], that if a recursively bounded Π0
1-class C has only finitely many elements,

then every f ∈ C is recursive. 2

We shall discuss now applications of the highly recursive rule systems to studies

10



of particular cases of examples considered in Section 5, part I.

2.2 Highly Recursive Marriage Problems

Consider the Marriage problem investigated in Section 5, part I. We say that a society

S =< B,G,K > in which every boy knows only finitely many girls is highly recursive

if B and G are recursive subsets of ω, K is a recursive relation, and there is a recursive

procedure which, given any b ∈ B, produces a canonical index of the finite set of girls

known by b. If, in addition, each girl g ∈ G knows only finitely many boys in B and

there is a recursive procedure which, given any g ∈ G, produces a canonical index of

the finite set of boys known by g, then we say that S is symmetrically highly recursive.

Now, it is easy to see that if S is a highly recursive society and we identify Mbg with

its code c(Mbg) =< b, g >, then < U(S), N(S) > is a recursive nonmonotonic rule

system. However, as it stands, < U(S), N(S) > is not a highly recursive rule system

because of the rules of the form (6), part I, which allow for infinitely many minimal

derivations of ϕ. For suppose that b1 6= b2, Gb1 = {g1, . . . , gk} is the set of girls known

by b1, Gb2 = {g′1, . . . , g
′
l} is the set of girls known by b2, and g1 = g′1 = g. Then the

following is a minimal derivation for any ϕ ∈ U(S)− {Mb1g,Mb2g}.

<< Mb1g,
:Mb1g2, . . . ,Mb1gk

Mb1g
, {Mb1gi: i = 2, . . . , k} > (2)

< Mb2g,
:Mb2g

′
2, . . . ,Mb2g

′
l

Mb2g
, {Mb1gi,Mb2g

′

j: i = 2, . . . , k, j = 2, . . . , l} >

< ϕ,
Mbg1g,Mb2g:

ϕ
, {Mb1gi,Mb2g

′

j: i = 2, . . . , k, j = 2, . . . , l} >>

11



Thus, if we have infinitely many b1, b2 and g with Mb1g,Mb2g ∈ U(S), then there will

be infinitely many minimal derivations of ϕ for any ϕ. However, if S is symmetrically

highly recursive, then a slight modification of the rules (6), part I, will produce

a highly recursive nonmonotonic rule system with the same extensions. That is,

suppose S =< B,G,K > is a symmetrically highly recursive society which has a

proper marriage. Let U(S) = {Mbg: b ∈ B, g ∈ G, and < b, g >∈ K} as before.

Now suppose b1 6= b2 are boys who know the same girl. Then clearly one of the

boys b1 and b2 must know at least two girls, since otherwise there can be no proper

marriage for S. Since S is highly recursive, B2 = {b ∈ B: b knows at least two girls

} is a recursive set. Now consider rules of the form

Mb1g,Mb2g:

Mb3g′
(3)

for all b1, b2 ∈ B, g ∈ G where b3 = max({b1, b2} ∩B2) and g′ 6= g.

Let U(S) = U(S) and let N(S) consists of the rules of the form (5), part I, and (3).

Then we have the following

Theorem 2.3 Let S =< B,G,K > be a symmetrically highly recursive society such

that S has a proper marriage. Then

(i) < U(S), N(S) > is a highly recursive nonmonotonic rule system and

(ii) E is an extension of < U(S), N(S) > if ME = {< b, g >:Mbg ∈ E} is a proper

marriage of S.

Proof: Clearly < U(S), N(S) > is a recursive nonmonotonic rule system. To see

that < U(S), N(S) > is locally finite and highly recursive we must analyze the

12



minimal proof schemes for < U(S), N(S) >. Let B = {b0, b1 . . .} be the increasing

enumeration. We shall prove by induction on k that each Mbkg is the conclusion of

only finitely many minimal proof schemes and that we can find all such minimal proof

schemes. So assume that we have a minimal derivation of Mb0g, say

p =<< ϕ0, r0, can(G0) >, . . . , < ϕm, rm, can(Gm) >>, as described in (1). Now,

either rm is of the form

:Mb0g1, . . . , M̂b0gk, . . . ,Mb0gn
Mb0gk

(4)

where g = gk, in which case the minimality of p forces m = 0 or rm is of the form (3)

in which case rm must be of the form

Mb0g
′,Mbig

′:

Mb0g
(5)

where bi knows a single girl g′ and g′ 6= g. But then << ϕ0, r0, can(G0) >, . . . , <

ϕm−1, rm−1, can(Gm−1) >> must be a subsequence of an interweaving of minimal

proof schemes for Mb0g
′ and Mbig

′. But note that since bi knows only one girl, Mbig
′

is never a conclusion of any rule of the form (3). Thus Mbig
′ has a single proof,

namely as the conclusion of a single axiom :
Mbig′

. Moreover, since S has a proper

marriage, there cannot be two boys in B \ B2 who know g′ so that bi is completely

determined by g′. Thus if we delete those ϕk where rk = :
Mbig′

, we must be left with

a minimal proof scheme for Mb0g
′ in which Mb0g does not occur as the conclusion

of a rule. But now we can repeat the argument. That is, either Mb0g
′ is derived by

a single application of a rule of the form (4), or Mb0g
′ is derived from a rule of the

form

Mb0g
′′,Mbig

′′:

Mb0g′

13



where g′′ 6= g′ and bj knows only g′′. Then once again we can strip off the last

element of the sequence plus the entry corresponding to an axiom :
Mbjg′′

and we will

be left with a minimal derivation of Mb0g
′′ in which neither Mb0g

′ nor Mb0g is the

conclusion of any rule. Since b0 knows only finitely many girls, it is easy to see that

there can be only finitely many minimal proof schemes for Mb0g. Moreover, since S is

symmetrically highly recursive, for each girl g known by anybody in B, we can decide

if there is a boy in B \B2 whom g knows. Then it should be clear from our analysis

that from the set of boys b⋆ ∈ B \ B2 who know girls known by b, we can effectively

put together all minimal proof schemes for Mb0g. Thus we can find the canonical

index of the set of all possible minimal proof schemes p such that cln(p) = Mb0g.

Now assume by induction that for all j < k, there are only finitely many minimal

proof schemes p with cln(p) = Mbjg for any g and that we can effectively find the

canonical index of all such proof schemes. Now suppose that p =<< ϕ0, r0, can(G0) >

, . . . , < ϕm, rm, can(Gm) >> is a minimal proof scheme with cln(p) = Mbkg for some

g. In this case we have three possibilities,

(i) rm = :Mbkg1,...,M̂bkgl,...,Mbkgn

Mbkgl

with gl = g,

(ii) rm = Mbkg
′,Mbig

′:
Mbkg

where g′ = g and bi knows only g′, or

(iii) rm = Mbkg
′,Mbig

′:
Mbkg

where g′ 6= g, bi knows more than one girl and hence i < k.

14



In case (i), m = 0. In case (ii), we can get a shorter proof scheme which proves

Mbkg
′ and which does not involve Mbkg as a conclusion, just as we did for b0. In case

(iii) we must again conclude that<< ϕ0, r0, can(G0) >, . . . , < ϕm−1, rm−1, can(Gm−1) >>

must be a subsequence of an interweaving of minimal proof schemes for Mbkg
′ and

Mbig
′. By induction, there are only finitely many proof schemes for Mbig

′. Moreover,

we can thin our present proof scheme to a minimal proof scheme for Mbkg
′ which does

not involve Mbkg as the conclusion of any rule. Then we can apply the same analysis

over again and in cases (ii) and (iii) we can again produce a minimal derivation of

some Mbkg
′′ in which neither Mbkg nor Mbkg

′ appears as the conclusion of any rule.

Continuing in this way we see that, since bk knows only finitely many girls, and in

each case where we use either rules of the form (ii) or (iii) there are only finitely many

choices for bi and g′ and only finitely many minimal derivations of Mbig
′, there can

be only finitely many proof schemes for Mbkg. Moreover, using (a) the fact that S is

symmetrically highly recursive and (b) our inductive hypothesis, one can see that we

can effectively produce the canonical index of the set of all minimal proof schemes p

with cln(p) = Mbkg. Thus < U(S), N(S) > is a highly recursive nonmonotonic rule

system.

Next, suppose that E is an extension of < U(S), N(S) > . Then we claim that

it can never be the case that a derivation of ϕ ∈ CE(∅) can employ a rule of the

form (3). That is, suppose that there is a derivation p =<< ϕ0, r0, can(G0) >, . . . , <

ϕm, rm, can(Gm) >> (as in (1)) where Gm ∩ E = ∅ and rm = Mbig
′,Mbkg

′:
Mbkg

. Then

one can see from our analysis of minimal proof schemes that at some point in the

15



derivation p, we must derive Mbkgj for some gj by using a rule of the form rj =

:Mbkg1,...,M̂bkgj ,...,Mbkgn

Mbkgj
. Moreover, bk must know at least two girls because otherwise

Mbkg could not be the conclusion of a rule of the form (3). Since E is an extension,

we conclude that Mbkg,Mbkg
′ ∈ E. But since g 6= g′, either Mbkg or Mbkg

′ would

block the application of the rule rj. Thus there can be no such derivation p. Now we

argue exactly as we did in Theorem 5.1, part I, that the rules of the form (5), part I,

ensure that for each b ∈ B, there must be exactly one girl g such that Mbg ∈ E. Thus

ME is defined on all B. Since we can never use a rule of the form (3) in a derivation

from E, we can never have a g ∈ G and b1 6= b2 in B, with Mb1g and Mb2g in E.

Thus ME is one-to-one. Finally, by construction, Mbg ∈ U(S) implies < b, g >∈ K

so that ME is a proper marriage.

As concerns the converse implication, that is that proper marriages generate ex-

tensions of < U(S), N(S) >, we argue exactly as we did in Theorem 5.1, part I. 2.

The same modification can be applied to the symmetric marriage problem. That

is, suppose that S =< B,G,K > is a symmetrical highly recursive society. Let

Usym(S) = U(S), and Nsym(S) be all the rules of form (5), part I, (3), or (6), part I,

Then we have the following.

Theorem 2.4 Let S =< B,G,K > be a symmetrically recursive society such that S

has a proper symmetric marriage. Then

(i) < Usym(S), Nsym(S) > is a highly recursive nonmonotonic rule system and

(ii) E is an extension of < Usym(S), Nsym(S) > if and only if the mapping ME = {<

b, g >:Mbg ∈ E} is a proper marriage of S.

16



Proof: For (i), we can use essentially the same proof as we did for Theorem 2.3 (i).

The only difference is that we now have one more possible way to derive Mbg, namely

via a rule of the form (7), part I.

:Mb1g, . . . , M̂bkg, . . . ,Mbng

Mbkg
(6)

where bk = b. But if we use a rule as in (6) to derive Mbg, then the minimal proof

scheme is just < Mbg, r, can({Mbg1, . . . , M̂bkg, . . . ,Mbng}) >.

However, since b knows only finitely many girls, there are only finitely many rules

of the form (6) which can be used to derive Mbg. Since we can effectively find the

set of girls known by b, we can effectively find the set of rules of the form (6) which

can be used to derive Mbg. It is then easy to see that despite these extra possibilities

for deriving Mbg, we can use the same argument as in Theorem 2.3 to show that

< Usym(S), Nsym(S) > is locally finite and highly recursive.

For (ii), we must establish that if E is an extension of < Usym(S), Nsym(S) >

then we can never use a rule of form (3). That is, suppose that there is a derivation

p =<< ϕ0, r0, can(G0) >, . . . , < ϕm, rm, can(Gm) >> (as in (1)) where Gm ∩ E = ∅

and rm = Mbig
′,Mbkg

′:
Mbkg

. Then the same analysis as used in Theorem 2.3 will allow us

to show that at some point in the derivation we must use a rule of the form

r =
:Mbkg1, . . . , M̂bkgj, . . . ,Mbkgn

Mbkgj
(7)

or of the form:

r =
:Mb1gj, . . . , M̂bkgj, . . . ,Mbngj

Mbkgj
(8)

17



where g′ = gj 6= g or for some l < k, we used a rule of the form (7)

r =
Mblg

′′,Mbkg
′′:

Mbkgj
. (9)

and g′′ 6= gj, g
′′ 6= g.

But note that we can not use (7) because of the assumption that g′ 6= g and Mbkg
′

and Mbkg can be derived from E and hence are in E if E is an extension. But then

one of Mbkg
′ or Mbkg would block the application of (7) for CE(∅). Similarly (8) is

also blocked. That is, it must be the case that bl 6= bk and Mblgj and Mbkgj are in

E. Hence one of Mblgj and Mbkgj would block (8). Of course, if we use rule (9) in

the derivation, then we can repeat our analysis on a shorter derivation. In this way

we can show by induction that there is such p. Since we never use a rule of the form

(3) in a derivation for CE(∅) = E, we can argue just as in Theorem 2.3 that ME must

be a proper marriage. Moreover, it is easy to see that rules of the form (7), part I,

force that for each girl g, there must be at least one boy b such that Mbg ∈ E. Thus

ME maps B onto G and ME is a proper symmetric marriage.

The argument thatME a proper symmetric marriage implies thatE is an extension

is similar to the argument in Theorem 5.1, part I, and will be left to the reader. 2

There are similar modifications which are required for the remaining examples of

Section 5, part I. In what follows we shall briefly describe what is required to make

the rule system highly recursive in each case and state the results without proof.

18



2.3 Proper k-colorings of graphs for k ≥ 2

A locally finite graph is said to be highly recursive if V and {< x, y >: {x, y} ∈ E}

are recursive subsets of ω and there is an effective procedure which, given x ∈ V

produces can(Nb(x)).

If G is a highly recursive graph and we identify Cxi with its code < x, i >, then

the nonmonotonic rule system < U(G), N(G) > of Section 5.2, part I, is recursive but

not highly recursive. < U(G), N(G) > is not highly recursive because the rules of the

form (9), part I, allow for infinitely many minimal proof schemes p with cln(p) = ϕ

for any ϕ ∈ U(S). We replace the rules of the form (9), part I, by the following set

of rules.

Cxi, Cyi:

Czj
. (10)

for all x, y, and i such that {x, y} ∈ E, where z = max(x, y) and j ∈ {1, . . . , k} \ {i}.

We let U(G) = U(G) and N(G) be the set of all rules of the form (8), part I, and

(10). Then, by a proof which is very similar to that of Theorem 2.3, we can prove

the following.

Theorem 2.5 Let k ≥ 2 and G =< V,E > be a highly recursive graph. Then

(i) < U(G), N(G) > is a highly recursive nonmonotonic rule system and

(ii) A subset E ⊆ U(G) is an extension of < U(G), N(G) > if and only if CE = {<

x, i >:Cxi ∈ E} is a proper k-coloring of G.

Example 2.1 Chain Covers of Partially Ordered Sets.

19



A partially ordered set P =< D,≤D> is recursive if D is a recursive subset of

ω and ≤D is a binary recursive relation. If P is a recursive partially ordered set

and we identify Cxi with its code < x, i > then the nonmonotonic rule system

< U(P), N(P) > of Section 5.3, part I, is recursive but not highly recursive (if the

width of P is at least 2). < U(P), N(P) > is not highly recursive because the rules of

the form (11), part I, allow for infinitely many minimal proof schemes with cln(p) = ϕ

for all ϕ ∈ U(P).

Therefore we replace the rules (11), part I, by the following set of rules.

Cxi, Cyi:

Czj
(11)

for all x, y, and i such that x | y and j ∈ {1, . . . , w} \ {i}, z = max(x, y).

Then just as in example 2.3 we get

Theorem 2.6 Let w ≥ 2 and let P =< D,≤D> be a recursive partially ordered set

of width w. Then

(i) < U(P), N(P) > is a highly recursive nonmonotonic rule system, and

(ii) A subset E ⊆ U(P) is an extension of < U(P), N(P) > if and only if <

C1, . . . , Cw >, (where for i = 1, . . . , w, Ci = {x ∈ D:Cxi ∈ E}), is a chain cover of

P.

2.4 Recursion-theoretic results for extensions

Before giving other examples, we pause to explain that the examples for the symmetric

marriage problem and k-colorings of graphs are especially significant for coding up

20



recursively bounded Π0
1-classes. Manaster and Rosenstein [1972] showed that for

any highly recursive tree T , there is a highly recursive society S =< B,G,K > for

which there is an effective one-to-one degree preserving correspondence between the

proper symmetric marriages of S and the set of infinite paths through T . Similarly,

Remmel [1986] showed that for any k ≥ 3 and any highly recursive tree T , there is

a highly recursive k-colorable graph G =< V,E > such that, up to a permutation

of colors, there is an effective one-to-one degree preserving correspondence between

the k-colorings of G and the set of infinite paths through T . Since any recursively

bounded class C is of the form P(T ) for some highly recursive tree T , the results of

Manaster and Rosenstein, and Remmel combined with Theorems 2.4 and 2.5 yield

the following.

Theorem 2.7 Let C be any recursively bounded Π0
1-class. Then there is a highly

recursive nonmonotonic rule system < U,N > and an effective one-to-one degree

preserving correspondence between the elements of C and the set of all extensions of

< U,N >.

Theorem 2.7 now allows us to transfer many results about possible degrees of

elements of recursively bounded Π0
1-classes to results about degrees of extensions of

highly recursive nonmonotonic rule systems. Below we shall list a few examples of

such results.

Corollary 2.8 There is a highly recursive nonmonotonic rule system < U,N > such

that < U,N > has 2ℵ0 extensions but no recursive extensions.

21



Corollary 2.9 There is a highly recursive nonmonotonic rule system < U,N > such

that < U,N > has 2ℵ0 extensions and any two extensions E1 6= E2 of < U,N > are

Turing incomparable.

Corollary 2.10 If a is any Turing degree that 0 <T a ≤T 0′, then there is a highly

recursive nonmonotonic rule system < U,N > such that < U,N > has 2ℵ0 extensions

but no recursive extensions and < U,N > has an extension of degree a. (Here 0 is

the degree of recursive sets.)

Corollary 2.11 If a is any Turing degree that 0 <T a ≤T 0′, then there is a highly

recursive nonmonotonic rule system < U,N > such that < U,N > has ℵ0 extensions,

< U,N > has an extension E of degree a and if E ′ 6= E is an extension of < U,N >,

then E ′ is recursive.

Corollary 2.12 There is a highly recursive nonmonotonic rule system < U,N >

such that < U,N > has 2ℵ0 extensions and if a is the degree of any extension E of

< U,N > and b is any recursively enumerable degree such that a <T b, then b ≡T 0′.

Corollary 2.13 If a is any recursively enumerable Turing degree, then there is a

highly recursive nonmonotonic rule system < U,N > such that < U,N > has 2ℵ0

extensions and the set of recursively enumerable degrees b which contain an extension

of < U,N > is precisely the set of all recursively enumerable degrees b ≥T a.

We note that all of the above results follow from Theorem 2.7 plus the correspond-

ing results for recursively bounded Π0
1-classes due to Jockusch and Soare [1972a]

22



[1972b] with the exception of Corollary 2.12 which follows from the corresponding

result for recursively bounded Π0
1-classes due to Jockusch and McLaughlin [1969].

Next we give a construction of a rule system < U,N > whose extensions directly

code infinite paths through a binary tree T and hence provides us with a more direct

route to Theorem 2.7 which avoids using the results of Manaster and Rosenstein

[1972] or Remmel [1986].

Example 2.2 Paths through binary trees.

Let T be a recursive binary tree contained in 2<ω. Let U(T ) = {Pi, Pi: i ∈ ω}. Our

idea is to have a set π such that | π ∩ {Pi, Pi} |= 1 for all i correspond to a path

fπ:ω → ω through the complete binary tree Bω = 2<ω where

x =

{
1 if Pi ∈ π
0 if Pi ∈ π

@
@

@
@

@
@I

�
�

�
�

�
��

����������*

HHHHHHHHHHY
(0)

(00)
··
·

··
·

··
·

(01)

(1)

∅

Figure 1.

23



Thus, picturing Bω as in Figure 1, Pi ∈ π says that we branch right at level i, and Pi ∈

π says that we branch left at the level i. Now, for any node σ =< σ(0), . . . , σ(n) >,

let ~Pσ = {σ(P0), . . . , σ(Pn)} where

σ(Pi) =

{
Pi if σ(i) = 1
Pi if σ(i) = 0

We say that σ =< σ(0), . . . , σ(n) > is a terminal node of T if σ ∈ T and both

< σ(0), . . . , σ(n), 0 >/∈ T and < σ(0), . . . , σ(n), 1 >/∈ T .

Then we consider the following set of rules.

:Pi
P i

:P i

Pi
(12)

(a)
σ(P0), . . . , σ(Pn):

Pn
(13)

for all σ which are terminal nodes of T where σ(Pn) = P n

(b) σ(P0),...,σ(Pn):

Pn

for all σ which are terminal nodes of T where σ(Pn) = Pn.

Let N(T ) consist of all rules of the forms (12) or (13). Then we have the following

(if we identify Pi with its code 2i and P i with its code 2i+ 1).

Theorem 2.14 Let T ⊆ 2<ω be a recursive tree. Then

(i) < U(T ), N(T ) > is a highly recursive nonmonotonic rule system and

(ii) E is an extension of < U(T ), N(T ) > if and only if the map fE:ω → ω defined

by

fE(i) =

{
1 if Pi ∈ E
0 if P i ∈ E

24



is an infinite path through T .

Proof: We shall show by induction on i that there are only finitely many minimal

proof schemes for Pi or P i and that we can effectively find the canonical index of the

set of all such minimal proof schemes. Note that P0 is the conclusion of at most two

rules, namely R0 = :P 0

P0
or R1 = P 0:

P0
if (0) is a terminal node of T .

Thus if p =<< ϕ0, r0, can(G0) >, . . . , < ϕm, rm, can(Gm) >> is a minimal proof

scheme with cln(p) = P0, then either rm = R0 in which case m = 0 or rm = R1 in

which case p′ =<< ϕ0, r0, can(G0) >, . . . , < ϕm−1, rm−1, can(Gm−1) >> is a minimal

proof scheme for P 0 which does not include P0 as the conclusion of any ri. But if P0

is not a conclusion of any ri, P0 cannot be a premise of any ri. Hence we are left with

just one rule that has P 0 as a conclusion that does not involve P0 as a premise, namely,

R3 = :P0

P 0

. But this means that if rm = R1 then p′ =<< P 0,
:P0

P 0

, can({P0}) >>

and p =<< P 0,
:P0

P 0

, can({P0}) >,< P 0,
P 0:
P0

, can({P0}) >> which is not possible if

p is a minimal proof scheme as in (1). Thus there can be exactly one minimal proof

scheme for P0, namely p =<< P0,
:P 0

P0
, can({P 0}) >>.

In fact we shall show that, in general, there is precisely one minimal proof scheme

for Pi or P i. Assume by induction that for all j < i, there is only one minimal

proof scheme p with cln(p) = Pj, namely p =<< Pj,
:P j

Pj
, can({P j}) >> and one

minimal proof scheme p with cln(p) = P j, namely p =<< P j,
:Pj

P j
, can({Pj}) >>.

Now suppose p =<< ϕ0, r0, can(G0) >, . . . , < ϕm, rm, can(Gm) >> is a minimal

proof scheme with cln(p) = Pi. Then either rm = :P i

Pi
in which case m = 0 or

rm = σ(P0),...,σ(Pi):
Pi

where σ =< σ(0), . . . , σ(i) > is a terminal node of T and σ(Pi) =

25



P i. In the latter case, p′ =<< ϕ0, r0, can(G0) >, . . . , < ϕm−1, rm−1, can(Gm−1) >>

must be some interweaving of minimal proof schemes for σ(P0), . . . , σ(Pi) = P i.

Moreover p′ cannot involve Pi as a conclusion or a premise of any rule. But it is

easy to see that the only rule which has P i as a conclusion and does not involve

Pi as a premise is :Pi

P i
. But this means for some j < m, rj = :Pi

P i
and hence

Gj ⊇ {Pi}. But then Gj ⊇ {Pi} which would violate the fact that p is a minimal

proof scheme. Thus in fact there is a single minimal proof scheme for Pi namely

<< Pi,
:P i

Pi
, can({P i}) >>. A similar argument shows that the only minimal proof

scheme for P i is << P i,
:Pi

P i
, can({Pi}) >>. Thus < U(T ), N(T ) > is a highly

recursive nonmonotonic rule system if T is a recursive tree.

For (ii), suppose that E is an extension of < U(T ), N(T ) >. Now our analysis of

minimal proof schemes shows that we can only use rules of the form (12) in minimal

derivations of CE(∅). It then easily follows that for any i, precisely one of Pi and P i

must be in E. Thus fE is an infinite path through Bω.

But note that if σ =< σ(0), . . . , σ(n) >=< fE(0), . . . , fE(n) > is a node in T ,

then it cannot be that σ is a terminal node of T since otherwise we could use the

rules of form (13) to show that both Pn and P n are in E. Then it is easy to show by

induction that < fE(0), . . . , fE(n) >∈ T for all n and hence fE ∈ P(T ).

Now, if fE ∈ P(T ), then it is easy to see that the rules in (12) ensure E ⊆ CE(∅).

Moreover one can prove by induction on the length of a derivation that we can never

apply a rule of form (13) to produce anything in CE(∅). It then follows that CE(∅) ⊆ E

and hence E is an extension. 2

26



We can use now Theorem 2.14 to give a more direct proof of Theorem 2.7. That

is, if C is a recursively bounded Π0
1-class, let T be a highly recursive tree included

in ω<ω such that C = P(T ). It is then easy to construct a recursive binary tree

T ⋆ ⊆ 2<ω such that there is an effective one-to-one degree preserving correspondence

between P(T ) and P(T ⋆). The idea is to replace each k-ary branching node by using

a binary tree of height k and having the lexicographically k first nodes at level k

correspond to the k successors of η. See Figure 2 for an example of this replacement.

@
@

@I

�
�

��

������*

- @
@

@
@@I

�
�

�
���

@
@@I

�
���

@
@@I

�
���

@@I ��� @@I ���

η η

η1 η2 η3

η1 η2 η3

Figure 2

It is not difficult to see that if we do a node-by-node replacement in this fashion we

will produce a recursive binary tree T ⋆ with the desired properties. Then we can

use < U(T ), N(T ) >= S where T = T ⋆ for the highly recursive nonmonotonic rule

system such that there is an effective one-to-one degree preserving correspondence

between C and E(S).

27



Given Theorems 2.1 and 2.7, it is natural to ask if there are analogous results for

locally finite nonmonotonic rule systems which are recursive, but not highly recursive.

The answer is “yes”. That is we say that a tree T ⊆ ω<ω is highly recursive in 0′ if T

is recursive in 0′, T is finitely branching, and there is a procedure which is recursive

in 0′ and which, given any node η ∈ T , will produce the canonical index of the set

of immediate successors of η in T . Then the analogues of Theorems 2.1 and 2.7 hold

for recursive nonmonotonic rule systems if we replace highly recursive trees by trees

which are highly recursive in 0′.

Moreover, by relativizating to the code of the collection of rules < U,N > we are

able to deal with the case of an arbitrary locally finite nonmonotonic system S. The

distinction between the form of function that computes the canonical index of the

collection of proof schemes for elements of U remains: if this function is recursive in

(the code of) < U,N >, then the tree T whose branches code extensions of < U,N >

is recursive in (the code of) < U,N >; otherwise it is recursive in its jump.

These results will be proved in a subsequent paper.

2.5 Some applications to Logical Systems

The results of Sections 2.1 and 2.4 can be interpreted using Sections 4.5, part I,

and 4.6, part I, as (new) results about default logic and logic programming. The

relationship between stable semantics for logic programs and default logic, and the

results of Section 4.6, part I, show the relevance of proof schemes to the construction

of stable models for logic programs. As far as we know, programs with the local

28



finiteness property have not been previously discussed in the literature, although this

covers most practical programs. The definition of proof scheme with a “forbidden”

set of atoms (corresponding to the definition of support of a proof scheme above) is

perfectly natural and can be lifted from definition (1) in an obvious fashion. The

ordering ≺ has the same meaning as before. This way we get a natural concept of

a locally finite (propositional) program. When the program P involves variables we

interpret P as the collection of its Herbrand constant substitutions. In particular this

gives rise to a definition of locally finite program. The rule systems that we wrote

in Sections 2.1 and 2.4 can be rewritten following reverse translations of Section 4.6,

part I, (notice that we deal there only with atoms!), that is, the rule q1,...,qn:r1,...,rm
p

is translated to: p ← q1, . . . , qn,¬r1, . . . ,¬rm. From Proposition 4.2, part I, it then

follows that we get stable models from extensions, and it is easy to see that the

concept of proof scheme is preserved, locally finite systems generate locally finite

programs. Then, in an analogous manner, we can introduce the notion of a highly

recursive program as one that is recursive, locally finite, and for which a function

assigning to p the code of its finite collection of ≺-minimal proof schemes is recursive.

Let Stab(P ) be the collection of stable models of the program P . We then get

Theorem 2.15 Given a highly recursive program P there is a highly recursive tree

T ⊆ 2<ω and an effective one-to-one degree preserving correspondence between Stab(P )

and P(T ).

Exactly the same lifting may be done for default logic. We leave the details to the

reader.

29



So the results of Jockusch and Soare [1972a] apply both to logic programming

and to default logic, and we get a series of results in the recursion theory of stable

models of logic programs by lifting Corollary 2.2, Theorem 2.7, Corollaries 2.8, 2.9,

2.10, 2.11, 2.12, 2.13, and Theorem 2.14.

It is appropriate to compare the results of this section with those of [Apt and Blair

, 1990]. They construct, for a given natural number n ≥ 1, a stratified finite program

P (in particular its Herbrand expansion is a recursive propositional program) whose

perfect model is a complete Σ0
n set of natural numbers. Since the perfect model is

stable, and stratified programs possess a unique stable model (as pointed by [Gelfond

and Lifschitz, 1988]), the collection Stab(P ) is a one element class. Then this is a

Π0
2-class, whose only element is a Σ0

n set. Our results show that it is impossible to find

a recursive program possessing a unique stable model which is Π1
1-complete because

the unique element of an arithmetical singleton class in 2ω must be hyperarithmetic.

3 Semantical issues and descriptive characteriza-

tion of various sets closed under rules

Let < U,N > be a deductive system and assume that |U | = ω. Without loss of

generality we may identify the set U with the set ω of natural numbers, and N ,

which consists of finite objects, with a subset of ω.

Let us recall that we wish to characterize three classes: minimal sets closed under

N , weak extensions, and extensions of < U,N >. We shall provide a semantic

characterization of these concepts. These characterizations use the infinitary logic we

30



now introduce.

Logic LS is defined as the closure of a collection of atoms of the form “ϕ ∈ S” (ϕ

ranging over U) under negation, arbitrary denumerable conjunctions and arbitrary

denumerable disjunctions.

Given T ⊆ U , and a formula ϕ of LS, define the satisfaction relation T |= ϕ by

induction as follows:

(1) T |= α ∈ S if and only if α ∈ T .

(2) T |= ¬ψ if and only if not(T |= ψ).

(3) T |=
∧∧
i∈J ψi if and only if for all i ∈ J , T |= ψi.

(4) T |=
∨∨
i∈J ψi if and only if there exists an i ∈ J such that T |= ψi.

The connectives ⇒ and ⇔ are abbreviations in the usual way.

Associate with a rule:

r =
α1, . . . αn: β1, . . . , βm

ϕ
(14)

a finitary formula of LS,

t(r) = [α1 ∈ S ∧ . . . ∧ αn ∈ S ∧ ¬(β1 ∈ S) ∧ . . . ∧ ¬(βm ∈ S)]⇒ ϕ ∈ S (15)

The conclusion ϕ is denoted by c(r).

Proposition 3.1 A subset T of U is deductively closed if and only if for all r ∈ N ,

T |= t(r).

Generalizing Clark’s completion from logic programming, we define Clark’s com-

pletion of a deductive system < U,N >. This is a theory in LS (possibly infinitary).

31



To define it, assume that r is a rule of the form (14). Set

A(r) = α1 ∈ S ∧ . . . ∧ αn ∈ S ∧ ¬(β1 ∈ S) ∧ . . . ∧ ¬(βm ∈ S). (16)

Then t(r) is Ar ⇒ (c(r) ∈ S). Now, given α ∈ U , let Fα be the formula of LS:

α ∈ S ⇔
∨∨
{Ar: r ∈ N ∧ c(r) = α ∈ S} (17)

Then Fα says that α belongs to T exactly if it is supported by a formula of the form

Ar for some r ∈ N .

The formulas Fα can be used to characterize weak extensions.

Theorem 3.2 A collection T ⊆ U is a weak extension of < U,N > if and only if for

all α ∈ U , T |= Fα.

Proof: From Proposition 3.7, part I, we know that T is a weak extension of < U,N >

if and only if

T = {ψ: for some rule r ∈ Nof the form (14), ψ = c(r) ∧ α1 ∈ T ∧ . . .∧

αm ∈ T ∧ β1 /∈ T ∧ . . . ∧ βm /∈ T}.

Inspection of the definition of satisfaction shows that this is equivalent to

T = {ψ: for some rule r ∈ N,ψ = c(r) ∧ T |= Ar} (18)

Let r ∈ N , ψ = c(r).

Case 1: ψ ∈ T . Then, for some r ∈ N , ψ = c(r), and T |= Ar. But then T |=

∨∨
{Ar:ψ = c(r)}. Thus T |= ψ ∈ S ⇔

∨∨
{Ar:ψ = c(r)}.

32



Case 2: ψ /∈ T . Then, by equation (18), for all r such that ψ = c(r), T |= ¬Ar. Hence

T |=
∧∧
{¬Ar:ψ = c(r)}, that is T |= ¬

∨∨
{Ar:ψ = c(r)}.

As T |= ¬ψ ∈ S, we get that T |= ψ ∈ S ⇔
∨∨
{Ar:ψ = c(r)}. Thus we have proved

that for all r ∈ N , T |= Fc(r).

Conversely, assume that for all r ∈ N , T |= Fc(r). We need to prove two inclusions:

(a) T ⊆ {ψ: for some rule r ∈ N,ψ = c(r) and T |= Ar}

(b) {ψ: for some rule r ∈ N,ψ = c(r) and T |= Ar} ⊆ T

(a) Suppose that ψ ∈ T . Then ψ is a conclusion of a rule in N . Since T |= Fc(r), and

T |= ψ ∈ S, for some rule r ∈ N , T |= Ar.

(b) Conversely, if ψ ∈ {ψ: For some rule r ∈ N,ψ = c(r) and T |= Ar}, then T |=

∨∨
{Ar:ψ = c(r)}. Thus, as T |= Fψ, T |= ψ ∈ S, that is ψ ∈ T . 2

We continue to identify U with the set of natural numbers, ω. The collection of

all subsets of U is identified with 2ω. This is the Cantor space. Then:

Proposition 3.3 For every formula Φ ∈ LS, {T :T |= Φ} is a Borel subclass of 2ω

in the Cantor topology.

Propositions 3.2 and 3.3, yield, using standard descriptive set theory (see [Kuratowski

and Mostowski, 1977]):

Corollary 3.4 Let < U,N > be a nonmonotone rule system, U = ω.

(a) The collection W of weak extensions of < U,N > is a Borel subclass of 2ω, and

consequently

(b) |W | is finite, or |W | = ω or |W | = 2ℵ0.

33



When < U,N > is recursive, then the formula
∨∨
{Ar:ψ = c(r)} is representable as a

recursively enumerable set of natural numbers. From this there follows

Proposition 3.5 If < U,N > is recursive, then the collection of weak extensions of

< U,N > is a Π0
2 subclass of 2ω.

The collection of all extensions of a nonmonotone rule system also possesses a model-

theoretical characterization. Using the idea behind proof schemes, we introduce an

infinitary description of provability. Fix < U,N >.

Proposition 3.6 For every ψ ∈ U , there exists a formula prψ ∈ LS such that for

every T ⊆ U , T |= prψ if and only if ψ possesses a T -derivation. (Note that prψ

depends on N)

Proof: We proceed as in Section 2, except that now we cannot be sure that the

formula we are about to write is finite. We consider all the proof schemes for ψ and

for each such scheme p write a formula k(p), where k(p) is the conjunction:

¬(α1 ∈ S) ∧ . . . ∧ ¬(αs ∈ S), and {α1, . . . , αs} is the support of the proof scheme p.

Now, we define prψ as
∨∨
{k(p): p is a proof scheme for ψ}.

Now we prove the promised equivalence.

(a) Assume that ψ possesses a T -derivation. Then this derivation gives rise to proof

scheme p whose rules are used in the derivation. This implies that T |= k(p) and

hence T |= prψ.

(b) Conversely, if T |= prψ, then for some proof scheme p, T |= k(p). Then the proof

scheme p provides us with the T -derivation of ψ. 2

34



Corollary 3.7 Let < U,N > be a nonmonotonic rule system. Then T ⊆ U is an

extension of < U,N > if and only if:

(1) For all ψ ∈ T , T |= prψ, and

(2) For all ψ /∈ T , T |= ¬prψ.

Proof: Since T is an extension of the nonmonotonic rule system < U,N >, T consists

of precisely those elements ψ ∈ U which possess a T -derivation. Then proposition 3.6

gives precisely (1) and (2). 2

Corollary 3.8 Let < U,N > be a deductive system where U = ω.

(a) The collection E of extensions of < U,N > is a Π0,N
2 subclass of 2ω, and conse-

quently

(b) |E| is finite, or |E| = ω or |E| = 2ℵ0.

In a later paper we will show that the class of extensions is not Π0,N
1 .

Let us assume that U = ω. If r = α1,...,αn:β1,...,βr

γ
is a rule, then a subset W ⊆ ω is

closed under the rule r if and only if W satisfies the implication

α1 ∈ S ∧ . . . ∧ αn ∈ S ⇒ β1 ∈ S ∨ . . . ∨ βr ∈ S ∨ γ ∈ S.

Consequently S is not closed under r if and only if S belongs to basic neighbour-

hood in the Cantor topology determined by two finite sequences (elements that need

to be “in”), 〈α1, . . . , αn〉, and (the elements that need to be “out”) 〈β1, . . . , βr, γ〉.

Since every rule possesses the conclusion, ω is always closed under rules in N . This,

however, is the only restriction on closed sets in question. We have the following

characterization of closed sets in the Cantor topology:

35



Theorem 3.9 Let X ⊆ 2ω. Let ω ∈ X . X is closed in the Cantor topology if and

only if there exists a collection of rules N such that for every S ⊆ ω, S is deductively

closed in 〈ω,N〉 ⇔ χ(S) ∈ X .

Finally, we turn our attention to the minimal deductively closed sets of < U,N >.

Again we deal with the case when U = ω.

Proposition 3.10 The collection of minimal deductively closed sets for < ω,N > is

a Π
0,N
2 subclass of the Cantor space.

The proof of this result is based on a characterization of inclusion-minimal elements

of closed sets in Cantor space due to W. Just [1990], and on standard descriptive

set-theoretic and recursion-theoretic techniques. First of all, notice that Theorem 3.9

implies that the minimal closed sets in < ω,N > are exactly the inclusion-minimal

sets in a certain subset of P(ω). Since there is a natural 1−1 correspondence between

P(ω) and 2ω, we can identify subsets of ω with their characteristic functions. Thus

Theorem 3.9 says that sets closed under rules in < ω,N > form a closed subset in

2ω. Closed sets in 2ω are characterized as the set of all branches through a tree in

2<ω. A tree is a collection of finite binary sequences closed under initial segments. If

T is a tree, then [T ] is the collection of all infinite branches through T . In addition

to usual partial ordering ⊆ among finite sequences, that is, extension, we consider an

additional partial ordering � on finite binary sequences defined as follows:

t � s if and only if lh(t) = lh(s) ∧ ∀n<lh(s)t(n) ≤ s(n).

s ≺ t if s � t and s 6= t.

36



Thus s � t says that the “partial set” coded by s is included in the “partial set”

encoded by t. We write s ‖ t, where s, t are finite or infinite binary sequences, if there

exist n1, n2 such that s(n1) = 1 and t(n1) = 0 and s(n2) = 0 and t(n2) = 1. Given

X ⊆ P(ω), B(X ) is the family of inclusion-minimal elements of X . In general, B(X )

may be empty, even if X is non-empty. However, if X is closed and nonempty, then

B(X ) is nonempty. Given a tree T , define a set J(T ) of functions as follows:

J(T ) = {f ∈ 2ω: f ∈ [T ] ∧ ∀k∃n(n > k ∧ ∀s∈T (lh(s) = n ∧ s |k≺ f |k⇒ s ‖ f)}

Then:

Proposition 3.11 (Just) Let X be closed in Cantor topology. Let X = [T ]. Then

B(X ) = J(T ).

Proof: If X ∈ B(X ), k ∈ X, then let TX,k be the tree consisting of initial segments

of sequences s satisfying the following condition:

s ∈ T ∧ s |k= χ(X) |k ∧s(k) = 0 ∧ s � χ(X) |lh(s)

Then X ∈ B(X ) precisely if for all k, TX,k is finite. Hence TX,k is of finite height. Let

mk be the height of TX,k. Then n = max{mi: i ≤ k} is n witnessing to X belong to

J(T ).

Conversly, if X ∈ J(T ), Y ∈ [T ], and Y ⊂ X, k = min(X \ Y ), then χ(Y ) |k+1≺

χ(X) |k+1. Since X ∈ J(T ), there is n such that χ(Y ) |n‖ χ(X) |n, contradicting

Y ⊆ X. 2

Now we are in a position to prove Proposition 3.10.

Proof of Proposition 3.10: As proved in Proposition 3.9, the family C of sets deduc-

37



tively closed in < ω,N > is closed in Cantor topology, in fact is Π0,N
1 . Clearly, the

family M of minimal deductively closed sets is equal to B(C). Using Proposition

3.11, we just need to evaluate the form of J(T ). As the last universal quantifier in

the formula defining J(T ) ranges over a finite set, it is easily seen to be Π0,N
2 . 2

When N is recursive, the family of minimal deductively closed sets is, conse-

quently, Π0
2.

3.1 Applications to Default Logic and Logic Programming

Recall that in Section 4.5, part I, we introduced a translation of default logic theories

into nonomonotonic rule systems. We proved that this translation is faithful; that is,

if < D,W > is a default theory and < U,N > is its translation, then S is a default

extension of < D,W > if and only if S is an extension of < U,N >. Similarly, S is a

weak default extension of < D,W > if and only if S is a weak extension of < U,N >

([Marek and Truszczyński, 1989]).

Proposition 3.2 and Corollary 3.7 are semantic characterizations of weak exten-

sions and extensions of nonmonotonic rule systems. These remarks immediately im-

ply:

Proposition 3.12 Let < D,W > be a default theory. Let < U,N > be its transla-

tion. Let S be a subset of U satisfying the translation of < D,W >. Then:

(1) S is a weak default extension of < D,W > if, and only if, for all ϕ ∈ L, S |= Fϕ.

(2) S is a default extension of < D,W >if, and only if,

38



(i) for all ϑ ∈ S, S |= prϑ.

(ii) for all ϑ /∈ S, S |= ¬prϑ.

Etherington ([Etherington, 1987]) characterized default extensions by means of

“most preferred models”. We use a different device here. First, we imbed the language

L into a new language LS. This language LS possesses a new atom for every formula

of L. Thus LS is a much richer language. Second, formulas of L are translated

as atoms of LS. The relationships between formulas of L are enforced in LS by

means of translations of rules. Default rules of L are translated to corresponding

finitary clauses of LS. Checking satisfiability for these clauses reduces to checking

satisfiability of logically simpler formulas of LS. Some of the simpler formulas needing

to be checked are not images of formulas of L under the translation. Our semantic

characterization of extensions and weak extensions uses formulas of LS which are

not images of formulas of L under the translation. Some formulas used are properly

infinitary. This is a reflection of the infinitary character of the concepts of extension

and weak extension.

There is an important area of application for LS which goes beyond mere char-

acterization. Because a set of default rules is represented by a set of formulas of a

language LS, we can use the natural deductive structure of Lω1,ω to define what it

means for a collection of default rules to entail another default rule. This concept

of entailment may be formalized in various ways, depending on the structures un-

der investigation; that is, depending on whether the structures are weak extensions,

39



extensions, sets closed under rules, or something else. The general procedure for

defining entailment is to say that a collection D of defaults entails a default rule d

if and only if every structure satisfying the translation of D satisfies the translation

of d. We shall investigate these relationships in a sequel. Note that when the theory

< D,W > is finite, its nonmonotonic translation is finitary. Also the characteriza-

tion formulas prψ are finitary. The reason for this is that, in addition to rules in

D, we adopt all the rules of ordinary logic as monotone rules. The proof schemes of

ordinary logic give infinitely many monotonic rules. Even though there are infinitely

many proof schemes, the collection of formulas of form k(p) is finite! This yields the

finitary algorithm described in [Marek and Nerode, 1990].

Our translation of propositional logic programs as nonmonotonic rule systems

provides an infinitary characterization of the stable models of logic programs. This

is important because the definition of stable model of logic program as introduced

in [Gelfond and Lifschitz, 1988] is merely operational, while ours is declarative. Let

P be a logic program. Let Π be its propositional version. That is, let Π be the

collection of all the Herbrand substitutions of P . Let H be the Herbrand base of P

and M ⊆ H. Gelfond and Lifschitz [1988] gave an algorithm for testing whether M is

a stable structure for P . They proved that a stable structure is a minimal model for

P . It is clear that this definition is purely operational. Using the infinitary language

LS we give a purely declarative, but infinitary, description of stability.

Proposition 3.13 Let P be a logic program. Let Π be its propositional version. Let

H be the Herbrand base of P . Let < H, T > be the translation of Π as described in

40



Section 4.6, part I.

Then M ⊆ H is a stable model of P if and only if

(i) for every ϑ ∈M , M |= prϑ.

(ii) for every ϑ /∈M , M |= ¬prϑ.

Finally, let us mention an obvious corollary.

Proposition 3.14 Let P be finite, or denumerable, general logic program. If we

enumerate all grounded atoms of the language and identify subsets of the Herbrand

base with points of the Cantor space, 2ω, then the collection of supported models of P

is a Borel subclass of 2ω and the collection of stable models of P is a Borel subclass

of 2ω.

Analogous properties hold for extensions of arbitrary denumerable default theories.

The results of Section 5, part I, provide numerous refinements of Proposition 3.14.

The interpretations of default theories and of general logic programs as rule sys-

tems provide us with results for minimal sets of formulas closed under defaults, and

about minimal models of logic programs.

Proposition 3.15 (1) If < W,D > is a recursive default theory, then the family of

minimal sets closed under defaults forms a Π0
2 set.

(2) If P is a finite (or recursive infinite) logic program in a recursive language, then

the family of minimal Herbrand models of P forms a Π0
2 set.

Proof: Directly from Proposition 3.10. 2

41



4 Computing extensions, weak extensions, and min-

imal deductively closed sets

Three classes of structures associated with < U,N > are investigated in this paper:

deductively closed sets, weak extensions, and extensions. We can give algorithms for

computing these structures for many common cases. First we discuss the case when

N consists of monotonic rules only. In that case T is a monotonic operator. The

following fact is due to Knaster and Tarski. It solves this case.

Proposition 4.1 Let N consist of monotonic (that is rules without restraints) rules.

Then:

(1) The operator T is monotonic.

(2) There exists a least deductively closed set S0 for < U,M >. S0 coincides with the

least prefixpoint for T , which is also the least fixpoint for T .

(3) T possesses a largest fixpoint. (Thus a largest weak extension for < U,N >

exists.)

(4) < U,N > possesses exactly one extension, this S0.

If we admit nonmonotonic rules with restraints the situation changes dramatically.

All of properties (1)-(4) of Proposition 4.1 may fail.

Example 4.1 Let U = {α, β}, N = { :β
α
, :α
β
}. The associated operator T is non-

monotonic. S1 = {α}, S2 = {β} are all the minimal closed sets, all the weak exten-

sions, and all the extensions. Thus (1)-(4) can fail in the nonmonotonic case.

42



Testing whether or not S is an extension, weak extension or deductively closed

set can be carried out if N is finite. In case N is infinite it is sometimes possible to

find a test. For default logic with a finite number of default rules including all the

monotonic rules of classical propositional logic, see [Marek and Nerode, 1990].

We give three algorithms which test, for a subset S ⊆ U , whether or not S is

closed under the rules, whether or not S is a weak extension and, finally, whether or

not S is an extension of < U,N >.

Algorithm 1

Input: A system < U,N > and a subset S ⊆ U ,

Output: A decision whether or not S is deductively closed in < U,N >.

Method: For every rule r = α1,...,αn:β1,...,βm

ω
, test if r is S-applicable, that is, whether

α1, . . . , αm ∈ S, β1, . . . , βm /∈ S. Mark all the conclusions of S-applicable rules. Test

if all the marked objects belong to S. If so, return “yes”, otherwise return “no”.

Algorithm 2

Input: A system < U,N > and a subset S ⊆ U ,

Output: A decision whether S is a weak extension of < U,N >.

Method: For every rule r = α1,...,αn:β1,...,βm

ω
, test if r is S-applicable, that is, whether

α1, . . . , αm ∈ S, β1, . . . , βm /∈ S. Mark all the conclusions of S-applicable rules. Test

if S coincides with the collection of marked objects. If so, return “yes”, otherwise

return “no”.

43



Algorithm 3

Input: A system < U,N > and a subset S ⊆ U ,

Output: A decision whether S is an extension of < U,N >.

Method: For every rule r = α1,...,αn:β1,...,βm

ω
, test if r is S-applicable that is whether

α1, . . . , αm ∈ S, β1, . . . , βm /∈ S. Eliminate all non-S-applicable rules. In the remain-

ing rules eliminate all restraints, getting a monotonic system < U,MS >. Compute

the closure C of the empty set ∅ with respect to the monotonic collection MS. Test

if C coincides with S. If so, return “yes”, otherwise return “no”.

Theorem 4.2 Algorithms 1,2, and 3 test correctly whether or not S is, respectively,

a deductively closed set, a weak extension or an extension of < U,N >.

Proof: The correctness of algorithms 1 and 2 follows from Proposition 3.6, part I, in

which we provided a characterization of deductively closed sets and of weak extensions

as, respectively, prefixpoints and fixpoints of the associated operator T . Correctness

of algorithm 3 follows from Proposition 3.10, part I, where we proved the adequacy

of the procedure of algorithm 3 for the construction of all extensions. 2

One question not tested by algorithms 1, 2 and 3, is whether S is minimal. Of

course, algorithm 3, if successful, tests minimality as well, since every extension is

a minimal deductively closed set. In other cases minimality is not automatically

ensured. In this case, the subsets of S must be tested as well.

44



The above algorithms test whether or not S is, respectively, deductively closed,

a weak extension or an extension, but do not provide a systematic method of con-

structing such S. We shall deal with this problem presently. We observe that both

extensions and weak extensions of a system < U,N > consist of conclusions of rules

in N . Consequently, we need to consider subsets S of the set of conclusions. In prin-

ciple this is exponential in the cardinality of N . This method cannot be improved

much since, as shown in [Marek and Truszczyński, 1988], the problem of finding an

extension for collections of rules of the form :p
q

is NP -complete.

Now we deal with testing membership in the least fixpoint of a monotonic rule

system. We need this as an auxiliary procedure for algorithm 3. Let < U,M > be a

monotonic system, with both U and M countable, and let ϑ ∈ U . We describe two

methods of testing whether ϑ belongs to the closure of ∅ under the rules of M , that is

whether ϑ is in the least fixpoint of the associated monotone operator T . The objects

considered here are “marked membership formulas” T (α ∈ S). (Formulas of the form

α ∈ S are considered in Section 3) Recall that α is an axiom if α is the conclusion of

a premiseless rule.

For the first method of testing membership, we introduce a storage space where

we initially put all the formulas of form T (α ∈ S) for α an axiom, and F (ϑ ∈ S).

Then, systematically for each rule R = α1,...,αn

ω
in M which is still unmarked, we test

if T (α1 ∈ S), . . . , T (αn ∈ S) are all in the storage. If so, we put T (ω ∈ S) into the

storage, mark r as used. As soon as T (ϑ ∈ S) appears in the storage, we close the

storage and return that ϑ belongs to the least fixpoint of T .

45



Proposition 4.3 (van Emden, Kowalski) The procedure outlined above tests whether

or not ϑ belongs to the least fixpoint of T .

This procedure has disadvantages. It essentially generates the whole of least

fixpoint, until the desired object is discovered. We describe a second method arising

from tableaux.

Let Ord be the class of ordinals. We restrict our attention to the case when two

restrictions are satisfied.

(1) There exists a function f :U → Ord satisfying this condition: whenever r ∈ M ,

r = α1,...,αn

ϑ
, then for all j ≤ n, f(αi) < f(ϑ).

(2) For every ϑ ∈ U , there are only finitely many rules with conclusion ϑ.

Systems < U,M > satisfying condition (1) are called ranked and those satisfying

(2) are called quasi-finite.

Let < U,M > be such a system. Define a tableau procedure for < U,M > as

follows. At the root of the tableau we put the formulas T (α ∈ S) for all axioms α,

and also the formula F (ϑ ∈ S). Now we describe the tableau development rules. For

a formula of form F (ϕ ∈ S) on a non-closed branch b that we need to extend, and for

an unused rule r = α1,...,αn

ϕ
, split the branch b into n successors, putting on each of

those, respectively, F (αi ∈ S). Mark the rule r as “used for the branch b”, and now,

for every extended branch, test whether that branch contains a pair T (αi ∈ S) and

F (αi ∈ S). Close each such branch.

46



Notice that different rule systems may generate operators with same least fix-

points. It may happen that one of the systems will be ranked and the other not. For

instance, cut-elimination theorems can be interpreted as transformations of a non-

ranked system to a ranked, quasi-finite system with the same associated operator.

Theorem 4.4 Let < U,M > be a monotonic, ranked and quasi-finite system. Then

an element ϑ ∈ U belongs to the least fixpoint of the associated operator T if and only

if every tableau for ϑ has all branches closed.

The proof requires some lemmas.

Lemma 4.5 Let < U,M > be a monotonic, ranked, and finite system. Then an

element ϑ ∈ U belongs to the least fixpoint of the associated operator T if and only if

every tableau for ϑ has all branches closed.

Proof: By induction on the rank of ϑ. Our assumption will be that the property holds

for all the elements of smaller rank, and for all systems differing from < U,M > by

having fewer rules with the conclusion ϑ.

So, let the rank of ϑ be 0. Then ϑ ∈ lfp(T ) precisely if θ is an axiom. But if ϑ is

an axiom, then the tableau for ϑ is closed immediately. If ϑ is not an axiom, then the

tableau for ϑ is not closed at all. Thus the induction base step of the lemma holds.

Now assume that the property holds for all ϑ′ of rank smaller than ϑ, and also for

ϑ in systems with fewer rules with conclusion ϑ.

47



So our inductive assumption is that every system differing from < U,M > by

having fewer rules has the property in the theorem, and that for all elements of U of

rank smaller than rank of ϑ, the theorem holds.

First, assume that ϑ ∈ lfp(T ). Consider R, a tableau for ϑ and assume that R

cannot be further extended. We show that every branch of R is closed. Assume that

there is a branch which is not closed. Take any such branch b, starting with T (α ∈ S),

then F (ϑ ∈ S), then F (αi ∈ S). The rule r has been marked “used” at this stage.

There are two cases to be considered:

Case (1): αi belongs to lfp(T ). If b is not closed, we eliminate from the tree all the

references to the rules with conclusion ϑ and we get a tableau which is not closed for

testing whether αi belongs to lfp(T ).

Case (2): αi does not belong to the lfp(T ). Then the least fixpoint of the system

which arises from < U,N > by eliminating the rule r has the same least fixpoint.

Now use the inductive assumption. Thus the tableau for ϑ (in the smaller system)

has been closed, and consequently the same happened in the bigger system.

The converse implication, that is, showing that the points outside lfp(T ) have a

non-closed tableau, is simpler. Again, we proceed by induction. If ϑ /∈ lfp(T ), then

every rule with the conclusion ϑ must have a premise outside of lfp(T ). Thus we

conclude that either we can continue without closing, or simply stop without closing

the branch. 2

Next, for an element α ∈ U we define the closure of α, Cl(α) as follows:

Cl(α) = {α} if α is of rank 0.

48



Cl(α) = {α}∪
⋃
{Cl(βi): βi appears as a premise of some rule with the conclusion α}

We have

Lemma 4.6 Cl(α) is finite for every α ∈ U .

Proof: Since < U,M > is quasi-finite, Cl(α) is the union of a finite number of terms.

If, for some α, Cl(α) is infinite, then for some β with rank smaller than α, Cl(β)

must be infinite. Then by induction, because < U,M > is ranked, it follows that for

some α of rank 0, Cl(α) is infinite, which contradicts definition of closure. 2

Now, we are in the position to prove Theorem 4.4.

Proof: Let ϑ ∈ U . We observe that in all the tableaux for ϑ, only the elements of

Cl(ϑ) appear. Consider the system < Cl(ϑ),Mϑ >, where Nϑ consists of those rules

whose premises and conclusion all belong to Cl(ϑ). We observe that for α ∈ Cl(ϑ)

the tableaux with respect to < U,M > and < Cl(ϑ),Mϑ > coincide. Moreover,

the tableau development principles are identical. Then we observe the equivalence

ϑ ∈ lfp(TU,M) ⇔ ϑ ∈ lfp(Tcl(ϑ),Mϑ
). The implication ⇐ is obvious, the converse

follows from the fact that TU,M is finitary.

Finally, we get the sequence of equivalences:

ϑ ∈ lfp(TU,N) ⇔ ϑ ∈ lfp(TCl(ϑ)Mϑ
)

⇔ Every tableau for ϑ w.r.t. < Cl(ϑ),Mϑ > is closed
⇔ Every tableau for ϑ w.r.t. < U,M > is closed.

The first equivalence was discussed above, the second follows from Lemma 4.5, and

the third one from Lemma 4.6. 2

49



In principle, using tableaux may lead to an infinite descent, as witnessed by the

following example:

Example 4.2 Let U = {pi: i ∈ ω}, N = {ri: i ∈ ω}, ri = pi+1

pi
. The query F (pi ∈ S)

leads to an infinite descent (in spite of the fact that the least fixpoint of T is empty).

This example shows that unranked systems can lead to non-well-founded tableaux.

Even if the system is ranked, if M is not quasi-finite a similar phenomenon may occur.

Example 4.3 Let U = {pi: i ∈ ω}, N = {ri: i ∈ ω}. ri = pi+1

p0
. Here we also get an

infinite descent, but for a different reason: once rule ri fails to get us a contradiction,

we try the next one, with the same result.

Checking whether < U,M > is ranked is a graph-theoretic problem. First a well-

known definition: If G =< V,E > is a graph, then a sorting of G is a linear ordering

≺ of V such that < a, b >∈ E implies a ≺ b. If ≺ is a well-ordering then we say that

G can be sorted into a well-ordering.

With a monotonic system < U,M > we associate its dependency graph G =<

U,E > as follows: < α, β >∈ E if and only if for some rule r ∈M β is the conclusion

of r and α is one of the premises of r.

Proposition 4.7 < U,M > is ranked if and only if there exists a sorting of its

dependency graph into a well-ordering.

Proof: (1) Sorting G into a well-ordering determines a ranking function in the obvious

fashion.

50



(2) A ranking function f determines a sorting as follows. For each ordinal ξ, well-order

Uξ = {α: f(α) = ξ} in any fashion. Then order U =
⋃
Uξ lexicographically. 2

When | U |< ω, every linear ordering of U is a well-ordering. So the existence of

ranking function for < U,M > is equivalent to the fact that G can be sorted. This,

in turn, is equivalent to the fact that G is acyclic.

5 Conclusions

We have proved a number of results on nonmonotonic rule systems. This theory

allows us to capture many constructions appearing in the current literature on the

logical foundations of artificial intelligence.

Our results provide additional tools tying these constructs with traditional meth-

ods of logic and recursion theory.

In a sequel we shall deal with rule systems containing variables in the rules and

with predicate logics. We shall prove results related to the properties of recursive

systems that are not necessarily highly recursive. We shall also explore connections

with Lω1,ω.

We acknowledge helpful conversations and discussions with Krzysztof Apt, Howard

Blair, Michael Gelfond, Winniefried Just, John Schlipf, V.S. Subrahmanian, and

Miroslaw Truszczyński. Special thanks are for John Crossley who read the manuscript

carefully and pointed numerous mistakes and possible improvements.

51



References

[Apt and Blair , 1990] K.R. Apt, H.A. Blair. Classification of Perfect Models of Strat-
ified Programs. To appear in Fundamenta Informaticae.

[Dilworth, 1950] R.P. Dilworth. A decomposition theorem for partially ordered sets.
Annals of Mathematics 51 (1950) pp. 161-165.

[Etherington, 1987] D.W. Etherington. Formalizing Nonmonotonic Reasoning Sys-
tems. Artificial Intelligence Journal 31:41–85, 1987.

[Gelfond and Lifschitz, 1988] M. Gelfond, V. Lifschitz. Stable Semantics for Logic
Programs. In: Proceedings of 5th International Symposium Conference on Logic
Programming, Seattle, 1988.

[Jockusch and McLaughlin, 1969] C.G. Jockusch, T.G. McLaughlin. Countable re-
tracing functions and Π0

2 predicates. Pacific Journal of Mathematics 30 (1972)
pp. 69-93.

[Jockusch and Soare, 1972a] C.G. Jockusch, R.I. Soare. Π0
1 classes and degrees of

theories. Transactions of American Mathematical Society 173 (1972) pp. 33-56.

[Jockusch and Soare, 1972b] C.G. Jockusch, R.I. Soare. Degrees of members of Π0
1

classes. Pacific Journal of Mathematics 40 (1972) pp. 605-616.

[Just, 1990] W. Just. Personal electronic communication.

[Kuratowski and Mostowski, 1977] K. Kuratowski, A. Mostowski. Set Theory. North-
Holland 1977.

[Manaster and Rosenstein, 1972] A. Manaster, J. Rosenstein. Effective matchmak-
ing. Proceedings of the London Mathematical Society 25 (1972) pp. 615-654.

[Marek and Nerode, 1990] W. Marek, A. Nerode. Decision procedure for default logic
Mathematical Sciences Institute Reports, Cornell University.

[Marek, Nerode and Remmel, 1990] W. Marek, A. Nerode, and J. Remmel. A the-
ory of nonmonotonic rule systems I. Mathematical Sciences Institute Reports,
Cornell University.

[Marek and Truszczyński, 1988] W. Marek and M. Truszczyński. Autoepistemic
Logic, to appear.

[Marek and Truszczyński, 1989] W. Marek and M. Truszczyński. Relating Autoepis-
temic and Default Logics. In: Principles of Knowledge Representation and Rea-
soning, Morgan Kaufman, San Mateo, 1989. (Full version available as Techni-
cal Report 144-89, Computer Science, University of Kentucky, Lexington, KY
40506-0027, 1989.)

52



[Reiter, 1980] R. Reiter. A Logic for Default Reasoning. Artificial Intelligence, 13:81–
132, 1980.

[Remmel, 1986] J.B. Remmel. Graph colorings and recursively bounded Π0
1 classes.

Annals of Pure and Applied Logic 32 (1986) pp. 185-194.

[Smullyan, 1968] R.M. Smullyan. First-Order Logic Springer, 1968.

53


