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1 Introduction

In mathematics, a consequence drawn by a deduction from a set of premises can also

be drawn by the same deduction from any larger set of premises. The deduction

remains a deduction no matter how the axioms are increased. This is monotonic rea-

soning, much imitated in other, less certain, disciplines. The very nature of monotonic

reasoning makes mathematical proofs permanent, independent of new information.

Thus it has been since Euclid and Aristotle. Theorems with complete proofs are

never withdrawn due to later knowledge. It is little exaggeration to say that mathe-

maticians never reject the completed proofs of their predecessors, except to complain

about their constructivity.

Mathematicians build directly on the works of their forebearers stretching back

two and a half millenia to Euclid. Our current mathematical reasoning is merely a

fleshed out version of Euclid’s. Monotonic reasoning marks theoretical mathematics

as a discipline. The traditional systems of mathematical logic are monotonic since

they simply reflect mathematical usage. Tarski [1956] described a calculus of de-
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ductive systems and captured in a simple way the general concept of a monotonic

formal system. His formulation includes all logics traditionally studied: intuitionistic,

modal, and classical. He did not qualify his definition, as we do, with the adjective

“monotone,” because there were no other systems studied at that time.

Minsky [1975] suggested that there is another sort of reasoning which is not mono-

tonic. This is reasoning in which we deduce a statement based on the absence of any

evidence against the statement. Such a statement is in the category of beliefs rather

than in the category of truths. Modern science offers statistics as a tool for establish-

ing provisional beliefs, but in many instances we have no basis for applying statistics,

due to a lack of governing distributions or samples for the problem at hand.

What role does belief play in our affairs? Often we must make sharp “yes or no”

decisions between alternative actions. There may be no deductive or statistical base

which justifies our choice, or there may be such a base but we may not be able to

wait for missing information; it may never materialize anyway. Often all we have

as a basis for decision is surmise, that is, deductions from beliefs as well as truths

and statistically derived statements. These beliefs are often accepted, and used, as

premises for deduction and choice of action due to an unquantified lack of evidence

against them.

A philosopher’s much-quoted example is about Tweety. We observe only birds

that can fly, and accept the belief that all birds can fly from the absence of evidence

for the existence of non-flying birds. We are told that Tweety is a bird, and conclude

that Tweety can fly using our belief as premise. Later, we observe that Tweety is
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a pet ostrich and clearly can’t fly. We reject our previous belief set and conclusions

as a basis for decision making, and are forced to choose a new belief set. The new

set of beliefs may also include equally uncertain statements, accepted due to a lack

of evidence against them. But we blithely draw consequences from the new belief

set and make decisions on that basis till contrary evidence on some accepted belief is

garnered, at which time we again have to acquire a new set of beliefs.

This has happened in the history of practically every subject except mathemat-

ics. The principles of physics, or biology, have been changed with every scientific

revolution, even though unreflective practitioners of each age think that final princi-

ples have been found. For mathematics, the Dutch mathematician and philosopher

L.E.J. Brouwer would have argued that the belief in theorems established by “non-

constructive methods” was unjustified, and that a new belief set based on constructive

principles should be adopted in its place. Other mainstream mathematicians, such

as Hilbert, did not agree with this position. Some philosophers of mathematics living

now would argue that, even within classical mathematics, the independence proofs for

propositions of set theory, such as the continuum hypothesis or the axiom of choice,

indicate there are several incompatible axiomatic systems which, as belief sets, could

be the foundation of mathematics.

One can envisage making up nonmonotone logics describing the mathematical

nature of belief. The exact result depends on the definition chosen for “lack of evidence

against”. McCarthy [1980], initiated the study of nonmonotonicity with his notion

of circumscription. With all relation symbols but one, R̄, of a model (the world we
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are discussing) held fixed, and given axioms ϕ(R̄) relating that R̄ to the other (fixed)

relations of the model, the belief should be that, lacking further evidence to the

contrary, R̄ denotes the least relation R, if any, satisfying ϕ(R). If further evidence

in the form of an additional axiom ψ(R̄) becomes available, then we should believe

that R̄ denotes the least R satisfying (ϕ ∧ ψ)(R), if any, instead, in a changed belief

set.

There are now many different nonmonotonic system, abstracted from different

questions in computer science and AI. Among the other systems that have been

studied are

Theory of multiple believers of Hintikka, [1962].

Truth Maintenance systems of Doyle, [1979]

Default logic of Reiter, [1980]

Autoepistemic logic of Moore, [1985]

Theory of individual and common knowledge and belief of Halpern and Moses

[1984]

Logic programming with negation as failure [Apt, 1988].

This, by no means, exhausts the list. What issues in artificial intelligence or

computer science motivate these systems?

Suppose that we build a robot in a “blocks world” to navigate in a room, avoid

obstacles and perform simple tasks, such as crossing the room with variable obstacles.
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We want the robot to learn principles from experience as to how to cross the room.

At any given point, one may imagine that the robot should have a consistent deduc-

tively closed set of beliefs which are the current basis for its actions, including such

provisional beliefs as “I can always traverse the left edge of the room since there has

never been anything in the way there”. But when such a principle is contradicted by

new obstacles, the robot has to choose another belief set. So an important problem

is to define what a belief set is and how to compute them and how to update them

based on new evidence. Moore’s autoepistemic logic [1985], is really a first try at this

problem, mostly for propositional logic.

In computers, the operating system and program obey rules which compute how

to change state. In the absence of exceptional behaviour, such as an error condition or

failure to access resources, there is a system of decision rules (beliefs) computing how

to change the state of the machine in this “normal behavior”, or “default” case. But

when an exceptional behavior happens, we are thrown to a different set of decision

rules for change of state, a different set of “beliefs”. One wants to be able to deduce

what is true of the machine in states when it is in a particular such “belief set”. A

logic for dealing with one such belief set at a time is Reiter’s default logic.

In databases, facts and rules are stored as entries (the PROLOG model). Often

also the database computes and stores conclusions, such as summary statistics or rules

or tables computed from the database. These act as a deductive base for the set of

current beliefs. When we query the database, we are asking for consequences of this

belief set. When we update the database, all old entries that have changed have to
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be replaced and every consequence that uses these entries has to be recomputed and

changed too. This is the process of replacing an old belief set by a new one. One often

makes decisions on the basis of the absence of information in the database as well. A

logic appropriate for describing a single such belief set is Doyle’s truth-maintenance

system [1979]. See also de Kleer [1986]. Also stable models for logic programming

with negation as failure ([Gelfond and Lifschitz, 1988]) arise in this way.

We expressed these examples informally in terms of the anthropomorphic notion

of belief so as to bring out their common features. The actual nonmonotonic log-

ics have much in common, and a number of translations between them have been

proposed ([Konolige, 1988], [Gelfond and Przymusińska, 1986],[Gelfond and Przy-

musińska, 1989], [Reinfrank and Dressler, 1989],[Marek and Truszczyński, 1989]).

They have been investigated principally for propositional logic. Predicate versions

suitable for actual applications are, up to now, pretty minimal.

Study of monotonic rule systems can be traced to the work of Post on “production

systems” and to work of Tarski on the abstract properties of consequence relations

for classical logic systems. The investigation of the nonmonotonic component is of

much more recent nature and seems to appear first in the work of Reiter on default

logic. Reiter’s investigations involved finding a natural extension of classical logic

which allows one to handle the negative information.

Independently Clark, and subsequently Apt, Blair and Walker, and also (extend-

ing their work) Gelfond and Lifschitz, studied negation as failure in logic program-

ming. It has turned out that these investigations are in a common direction. Mu-
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tual relationships were uncovered by Bidoit and Froidevaux, [1988], and Marek and

Truszczynski, [1989b], who exhibited the precise nature of the connection between

logic programming and default logic. The reevaluation of default extensions in terms

of “context-dependent proofs” by Marek and Truszczynski, which has its roots in the

Apt, Blair and Walker’s ([1987]) “elementary interpreter”, for which it may serve as a

clarifying definition, is a point of departure for the investigations of this paper. Here,

drawing on all the research mentioned above for inspiration, we present a coherent

unified theory of nonmonotonic formal systems.

At the level of abstraction we achieve, we are finally able to see that nonmonotone

systems pervade ordinary mathematical practice. There is no sign of any realization

of the existence of such mathematical examples in the previous nonmonotonic logic

literature. Perhaps these connections can only be seen by having a common abstract

notion. What this commonality does for us is to make available known mathemat-

ical techniques from other areas of conventional mathematics for constructing and

classifying belief sets (extensions) and, simultaneously, to make evident a common

thread among disparate parts of mathematics and disparate nonmonotonic systems

from artificial intelligence and computer science.

On the level of Mathematical Philosophy there is a connection worth stating as

well. Non-monotone reasoning takes place during the process of discovery of mathe-

matical theorems, when one posits temporarily some proposition on the basis of no

evidence against it, and explores the consequences of such a belief until new math-

ematical facts force their abandonment. These nonmonotone belief sets have their
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traces eradicated when final belief sets are achieved and demonstrative proofs are

finished and published. The only hint of provisional belief sets left in mathematical

papers is in the motivational remarks explaining what obstacles were overcome and

by what changes in viewpoint the proof was achieved.

Here is the main definition. A nonmonotone rule system consists of a set U and

a set of triples (α, β, γ) called rules. Here α = (α1, . . . , αn) is a finite sequence of

elements of U , called premises, and β = (β1, . . . , βk) is a finite sequence of elements

from U , called restraints, and γ is an element of U . This is written, generalizing a

notation of default logic, as

α1 . . . , αn: β1, . . . , βk

γ

The informal reading is: From α1, . . . , αn being established, and β1, . . . , βk not being

established now or ever, conclude γ. You may substitute “computed” for “estab-

lished” for an informal reading in many applications. A subset S of U is called

deductively closed if for every rule of the system, whenever α1, . . . , αn are in S and

β1, . . . , βk are not in S, then γ is in S. There are no variables here, these are not

schema, this version is not the one appropriate for nonmonotone predicate logics.

Nonmonotonic predicate logic cannot be exposited in a few lines and we defer that

to a later paper.

The intersection of all deductively closed sets containing a set I is generally not

deductively closed. But the intersection of a descending chain of deductively closed

sets is deductively closed, and I may be contained in many minimal deductively closed

sets over I. In the context of nonmonotone logic the intersection of all deductively
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closed sets containing I is a (non-deductively closed) set, called the set of secure

consequences of I. These are the propositions that a “skeptical reasoner” would take

as beliefs based on I. The most important notion of contemporary nonmonotonic logic

is that of extension. For a fixed subset S of U , one defines (finite) derivations from I,

where all restraints encountered are outside S, and all premises encountered are either

conclusions of previous rules or in I. This defines the set CS(I) of S-consequences of

I. Extensions are those S such that S = CS(I). Extensions are minimal deductively

closed sets containing I, but not conversely. Extensions represent the “deductively

closed belief sets” that contain I. In these sets, if the negative restraints are all

obeyed, we are reduced to monotone reasoning. See Section 3 for the exact definition.

These simple definitions capture the common content of the several theories of

nonmonotonicity listed above, and of many mathematical theories as well. For ex-

ample, the set of all marriages of the marriage problem can be formulated as exactly

the set of all extensions in a nonmonotone rule system; similarly for the set of all

k-colorings of graphs, the set of chain covers of partial orders, the Stone space of all

maximal ideals in a Boolean algebra, etc. Similarly, for a commutative ring with unit

there is a nonmonotone rule system such that the deductively closed sets are the prime

ideals, the McCoy radical (the set of nilpotents) is the set of secured consequences

of {0}, etc. There are similar nonmonotonic systems associated with virtually every

algebraic system for which radicals of some sort have been defined and characterized.

These mathematical examples have suggested a whole new set of techniques for find-

ing extensions because of the availability of algorithms already investigated in the
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mathematical literature on one or another of these problems, not previously known

to be relevant to nonmonotonic logic in the artificial intelligence community. They

do not arise from logic, but really from operations research. Finally, in recursion

theory, priority constructions can be construed as nonmonotone systems, sets con-

structed by the priority argument as extensions. These ideas give many constructions

of recursively enumerable extensions.

We spend a lot of effort in both this and subsequent papers to answer the following

question. Exactly how complicated is the set of extensions of a recursively specified

nonmonotonic system, and what is its structure? This is the analogue of the classical

logic question, how complicated is the set of complete theories containing a recursively

enumerable theory, and what is its structure? In classical logic, this leads to analyzing

the character of the set of maximal ideals containing a given recursively enumerable

ideal in a recursively presented free Boolean Algebra, a subject in which two of the

authors have a lot of experience (see [Remmel, 1989], [Nerode and Remmel, 1985]).

The simplest case covering many nonmonotonic systems arising from mathematics

is that of “highly recursive” nonmonotone rule systems. There it turns out that

extensions can, up to a one-to-one recursive map, be exactly any bounded Π0
1 class

of sets of natural numbers. So even in this case the computational problems are of

the same level of difficulty as (say) solving “marriage problem” for highly recursive

societies, or finding orderings of recursively presented formally real field ([Metakides

and Nerode, 1977]), or finding an abcissa between 0 and 1 where a given recursive

continuous function on [0,1] takes a maximum value ([Huang and Nerode, 1985]).
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This recursion-theoretic methodology can also be refined to give complexity-theoretic

results on the same problems about extensions, as has been done in algebra by Nerode

and Remmel in [1987], [1989], and [1990]. Since this is a more delicate matter than

the recursion theory, these developments are deferred again to a later paper.

Next, we turn to investigations of the semantics of nonmonotonic rule systems.

The fundamental common semantics we have found comes from Lω1ω, and generalizes

the Clark completion of logic programming. It is perfectly general, and gives sys-

tematic semantics and completeness for all the nonmonotonic logics discussed above.

Such uniform semantics are new. Some of the subjects never before had a decent

semantics. We find semantical representations of extensions, weak extensions and

deductively closed sets. This representation requires the creation of an additional

infinitary language LS which properly encodes not only rules as “first order objects”,

but also additional (infinitary) objects which characterize the class of intended struc-

tures be they extensions, weak extensions, deductively closed sets, etc. The previously

established characterization of default logic, in terms of nonmonotonic rule systems,

provides us with a semantics for default logic. This semantics, in opposition to the

attempt of Etherington, satisfies Tarski’s conditions. That is, it allows us to intro-

duce for defaults (virtual) negations, conjunctions, etc, and also a natural entailment

relation. Computer scientists have a prejudice against Lω1ω since on the surface it is

removed from computation. But this is only on the surface – well-founded relations

of small recursive ordinal height are the “correct” basis for our algorithms for com-

puting extensions and represent Lω1ω deductions – so perhaps the prejudice against
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Lω1ω should be reconsidered.

Finally, we turn to the issue of computing extensions, weak extensions, and sets

closed under rules. We provide algorithms for testing whether a given subset of the

universe U is an extension, weak extension, etc. Since we have previously provided a

reduction algorithm to the monotonic case, an extension of the Truszczynski variant

of the Gelfond-Lifschitz procedure for testing stability, we are able to use an analytical

tableau method to compute the least fixpoint of a monotonic operator.

This short summary indicates that there is a great wealth of problems and results

which naturally arise from nonmonotonic rule systems. Our study delineates the role

of deduction schemata. This, in turn, connects our work naturally with studies of

inductive definability. Our work indicates that logic programming is less related to

predicate calculus, than to inductive definability. This is a paradigm different from

Kowalski’s. We do not claim that this is the only “correct” position, but we do claim

that it leads to a new direction for research.

The predicate logic case is not treated in this paper. It will come out from a

schematic version of the theory of this paper analogous to Post production systems.

Along with U , the set of all strings over an alphabet, there are typed “metavariables”

ranging over specific subsets of U called “types”. There are “metastrings” built from

the alphabet of U and string variables. Rules are of the same form as before, but

use metastrings instead of strings. This point of view gives rise not only to a general

theory, but also gives outright syntax, semantics, and completeness for new predicate

versions of all the logics mentioned above. It also gives nonmonotone classical, or
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intuitionistic, or modal predicate and propositional logics.

2 Monotonic formal systems

Tarski [1956] characterized monotonic formal systems by means of monotonic rules of

inference. Such systems include intuitionistic logic, classical logics, modal logics, and

many others. Suppose that a nonempty set U is given. In a particular application U

may be the collection of all statements or all formulas, or all legal strings of a formal

system, or of all atomic statements as in logic programming.

A monotonic rule of inference is a tuple r =< P,ϕ >, where P =< α1, . . . , αn >

is a finite list of objects from U , and ϕ is an element of U . Such a rule r is usually

written in the suggestive form

r =
α1, . . . , αn

ϕ
(1)

We call α1, . . . , αn the premises of r and ϕ the conclusion of r.

Definition: (a) A monotonic formal system is a pair < U,M >, where U is a

nonempty set and M is a collection of monotonic rules.

(b) A subset S ⊆ U is called deductively closed over < U,M > if for all rules r ∈M ,

α1, . . . , αn ∈ S implies ϕ ∈ S.

The collection D = D(U,M) of deductively closed sets has the following proper-

ties:

(1) U ∈ D

(2) D is closed under arbitrary intersections.
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Consequently, for every I ⊆ U there is the least set T (I) such that I ⊆ T (I) and

T (I) is deductively closed. The operation T (= TU,M) is monotone, that is, if I ⊆ J

then T (I) ⊆ T (J). Moreover,

(3) T (I) =
⋃
{T (J): J ⊆ I &|J | < ω}.

(Where ω is the cardinality of of the set of natural numbers.)

Property (3) reflects the finitary nature of deductive closure and is closely associ-

ated with the definition of a deduction.

An axiom is a rule without premises, that is, with the list P empty.

A deduction of an object ϕ ∈ U from I ⊆ U is a finite sequence < ϕ1, . . . , ϕm >

such that ϕm = ϕ, and for all i ≤ m, ϕi ∈ I, or ϕi is an axiom, or ϕi is the conclusion

of a rule r ∈ M such that premises of r are included in {ϕ1, . . . , ϕi−1}. Then S(I)

consists of all elements of U that possess a deduction from I.

Tarski made the easy observation that if a collection D of subsets of U possesses

properties (1), (2) and (3) above, then there is a collection of monotone rules M such

that D is the set of all deductively closed sets in < U,M >.

An abstract treatment of monotonic logic programming schemes and general meth-

ods of processing queries is discussed in [Blair, Brown, and Subrahmanian, 1989].

3 Nonmonotonic formal systems

Inspired by Reiter [1980], and Apt [1988], we introduce the notion of a nonmonotonic

formal system < U,N >. A nonmonotonic rule of inference is a triple < P,G, ϕ >,
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where P = {α1, . . . , αn}, G = {β1, . . . , βm} are finite lists of objects from U and

ϕ ∈ U . Each such rule is written in form

r =
α1, . . . , αn: β1, . . . , βm

ϕ
(2)

Here {α1, . . . , αn} are called the premises of rule r, {β1, . . . , βm} are called the re-

straints of rule r.

Either P , or G, or both may be empty. If P = G = ∅ then the rule r is called an

axiom.

A nonmonotonic formal system is a pair < U,N >, where U is a non-empty set

and N is a set of nonmonotonic rules.

Each monotonic formal system can be identified with the nonmonotonic system

in which every monotonic rule is given an empty set of restraints.

A subset S ⊆ U is called deductively closed if for every rule of N , if all premises

α1, . . . , αn are in S and all restraints β1, . . . , βm are not in S then the conclusion ϕ

belongs to S.

In nonmonotonic systems, deductively closed sets are not generally closed under

arbitrary intersections as in the monotone case. Tarski’s axioms do not generally hold.

But deductively closed sets are closed under intersections of descending chains. Since

U is deductively closed, by the Kuratowski-Zorn Lemma, any I ⊆ U is contained in

at least one minimal deductively closed set. The intersection of all the deductively

closed sets containing I is called the set of secured consequences of I. This set is

also the intersection of all minimal deductively closed sets containing I. Deductively

16



closed sets are thought of as representing possible “points of view”. The intersection

of all deductively closed sets containing I represents the common information present

in all such “points of view”, containing I. (Generally in the literature, if we assign to

a given I a collection M of subsets of U , then assigning to I the intersection of M

is called the skeptical reasoning associated withM and I.)

Example 3.1 Let U = {α, β, γ}.

(a) Consider U with N1 = { :

α
, α:β

β
}. There is only one minimal deductively closed

set S = {α, β}. Then {α, β} is the set of secured consequences of < U,N1 >.

(b) Consider U with N2 = { :

α
, α:β

γ
, α:γ

β
},

then there are two minimal deductively closed sets, S1 = {α, β}, S2 = {α, γ}. {α} is

the set of secured consequences of < U,N2 >.

Example 3.1, (b) shows that the set of all secured consequences is not, in general,

deductively closed in the nonmonotone case.

Let P(U) be collection of all subsets of U . Let X ⊆ P(U) be given. Call a set X

a hitset for X if for all Y ∈ X , X ∩ Y 6= ∅. For each rule r = α1,...,αn:β1,...,βm

ϕ
, define

Yr = {β1, . . . , βm, ϕ}. For < U,N >, let XU,N = {Yr: r ∈ N}. The following is a

sufficient condition for X to be a deductively closed set in < U,N >.

Proposition 3.1 If X is a hit set for XU,N , then X is deductively closed in < U,N >.

The converse to Proposition 3.1 does not hold. If U = {α, β, γ}, N = {α:β
γ
}, then ∅

is deductively closed for < U,N >, but this is not a hit set for XU,N .
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When N is finite, it is easy to give an algorithm based on Propositiom 3.1 for

finding all minimal deductively closed sets. This algorithm is a variant of a “brute

force” algorithm based on enumerating all hit sets.

Given a set S and an I ⊆ U , an S-deduction of ϕ from I in < U,N > is a finite

sequence < ϕ1, . . . , ϕk > such that ϕk = ϕ and, for all i ≤ k, each ϕi is in I, or is an

axiom, or is the conclusion of a rule r ∈ N such that all the premises of r are included

in {ϕ1, . . . , ϕi−1} and all restraints of r are in U \ S (see [Marek and Truszczyński,

1989], also [Reinfrank and Dressler, 1989]). An S-consequence of I is an element of U

occurring in some S-deduction from I. Let CS(I) be the set of all S-consequences of

I in < U,N >. I is a subset of CS(I). Note that S enters solely as a restraint on the

use of the rules imposed by the restraints in the rules. A single restraint in a rule in N

may be in S and therefore prevent the rule from ever being applied in an S-deduction

from I, even though all the premises of that rule occur earlier in the deduction. Thus

S contributes no members directly to CS(I), although members of S may turn up in

CS(I) by an application of a rule which happens to have its conclusion in S. For a

fixed S, the operator CS(·) is monotonic. That is, if I ⊆ J , then CS(I) ⊆ CS(J).

Also, CS(CS(I)) = CS(I).

Generally, CS(I) is not deductively closed in < U,N >. It is perfectly possible

that all the premises of a rule be in CS(I), the restraints of that rule are outside

CS(I), but a restraint of that rule be in S, preventing the conclusion from being put

into CS(I).

Example 3.2 U = {α, β, γ}, N = { :

α
, α:β

γ
}, S = {β}. Then CS(∅) = {α} is not
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deductively closed.

However, the following holds:

Proposition 3.2 If S ⊆ CS(I) then CS(I) is deductively closed.

Proof: If all the premises of a rule r are in CS(I) and all the restraints are outside

CS(I), then all the restraints are also outside S. 2

We say that S ⊆ U is grounded in I if S ⊆ CS(I).

We say that S ⊆ U is an extension of I if CS(I) = S.

Finally, we say that S ⊆ U is a weak extension of I if CS(I ∪R) = S,

where

R = {ϕ: for some r ∈ N, r =
α1, . . . , αn: β1, . . . , βm

ϕ
, α1, . . . , αn ∈ S, β1, . . . , βm /∈ S}

Thus S is a weak extension if S is generated by I and the conclusions of rules that

are applicable. The notion of weak extension is related to Clark’s logic program

completion and will be investigated below. The notion of groundedness is related

to the phenomenon of “reconstruction”. S is grounded in I if all elements of S are

S-deducible from I (remember that S influences only the negative sides of rules). S

is an extension of I if two things happen. First, every element of S is deducible from

I, that is, S is grounded in I (this is an analogue of adequacy property in logical

calculi). Second, the converse holds: all the S-consequences of I belong to S (this

is the analogue of completeness). Thus extensions are analogues for a nonmonotonic

systems of the set of all consequences for monotonic systems. Both properties (ade-

quacy and completeness) need to be satisfied - if we want S to be an extension.
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The third concept, weak extension, is a closure property. In the process of construct-

ing CS(I), S is used to generate only negatively as a restraint. But we can relax

our requirements and allow deductions that use S also on the positive side. That is,

elements of S are not treated as “axioms”, but are used to generate objects from U

by also testing the positive side of a rule for membership in S. This concept is closely

related with the fixpoints of the operator TP in logic programming, and Clark’s com-

pletion, see [Apt, 1988]. We shall prove a similar representation of weak extensions

as fixpoints of an operator associated with a nonmonotonic system.

The notion of an extension is related to that of a minimal deductively closed set.

Lemma 3.3 If S is an extension of I, then:

(1) S is a minimal deductively closed superset of I.

(2) For every I ′ such that I ⊆ I ′ ⊆ S, CS(I ′) = S.

Proof: (1) Clearly, S contains I. The operator CS is anti-monotonic in S. That is,

S1 ⊆ S2 implies CS2
(I) ⊆ CS1

(I). Thus, if S is an extension of I and S ′ ⊆ S is

deductively closed, then S ′ ⊆ S ⊆ CS(I) ⊆ CS′(I) ⊆ S ′. So S = S ′.

(2) Assume that I ⊆ I ′ ⊆ S and that CS(I) = S. Then CS(I) ⊆ CS(I ′) ⊆

CS(CS(I)) ⊆ CS(I) = S. 2

Proposition 3.4 The set of extensions of I forms an antichain. That is, if S1, S2

are extensions of I and S1 ⊆ S2, then S1 = S2.

Proof: S1 ⊆ S2 ⊆ CS2
(I) ⊆ CS1

(I) = S1. 2
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Proposition 3.5 An extension of I is a weak extension of I.

Proof: Assume that S is an extension of I, that is, S = CS(I). We need to prove

that S = CS(I ∪R), where R is

{ϕ: for some r ∈ N, r =
α1, . . . , αn: β1, . . . , βm

ϕ
, α1, . . . , αn ∈ S, β1, . . . , βm /∈ S}

Then

S ⊆ CS(I) ⊆ CS(I ∪R) ⊆ CS(S) = S,

So S = CS(I ∪R). 2

Given S ⊆ U , a rule r is called S-applicable if all the restraints of r are outside

S and all the premises of r are in S. We define N(S) to be the collection of all

S-applicable rules.

With a nonmonotonic system S = < U,N > we associate the operator T =

TS :P(U)→ P(U) defined as follows:

TS(I) = {ϕ ∈ U :∃r∈Nr =
α1, . . . , αn: β1, . . . , βm

ϕ
, α1, . . . , αn ∈ I, β1, . . . , βm /∈ I}

This operator is closely related to the operator TP as considered in logic programming,

see [Apt, 1988]. As in the case of general logic programs, the operator T is not

monotone in general. But if S is a monotone system, that is all rules in N have no

restraints, then T is monotone. Operator T computes the collection of conclusions of

I-applicable rules.

The following result generalizes one for logic programming.

21



Proposition 3.6 Let < U,N > be a nonmonotonic rule system. Let T be its associ-

ated operator, and let S ⊆ U . Then:

(1) T (S) ⊆ S if and only if S is deductively closed.

(2) T (S) = S if and only if S is a weak extension of ∅ in < U,N >.

Proof: (1) restates the definition of deductively closed set.

(2) ⇒. We assume that T (S) = S and then prove that S is a weak extension of ∅ in

< U,N >. We must show that S = CS(R) where R is the set

{ϕ: for some r ∈ N, r =
α1, . . . , αn: β1, . . . , βm

ϕ
, α1, . . . , αn ∈ S, β1, . . . , βm /∈ S}

(That is the collection of conclusions of S-applicable rules). To this end we need to

prove two inclusions:

(a) S ⊆ CS(R). But we know that S = T (S), that is, every ϕ ∈ S is a conclusion

of an S-applicable rule r = α1,...,αn:β1,...,βm

ϕ
, with α1, . . . , αn ∈ S, β1, . . . , βm /∈ S. Thus

ϕ ∈ R ⊆ CS(R).

(b) CS(R) ⊆ S. If γ ∈ CS(R), then there exists an S-deduction d from R with the

conclusion γ. We leave the reader to check by induction on the length of such a

deduction d that the conclusion of d is in S.

⇐. We now assume that S is a weak extension of ∅ in < U,N >. That is CS(R) = S,

where R is the set

{ϕ: for some r ∈ N, r =
α1, . . . , αn: β1, . . . , βm

ϕ
, α1, . . . , αn ∈ S, β1, . . . , βm /∈ S}.

We prove that S = T (S).

(a) T (S) ⊆ S. If α ∈ T (S) then by definition α is a conclusion of an S-applicable
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rule. Thus α ∈ R ⊆ CS(R) = S.

(b) S ⊆ T (S). By our assumption, if α ∈ S then α ∈ CS(R). By induction on the

length of an S-deduction of α, we leave the reader to prove that α belongs to T (S).2

We get as an immediate corollary

Proposition 3.7 Let S ⊆ U . Then S is a weak extension of ∅ in < U,N > if and

only if the following conditions are met:

(i) S is closed under the rules in N . That is, if there is a rule r ∈ N such that

r = α1,...,αn:β1,...,βm

ϕ
, α1, . . . , αn ∈ S, and β1, . . . , βm /∈ S, then ϕ belongs to S.

(ii) Whenever ϕ ∈ S then there is a rule r ∈ N such that r = α1,...,αn:β1,...,βm

ϕ
, with

α1, . . . , αn ∈ S, β1, . . . , βm /∈ S.

It is worth noting that deductively closed sets here play the role that Herbrand

models of programs play in logic programming. Weak extensions here play a role

similar to that of supported models of programs, that is models of Clark’s completion,

in logic programming. This analogy will become clearer when we discuss the semantic

issues (see also Section 3 of part II). Here extensions of rule systems play a role

analogous to that of stable models of logic programs in logic programming.

Following the analogy with logic programming, a set S such that T (S) ⊆ S

is called a prefixpoint of T . Since T is not, in general, a monotone operator, the

Knaster-Tarski theorem cannot be applied. There is no guarantee that T possesses

a fixpoint. U is, of course, a prefixpoint of T , so prefixpoints of T always exist.

Our remark that deductively closed sets are closed under intersections of descending
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families implies the following corollary by the Kuratowski – Zorn lemma:

Corollary 3.8 For every system < U,N >, and for every S ⊆ U which is a prefix-

point of T , there is a minimal prefixpoint S ′ of T , S ′ ⊆ S.

With each rule r of form (2), we associate a monotonic rule of form (1)

r′ =
α1, . . . , αn

ϕ
(3)

obtained from r by dropping all the restraints. Rule r′ is called the projection of rule

r. Let N(S) be the collection of all S-applicable rules. That is, a rule r belongs

to N(S) if all the premises of r belong to S and all restraints of r are outside of

S. We write M(S) for the collection of all projections of all rules from N(S). The

projection < U,N >|S is the monotone system < U,M(S) >. Thus < U,N >|S is

obtained as follows: First, non-S-applicable rules are eliminated. Then, the restraints

are dropped altogether. We have the following characterization theorem:

Theorem 3.9 A subset S ⊆ U is an extension of I in < U,N > if and only if S is

the deductive closure of I in < U,N >|S.

Proof: If S is an extension of I, then S is closed under S-deductions. We can define a

mapping from S-deductions from I in < U,N > to deductions from I in the monotone

system < U,M(S) >, by projecting the rules, that is, by dropping all restraints. By

induction on the length of proofs we can show that none of the rules that were applied

has been eliminated. Also, this map is surjective. This shows that if S = CS(I) (in

< U,N >), then also S = C(I) in < U,M(S) >.
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Conversely, every deduction of ϕ in < U,M(S) > can be lifted to an S-derivation of

ϕ in < U,N >. An inductive argument shows that every S-derivation arises from

lifting. This shows that S = C(I) in < U,M(S) > and implies that S is an extension

of I. 2

Actually, the projection procedure can be relaxed somewhat. Instead of eliminat-

ing all the rules that have a premise outside of S or a restraint in S, it is enough to

eliminate those that have restraints in S. Indeed, the rule r = α1,...,αn:β1,...,βm

ϕ
with an

αi /∈ S is either inapplicable or, if it is applicable, then it witnesses the fact that the

CS(I) is not S. Let N+(S) be the collection of rules in N whose restraints are all

outside of S, and let < U,M+(S) > be the projection of < U,N+(S) >.

Proposition 3.10 S ⊆ U is an extension of I if and only if S is the set of all

consequences of I in the monotonic system < U,M+(S) >. 2

The “relaxed” procedure for generating suitable collection of monotonic rules is

closely connected to the Gelfond-Lifschitz procedure ([1988]) for stable models of logic

programs. The “tight” procedure is a generalization of the Truszczynski procedure,

[Marek and Truszczyński, 1989b].

Theorem 3.9 tells us how to test if a collection S ⊆ U is an extension of I in

< U,N >. In case U and N are finite this leads to an algorithm.

(1) Compute N(S).

(2) Project N(S) by dropping restraints to get M(S).

(3) Compute the deductive closure of I in < U,M(S) >, call this T .
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(4) Test whether T = S.

Finding all the extensions of a given I is a complicated problem. A brute force

algorithm is to generate all subsets of U , and test each of them for being an extension

using the procedure above. A useful fact for improving this algorithm is:

Proposition 3.11 If S is a extension of I, then S consists entirely of elements of I

and conclusions of certain rules in N .

Thus an element of U that is not a conclusion of any rule is never in an extension.

A simple construction allows us to consider only extensions of the empty set. In

fact, if S is a nonmonotonic rule system, and I ⊆ U , then the system S(I) arises from

S and I by adding to N all the rules of the form :

ϑ
for all ϑ ∈ I. We then have:

Proposition 3.12 T is an extension of I in S if and only if T is an extension of ∅

in S(I).

Consequently, we shall consider below extensions of ∅. We say that T is an extension

of S if T is an extension of ∅ in S.

4 Examples and Applications in Logic, Logic Pro-

gramming, and Commonsense Reasoning

4.1 Classical Implicational Propositional Logic

Here the set U is the collection of all well-formed formulas of propositional logic, over

some collection At of atoms with binary connective⇒ and constant ⊥. The standard
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Lukasiewicz axiomatization is represented as a collection of rules of the form:

:

ϕ⇒ (ψ ⇒ ϕ)

:

(ϕ⇒ (ψ ⇒ ϑ))⇒ ((ϕ⇒ ψ)⇒ ((ϕ⇒ ϑ))

:

((ϕ⇒⊥)⇒ (ψ ⇒⊥))⇒ (((ϕ⇒⊥)⇒ ψ)⇒ ϕ)

ϕ , ϕ⇒ ψ:

ψ

The collection of derivable elements of U is the set of tautologies of propositional

logic. To represent the least fixed point of the operator associated with this system by

the tableaux method requires the introduction of additional rules and the elimination

of modus ponens (the fourth group) as a rule.

4.2 Other Classical Systems

Propositional logic may be represented in other ways as well, for instance in the

language with the usual connectives ¬,∧,∨,⇒. The collection U then consists of all

well-formed formulas of such a language. The exact set of rules depends on the actual

axiomatization adopted. Intuitionistic logic may be similarly represented as a rule

system using appropriate axioms. Likewise for modal logics.

4.3 Ordinary Clausal Logic Programming

Here U is defined as follows: First, we have a fixed collection At of atoms. U is the

set of all pairs < a,L > such that a ∈ At, and L is a finite subset of At (L = ∅ is

allowed). Thus, a clause p ← q1, . . . , qr is represented as a pair 〈p, {q1, . . . , qr}〉. A
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logic program is a collection consisting of two lists of rules:

(1) (Specific rules) Rules of form :

ϕ
for ϕ ∈ P where P ⊆ U .

(2) (Processing rules) Rules of form:

< α, ∅ > , < β, L >:

< β , L \ {α} >

for every α ∈ L.

The pure PROLOG processing method, creating and processing goals, works here.

It is worth mentioning that, although on surface the same things happen here as

in logic programming, in reality more is being computed, namely, all the proper Horn

clauses derivable from the clauses in the “specific rules”. It is, however, true that the

atoms computed in this process constitute the least model of the program.

4.4 Propositional Logic Programming, monotonic rules case

Here the set U consists of logical atoms. This system does not contain processing

rules at all. The specific clauses are represented in a different fashion, namely as

rules:

α1, . . . , αn:

ϕ

with n ≥ 0.

The resulting system is monotonic. The collection of objects computed here also

consists only of atoms.
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4.5 Default logic

Again let U be the collection of all formulas of propositional logic L. Following Reiter

[1980] we introduce a default theory < D,W > as a pair where D is a collection of

default rules, that is, rules of form

α: Mβ1, . . . ,Mβm

ω
, (4)

(where α, β1, . . . , βm are formulas) and W a collection of formulas of the language L.

Represent such a default theory as a rule system consisting of three lists:

(i) Elements of ω ∈W are represented as rules:

:

ω

(ii) Rules of form (4) are represented as

α:¬β1, . . . ,¬βm

ω

(That is, the restraints of the rule representing a default rule r have an additional

negation in front).

(iii) Processing rules of logic. That is, all the monotonic rules of the system of classical

logic.

We then have the following proposition:

Proposition 4.1 A collection S ⊆ U is an extension of a system consisting of rules

of type (i), (ii), and (iii) if and only if S is a default extension of < D,W >.

Computing all extensions of a default theory can be achieved using the techniques

developed in Section 4, part II. Notice that during the computation we need to test
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if the rule is S-applicable. This requires checking if α ∈ S, ¬β1, . . . ,¬βm /∈ S. This

can be carried out by the ordinary tableaux method, or any other complete theorem

prover. These remarks are the source of the algorithm of [Marek and Nerode, 1990],

in which a version specifically tailored to default logic is developed.

4.6 Propositional logic programming, general case

A general logic program is a list of general clauses, of the form:

p← q1, . . . , qn,¬r1, . . . ,¬rm

We refer to [Gelfond and Lifschitz, 1988] for the definition of a stable model of such

a program. That concept is a generalization of the perfect models as introduced in

[Apt, Blair and Walker, 1987].

Let U be the collection of atoms under consideration. Represent a general clause

as a rule:

q1, . . . , qn : r1, . . . , rm

p

The translation tr(P ) of a program P is the set of translations of its individual clauses.

The following result was proved in [Bidoit and Froidevaux, 1988] and [Marek and

Truszczyński, 1989b]:

Proposition 4.2 A subset M ⊆ U is a stable model of P if and only if M is an

extension of tr(P ).

However weak extensions correspond to so-called supported models of P . (cf. Apt

[Apt, 1988])
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Proposition 4.3 A subset M ⊆ U is a supported model of P if and only if M is a

weak extension of tr(P ).

4.7 Logic programming with classical negation

We now discuss the so-called “logic programming with classical negation” of [Gelfond

and Lifschitz, 1989] as a chapter in the theory of nonmonotonic formal systems.

Recall the basic notions introduced in [Gelfond and Lifschitz, 1989]. The collection of

objects appearing in heads or bodies of clauses is the set of all literals, that is, atoms

or negated atoms. In particular, a negated atom may appear in the head of a clause.

Consider first ”general Horn” clauses in which literals may appear in arbitrary places.

To each set P of such clauses assign its answer set, the least collection A of literals

satisfying the following two conditions:

(1) If a← b1, . . . , bm is in P and b1, . . . , bm ∈ A then a ∈ A.

(2) If for some atom p, p and ¬p are both in A, then A is the whole collection Lit of

all literals.

Introduce a collection Str of structural processing rules over the set U = Lit.

These are all monotone rules of the form:

p,¬p:

a

for all atoms p and literals a.

Translate the clause: a← b1, . . . , bn as rule:

b1, . . . , bn:

a
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and let tr(P) be the collection of translations of clauses in P plus the structural rules

Str. Then we have

Proposition 4.4 A subset A ⊆ Lit is an answer set for P if and only if A is an

extension of tr(P ). Since tr(P ) is a set of monotonic rules, such an answer set is

the least fixpoint of the (monotonic) operator associated with the translation.

Gelfond and Lifschitz then introduce general rules. Since the negation used in

literals is not the “negation-as-failure” of general logic programming, Gelfond and

Lifschitz introduce another negation symbol “not” and a general logic clause with

classical negation in the form:

a← b1, . . . , bn, not(c1), . . . , not(cm)

Then the answer set for a set P of clauses of this form is introduced by merging the

operational procedure for the construction of stable models for a program (as intro-

duced in [Gelfond and Lifschitz, 1988]) with the procedure above. They define the

answer set for a program with classical negation as follows:

Let M ⊆ Lit and P be a general program. Define P/M as a collection of clauses

lacking not obtained as follows:

(1) If a clause C contains a substring not(a) where a ∈ M , then eliminate C alto-

gether.

(2) In remaining clauses eliminate all substrings of the form not(a).

The resulting program P/M lacks the symbol not, so the answer set is well defined.

Let M ′ be the answer set for P/M . We call M an answer set for P precisely when
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M ′ = M .

Gelfond and Lifschitz give a computational procedure for finding such answer

sets, and subsequently reduce computing them to computing default logic extensions.

Here we give a general result showing that the construction of Gelfond and Lifschitz

is faithfully represented within nonmonotonic rule systems; here is how. Define U to

be Lit, and translate the clause:

a← b1, . . . , bn, not(c1), . . . , not(cm)

as the rule:

b1, . . . , bn : c1, . . . , cm
a

The translation of the program P then consists of the translations of individual clauses

C of P , incremented by the structural rules Str. We get the following result:

Proposition 4.5 Let P be a general logic program with classical negation and NP be

the translation described above. Then a collection M is an answer set for P if and

only if M is an extension for the rule system < U,NP >.

A number of facts proved in [Gelfond and Lifschitz, 1989] then become corollaries

of the theory outlined here. Also, our results show that we get the same answer set if

we tighten the operational definition of answer set for a general program, and change

condition (1) to:

(1′) If C contains in the body a literal a which is not preceded by not and does not

belong to M or it contains a string not(b) with b belonging to M , then eliminate C
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altogether.

((2) is left unaltered.)

5 Representation of Combinatorial and Algebraic

Problems as Structures associated with Rule Sys-

tems

The next set of examples show that the notions of extension, weak extension, and

deductively closed set for nonmonotonic rule systems occur naturally throughout

mathematics, particularly in combinatorics. This connection of nonmonotonic theo-

ries with everyday mathematics was not previously known.

5.1 The Marriage Problem

A society, S =< B,G,K > is a set B of boys, a set G of girls such that B ∩G = ∅,

and a relation K ⊆ B × G, the intended meaning of < b, g >∈ K being “b knows

g”. A marriage for a society S is a map M :B → G. A marriage M is proper if M is

one-to-one and for all b ∈ B, M(b) = g implies K(b, g). That is, in a proper marriage

each boy marries a girl he knows. A marriage M is symmetric if M maps B onto G.

In a symmetric marriage, every girl is married.

For finite societies Philip Hall ([1935]) gave a necessary and sufficient condition

for the existence of a proper marriage, namely:

(*) For every finite set of boys B′ ⊆ B, the set of girls that are all known by the

boys of B′ has cardinality greater or equal than that of B′.
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Marshall Hall ([1948]) showed that condition (*) is also a necessary and sufficient

condition for the existence of marriages in an infinite society S as long as each boy

knows only finitely many girls. Philip Hall’s theorem is a special case of a more

general theorem for finding transversals (see [Mirsky, 1971]).

We claim that if S =< B,G,K > is a society satisfying (*) in which each boy

knows only finitely many girls, then there is a nonmonotonic rule system Z = <

U(S), N(S) > such that the collection of extensions of Z correspond exactly to the

set of proper marriages of S. To this end let us consider a collection of strings

U(S) = {Mbg: b ∈ B, g ∈ G, and K(b, g) holds}, where M is a new symbol. Then

for each boy b ∈ B if {g1, . . . , gn} is the set of girls b knows, we add the following set

of n rules to N(S).

:Mbg1, . . . , M̂bgk, . . . ,Mbgn

Mbgk

(5)

where we adopt the convention that for any n-element sequence s1, . . . , sn, let s1, . . . , ŝk,

. . . , sn be the n− 1-element sequence that results from s1, . . . , sn by removing sk.

For any girl g and any two boys b1 6= b2, each of whom knows g, add the following

rules to N(S):

Mb1g,Mb2g:

ϕ
(6)

for every ϕ ∈ U(S). Let N(S) consist of all the rules of the form (5) or (6).

Theorem 5.1 Let S =< B,G,K > be a society satisfying (*), for which each boy

knows only finitely many girls. Then E is an extension for Z =< U(S), N(S) > if

and only if ME = {< b, g >:Mbg ∈ E} is a proper marriage for S.
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Proof. (⇒) First, observe that if b ∈ B knows only one girl g, then the rule :

Mbg

belongs to N = N(S), so that Mbg ∈ E for any extension E. Let B1 ⊆ B be the set

of boys in B who know only one girl. Since S satisfies condition (*), we know that

there is a proper marriage for S, so that there can be no girl g such that there exist

boys b1 and b2 in B1 for whom Mb1g and Mb2g are in U = U(S). Hence if we can

apply rules of the form (6), at least one of Mb1g and Mb2g is not derived from an

axiom. This means that, if B1 = B, then the only extension E of Z is U and MU

is the unique proper marriage of S. So assume B1 6= B. Then we claim that U is

not an extension of Z. Note that if b ∈ B \ B1 then application of all rules of the

form (5) for b is blocked by U . It then follows easily from our observation about the

applicability of rules of the form (6) that we can never derive both the premises of

rules of the form (6) from ∅. Thus CU(∅) = {Mbg ∈ U : b ∈ B1} 6= U .

Since U is not an extension, for any extension E there cannot be b1, b2 ∈ B and

g ∈ G such that Mb1g and Mb2g are in E, since otherwise the rules of the form (6)

would show E ⊆ CE(∅) ⇒ CE(∅) = U . This automatically means that the map ME

is one-to-one. Since we can only use rules of the form (5) to derive elements of CE(∅)

for an extension E, it can not be the case that if b ∈ B−B1, then there exist gi 6= gj

in G such that Mbgi and Mbgj belong to E, for then either Mbgi or Mbgj would

block the application of any rule of form (5) for b. But then neither Mbgi nor Mbgj

can be in CE(∅), so CE(∅) 6= E. Also, if b ∈ B we have to have at least one Mbgi in

E, otherwise all the rules of form (5) for b apply for E and hence Mbgi ∈ CE(∅) \ E

for all i. Thus for each b ∈ B, there is exactly one g such that Mbg ∈ E. Thus ME is
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a one-to-one function from B to G. Finally notice that ME is proper, because by our

definition, Mbg ∈ U implies that K(b, g) holds. Thus if E is an extension, M defines

a proper marriage.

(⇐) Suppose M is a proper marriage for S and E = {Mbg:M(b) = g}. Then

clearly, ME = M . It is easy to see that rules of the form (6) allow us to derive Mbg

precisely when M(b) = g. Moreover we can never apply a rule of the form (6) without

at some point using rules of the form (5) to derive both premises of some rule of the

form (6). Since M is a proper marriage, we can never derive Mb1g and Mb2g from

rules of the form (5) if b1 6= b2. Thus CE(∅) = E and E is an extension. 2

We should observe that for our Z =< U(S),N (S) >, the only weak extension

which is not an extension is U(S). That is, if E ⊆ U and any rule of the form (6) is

applicable for E, then

R = {ϕ:∃r∈N(r =
α1, . . . , αn: β1, . . . , βm

ϕ
∧ α1, . . . , αn ∈ E ∧ β1, . . . , βm /∈ E)} = U

So that CE(R) = U . If no rule of the form (6) is E-applicable, and E is a weak

extension, then the same argument used in the proof of Theorem 5.1 shows that

ME must be a proper marriage. Finally, observe that if D is deductively closed and

D 6= U , then none of the rules of (6) are D-applicable. Moreover, it will be still

the case that for each boy b ∈ B, the rules of the form (5) will force at least one

Mbgi ∈ D. However it is possible to have Mbgi and Mbgj in D with gi 6= gj, in which

case none of the rules of the form (6) for b force elements into D. Thus deductively

closed sets D 6= U correspond to marriages in which each boy marries at least one girl

he knows and may marry several girls he knows, but no girl is married to more than
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one boy. Consequently, minimal deductively closed sets correspond again to proper

marriages.

By expanding our set of rules N(S), we can ensure that extensions correspond

to proper symmetric marriages. That is, suppose that S =< B,G,K > is a society

in which every boy knows only finitely many girls, and every girl knows only finitely

many boys, and there is a symmetric marriage for S. Let U be defined as before. In

addition to all rules of form (5) and (6), add a set of rules for each g ∈ G.

If g ∈ G and {b1, . . . , bn} is the set of boys that g knows, then add the following

set of rules:

:Mb1g, . . . , M̂bkg, . . . ,Mbng

Mbkg
(7)

Let NSym(S) be the collection of rules of form (5), (6), and (7) and let USym(S) = U .

By a proof which is similar to that of Theorem 5.1, we can prove the following:

Theorem 5.2 Let S =< B,G,K > be a society such that each boy knows only finitely

many girls and each girl knows only finitely many boys, and there is a proper sym-

metric marriage for S. Then E is an extension for ZSym =< USym(S), NSym(S) > if

and only if ME = {< b, g >:Mbg ∈ E} is a proper symmetric marriage for S.

5.2 Proper k-colorings of graphs

Let G =< V,E > be a graph, where V is the set of vertices of G, and E is the

set of edges of G. For x ∈ V , Nb(x) = {y ∈ V :< x, y >∈ E} denotes the set of

neighbors of x in G. We say that G is locally finite if Nb(x) is finite for all x ∈ X. A

map C:V → {1, . . . , k} is called a proper k-coloring if whenever < x, y >∈ E, then
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C(x) 6= C(y).

We claim that for any locally finite graph G =< V,E >, there is a nonmonotonic

rule system S =< U(G), N(G) > such that the extensions of S correspond to the

proper k-colorings of G. Let U(G) = {Cxi:x ∈ V ∧ i ∈ {1, . . . , k}}. Then, for each

x ∈ V , we add the following set of rules to N(G).

:Cx1, . . . , Ĉxj, . . . , Cxk

Cxj
(8)

for j ∈ {1, . . . , k}. Also, for each edge < x, y >∈ E and i ∈ {1, . . . , k} we add the

following set of rules to N(G).

Cxi, Cyi:

ϕ
(9)

for all ϕ ∈ U(G).

By a proof which is very similar to that of Theorem 5.1, we can prove the following

Theorem 5.3 Let G =< V,E > be a locally finite graph. Then E is an extension

for < U(G), N(G) > if and only if CE = {< x, i >:Cxi ∈ E} is a proper k-coloring

of G.

Again we can show that the only weak extension of < U(G), N(G) > which is not an

extension is U(G) itself. Also we can show that the deductively closed sets D ⊆ U(G)

correspond to the colorings for which each vertex is assigned at least one, but possibly

many, colors and if < x, y >∈ E, then it cannot be the case that there is a color i

that is assigned to both x and y.
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5.3 Chain Covers of Partially Ordered Sets

Let P =< D,≤D> be a partially ordered set, that is ≤D is a binary relation on D

such that

(i) ∀x∈Dx ≤D x,

(ii) ∀x,y,z∈D(x ≤D y ∧ y ≤D z ⇒ x ≤D z),

(iii) ∀x,y∈D(x ≤D y ∧ y ≤D x⇒ x = y).

For x, y ∈ D we say that x is incomparable to y, written x | y, if neither x ≤D y nor

y ≤D x. We say that a set A ⊆ D is an antichain if whenever x 6= y and x, y ∈ A

then x | y. We define the width of P to be w if the maximum size of an antichain is

w. We say that a set C ⊆ D is a chain if whenever x, y ∈ C, then either x ≤D y or

y ≤D x.

We say that a set of chains {C1, . . . , Cn} is a chain cover of P or that P is covered

by C1, . . . , Cn if D =
⋃n

i=1Ci. We say that a chain cover of P is disjoint if the chains

are pairwise disjoint. Clearly any chain cover for P can be refined to a disjoint chain

cover for P . Dilworth [1950] proved the following fact for finite partially ordered sets:

Proposition 5.4 If P =< D,≤D> is a partially ordered set of width w, then there

are w chains C1, . . . , Cw in P which cover P.

Dilworth’s Theorem can be extended for partially ordered sets of arbitrary cardinality

by applying the Compactness Theorem for propositional logic. Then for any partially

ordered set P =< D,≤D> of width w, we can define a rule system < U(P), N(P) >

such that the extensions of < U(P), N(P) > correspond to disjoint chain covers

40



of P by w chains C1, . . . , Cw. Note that for disjoint chain covers C1, . . . , Cw of P ,

there is a natural map C → {1, . . . , w} defined by C(x) = i if and only if x ∈ Ci.

Thus, defining a disjoint chain cover is just like coloring the elements of D with

one of w colors, while ensuring that x and y are colored differently if x | y. Let

U(P) = {Cxi:x ∈ D ∧ i ∈ {1, . . . , w}}. For each x ∈ D, we add the following set of

rules to N(P).

:Cx1, . . . , Ĉxj, . . . , Cxw

Cxj
(10)

for j ∈ {1, . . . , w}. For each x, y ∈ D such that x | y and each i ∈ {1, . . . , w} we add

the following rules to N(P).

Cxi, Cyi:

ϕ
(11)

for all ϕ ∈ U(P).

By a proof which is very similar to the proof of Theorem 5.1, we can prove the

following

Theorem 5.5 Let P =< D,≤D> be a partially ordered set of width w. Then E is

an extension for 〈U(P), N(P)〉 if and only if < C1, . . . Cw > is a disjoint chain cover

of P (where for i ∈ {1, . . . , w}, Ci = {x ∈ D:Cxi ∈ E}).

Again we can show that the only weak extension of 〈U(P), N(P)〉 which is not

an extension is U(P). Also we can show that the deductively closed sets D 6= U(P)

correspond to assignments in which each x ∈ D is assigned to at least one, but

possibly many, chains, and if x | y, then x and y are not assigned to the same chain.

Thus deductively closed sets D 6= U(P) correspond to arbitrary chain covers of P .
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The above examples are just a few of many examples where extensions correspond

to “solutions” of certain natural combinatorial problems. Next, we turn to problems

in algebra where extensions naturally occur.

5.4 Maximal Ideals in a Boolean Algebra

Let B =< B,∧,∨,¬, 0B, 1B > be a Boolean Algebra, where ∧,∨, and ¬ are the

operations of meet, join, and complement for B, and 0B and 1B denote the zero and

unit of B respectively. We let ≤B denote the order induced by B. That is, x ≤B y if

and only if x ∧ y = x.

I ⊆ B is an ideal of B if

(i) 0B ∈ I,

(ii) ∀x,y∈Bx ≤B y ∧ y ∈ I ⇒ x ∈ I, and

(iii) ∀x,y∈Bx ∈ I ∧ y ∈ I ⇒ x ∨ y ∈ I.

An ideal I is maximal if for any x ∈ B exactly one of x and ¬x is in I.

Given any Boolean Algebra B =< B,∧,∨,¬, 0B, 1B > we can give a nonmono-

tonic rule system < U(B), N(B) > such that the extensions of < U(B), < N(B) >

correspond exactly to maximal ideals of B. Let U(B) = B. Then N(B) consists of

the following five classes of rules:

:

0B
(12)

:x

¬x
(13)
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for all x ∈ B.

x,¬x:

y
(14)

for all x, y ∈ B.

x:

y
(15)

for all x, y ∈ B whenever y ≤B x.

x, y:

x ∨ y
(16)

for all x, y ∈ B.

Theorem 5.6 Let B =< B,∧,∨,¬, 0B, 1B > be a Boolean Algebra. Then E is an

extension of < U(B), N(B) > if and only if E is a maximal ideal of B.

Proof: (⇒) Suppose that E is an extension of < U(B), N(B) >. Then since CE(∅) =

E, it is easy to see that the rules of form (12), (15) and (16) ensure that E is an

ideal of B. Rules of form (13) ensure that at least one of x and ¬x is in E for all

x ∈ B. If for some x ∈ B both x and ¬x are in E, then rules of the form (14) ensure

E = U(B) = B. Thus if E 6= B, then exactly one of x and ¬x is in E for each

x ∈ B. Hence E is a maximal ideal. Thus we need only to show that U(B) = B is

not an extension. Note that all rules of the form (13) are blocked for B. Thus the

only element we can derive to be in CB(∅) with no premises is 0B. But starting with

0B, we can not apply rules (15) but only apply rules (15) where x = 0B, or rules (16)

where x = y = 0B, and such rules give 0B as conclusion. Then, by an easy induction

on the length of proofs, we can show that CB(∅) = {0B} so that B is not an extension.

(⇐) Note that if E is a maximal ideal, then rules of the form (13) ensure E ⊆ CE(∅).
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Successive applications of rules (12), (15), and (16) will produce no new elements.

Then we can prove by induction on the length of proofs that we can never apply rules

of the form (14), hence CE(∅) ⊆ E. 2

Recall that F is a (maximal) filter of B if and only if {x ∈ B:¬x ∈ F} is

a (maximal) ideal in B. Clearly we can set up a nonmonotonic rule system <

Ufil(B), Nfil(B) > such that extensions of < Ufil(B), Nfil(B) > correspond to max-

imal filters of B. Now, it is well known that a propositional logic modulo logical

equivalence is a Boolean Algebra B and that the maximal filters correspond to the

complete theories. Thus we can also set up a nonmonotonic rule system < U,N >

whose extensions correspond to complete theories of a propositional logic.

5.5 Complementary Subspaces of Vector Spaces

Let V∞ be a countably infinite dimensional vector space over a finite field F , and let

B = {b0, b1, . . .} be a basis for V∞. If S ⊆ V∞, we let (S)⋆ denote the space generated

by S. Let Vn = ({b0, . . . , bn})
⋆ for n ≥ 1. Given two subspaces A and B of V∞, we

write A+B for (A∪B)⋆ and A
⊕
B for A+B if A∩B = {0}, where 0 is zero vector

of V∞.

Now, suppose thatW is a subspace of V∞. We claim that we can define a nonmono-

tonic rule system < U,N >=< UW (V∞), NW (V∞) > so that extensions of < U,N >

correspond to the complementary subspaces for W that arise from the most natural

construction of such spaces. That is, if one were going to construct a subspace A

such that A
⊕
W = V∞, a natural way to proceed would be to construct a sequence
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of subspaces A0 ⊆ A1 ⊆ . . . in stages as follows:

Stage 0 Let A0 = {0}.

Stage s+1 Having defined a subspace As ⊆ Vs such that As

⊕
Ws = Vs where

Wn = W ∩ Vn for n ≥ 1, we proceed according to one of two cases.

Case 1 Ws is properly included in Ws+1.

In this case, it is easy to show that As

⊕
Ws+1 = Vs+1, so we let As+1 = As.

Case 2 Ws = Ws+1.

In this case it is easy to show that if we choose xs+1 ∈ Vs+1 \ Vs and As+1 =

(As ∪ {xs+1}
⋆), then As+1 ⊆ Vs+1 and As+1

⊕
Ws+1 = Vs+1.

Then A =
⋃

sAs is the desired complementary subspace of W . Note that we can

get many different such complementary subspaces depending on the choice of xs+1 at

each stage in which Case 2 occurs.

We define our nonmonotonic rule system < U,N >=< UW (V∞), NW (V∞) > as

follows. We let U = V∞. Then we let N consist of the following five classes of rules:

:

0
, (17)

x1, . . . , xk:∑k
i=1 λixi

(18)

for all x1, . . . , xk ∈ V∞, and λ1, . . . , λk ∈ F ,

x:

v
(19)

for all x ∈W \ {0} and v ∈ V∞,

:

x
(20)
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where x ∈ Vs0
and s0 is the largest s such that Ws = {0} and Ws+1 6= {0}, and

a1, . . . , an: b1, . . . , bm
x

(21)

where A = {a1, . . . , an} is a subspace and for some s > s0, A
⊕
Ws = Vs ; {0} 6=

Ws = Ws+1, x ∈ Vs+1 \ Vs, and {b1, . . . , bm} = Vs+1 − (A ∪ {x})⋆.

Theorem 5.7 Let V∞ be a countably infinite dimensional vector space over a finite

field F , let B = {b1, b2, . . .} be a basis for V∞ and let W be a subspace of V∞. Then

E is an extension of < U,N >=< UW (V∞), NW (V∞) > if and only if E is a subspace

such that E
⊕
W = V∞ and for all s ≥ 1, Es

⊕
Ws = Vs (where Vs = {b1, . . . , bs}

⋆,

Es = E ∩ Vs, and Ws = W ∩ Vs).

Proof: (⇒) Suppose that E = CE(∅). First observe that the rules of the form (17),

(18), and (20) ensure that E is a subspace of V∞ containing Vs0
. Next, observe that

the rules (19) ensure that if E ∩W 6= {0}, then E = V∞. We claim that E = V∞ is

impossible. For if E = V∞, then all the rules of the form (21) are blocked by E. The

remaining rules are monotonic. So it is easy to prove by induction on the length of

deductions that the only x ∈ V∞ which can be deduced are the x ∈ Vs0
. But then

CV∞
(∅) = Vs0

6= V∞ so that V∞ is not an extension. Thus E 6= V∞, so by the rules (19)

we conclude that E ∩W = {0}. Finally consider the rules of the form (21). We use

these rules to prove by induction that for all s ≥ s0, Es

⊕
Ws = Vs, where Es = E∩Vs.

First, we know Es0
= Vs0

and Ws0
= {0} so that Es0

⊕
Ws0

= Vs0
. Assume that

s ≥ s0 and Es

⊕
Ws = Vs. Then if Ws ⊂ Ws+1, we know that Es

⊕
Ws+1 = Vs+1.

Since E∩W = {0}, we must have Es+1 = E∩Ws+1 = Es. If Ws = Ws+1, then we can
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apply rules of the form (21) to conclude that for some x ∈ Vs+1 \Vs, x ∈ E. But then

Es+1 ⊃ Es and so Es+1 +Ws+1 = Vs+1. But again since we know that E ∩W = {0},

we must conclude that Es+1 ∩Ws+1 = {0} so that Es+1

⊕
Ws+1 = Vs+1.

(⇐) Suppose that E is a subspace of V∞ such that E
⊕
W = V∞ and for all s,

Es

⊕
Ws = Vs. It is easy to see that the rules (20) and (21) allow us to prove by

induction on s that Es ⊆ CE(∅) for all s. Moreover it is not difficult to show by

induction on the length of deductions that if we can deduce that some x /∈ E is in

CE(∅), then, at some point in the deduction we must use a rule of the form (21)

to derive that some y ∈ CE(∅), where y /∈ E. But all the rules of the form (21)

which have a y as a conclusion (where y /∈ E) are blocked. Thus, we conclude that

CE(∅) ⊆ E. Hence CE(∅) = E. 2

We note that the example of subspaces forms a prototype for how nonmonotonic

rule systems can be used to mirror stage constructions of substructures in a variety

of algebraic situations.

5.6 Prime ideals in a commutative ring R, the radical and

skeptical reasoning

Let R =< R,+, ·, 0, 1 > be a commutative ring with unit. An ideal I is an additive

subgroup of R such that if x ∈ I and y ∈ R then xy ∈ I. I is said to be a prime ideal

if I 6= R and for all x, y ∈ R, if xy ∈ I, then either x ∈ I or y ∈ I. The McCoy radical

of R is the intersection of all prime ideals of R. We shall construct a nonmonotonic

rule system < U(R), N(R) > such that the set of extensions of < U(R), N(R) >

is exactly the set of prime ideals of R. Since prime ideals can be included one in
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another, while the extensions are always incomparable, we use a technique which

allows us to represent both the ideal and its complement as an extension of a suitably

chosen system.

Let U(R) = {x, x:x ∈ R}. x̄ is a new logical synbol that will be interpreted as

indicating that x does not belong to I. N(R) consists of the following eight classes

of rules:

:

0

1:

z
(22)

for all z ∈ U(R).

y:

−y
(23)

for all y ∈ R (here −y is the additive inverse of y)

x, y:

x+ y
(24)

for all x, y ∈ R.

x:

xy
(25)

for all x, y ∈ R.

xy, x:

y

xy, y:

x
(26)

for all x, y ∈ R.

xy, x, y:

z
(27)

for all x, y ∈ R and z ∈ U(R).

:x

x

:x

x
(28)

for all x ∈ R.

x, x :

z
(29)
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for all x ∈ R and z ∈ U(R).

Theorem 5.8 Let R =< R,+, ·, 0, 1 > be a commutative ring with a unit. Then E

is an extension of < U(R), N(R) > if and only if there is a prime ideal I of R such

that E = {x:x ∈ I} ∪ {x:x ∈ R \ I}.

Proof: (⇒) Suppose that E is an extension of < U(R), N(R) >. First we show that

U(R) = U is not an extension of < U(R), N(R) >. That is, it is easy to see that

the only axiom is 0 and that derivation of any other element can be blocked. Then,

by induction on the length of derivations we can prove that the only element we can

generate starting with 0 by applying rules in N(R) which are not blocked by U is 0

itself. Thus CU(∅) = {0} 6= U .

Thus E 6= U . But then we see that rules of form (28) and (29) will force exactly

one of x or x to be in E for each x ∈ R. Then let IE = {x:x ∈ R ∧ x ∈ E}.

Clearly rules of the form (22) –(27) force that IE is a prime ideal. Thus E = {x:x ∈

IE} ∪ {x:x ∈ R \ IE}.

(⇐) Now suppose that I is a prime ideal of R and E = {x:x ∈ I} ∪ {x:x ∈ R \ I}.

The rules of the form (28) ensure that E ⊆ CE(∅). Then, a straightforward induction

on the length of derivations shows that CE(∅) ⊆ E. Thus E is an extension. 2

Finally, following the intuitions from nonmonotonic logics, if we compute the

collection of nonmonotonic consequences of < U(R), N(R) > that is, the intersection

of all extensions of < U(R), N(R) >, then in the above case it corresponds to the

radical of R. Putting it more explicitely we get the collection {x:x ∈ J}∪{x:x ∈W}
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where J is the radical of R and W is the set of units of R.

6 Conclusions and the Contents of Part II

This paper introduced the concept of a nonmonotonic rule system. We demonstrated

that many existing forms of nonmonotonic reasoning due to Reiter (Default Logic),

Doyle (Truth Maintenance), Gelfond and Lifschitz (Stable Semantics for Logic Pro-

grams), Clark (Negation as Failure), are naturally represented as nonmonotonic rule

systems. We demonstrated that when these logics are interpreted as nonmonotonic

rule systems, we get uniform treatments for concepts, theorems and algorithms. We

also gave purely mathematical examples of nonmonotonic rule systems which show

that nonmonotonic rule systems occur widely in mathematical practice.

In Part II we will investigate the recursive complexity of the class of all extensions

(or weak extensions or deductively closed sets) of a nonmonotonic rule system. In

Section 5 we proved that the set of all marriages for a “marriage problem” is repre-

sented exactly as the set of extensions in suitably chosen nonmonotonic rule systems.

In Part II we prove a converse for “highly recursive” societies. Similar result is ob-

tained for graph colorings. A more general result, for recursive rule systems, and for

general rule systems will be published in Part III of this paper. The connection with

“marriage problem” provides a wealth of recursive-theoretic results on extensions of

highly recursive nonmonotonic rule systems and therefore many new results for the

known nonmonotonic logics mentioned above.

In Part II we give an “infinitary” semantics for nonmonotonic systems in the logic
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Lω1,ω based on infinitary disjunction, conjunction and negation. In the case when

the domain U of the nonmonotonic system is ω, using the arithmetical hierarchy of

functions as in Rogers [1967], we find that the class of all extensions, weak extensions,

closed sets and minimal closed sets. These classes are, respectively, Π0,N
2 (effectively

Gδ), Π0,N
2 , Π0,N

1 (effectively closed), and Π0,N
2 . We get various results on Reiter’s

default theories, and Gelfond and Lifschitz stable models of general logic programs.

Finally, we discuss various algorithms of computing extensions, weak extensions,

and minimal closed sets for nonmonotonic rule systems.

We acknowledge helpful conversations and discussions with Krzysztof Apt, Howard

Blair, Michael Gelfond, Winniefried Just, John Schlipf, V.S. Subrahmanian, and

Miroslaw Truszczyński. Special thanks are for John Crossley who read the manuscript

carefully and pointed numerous mistakes and possible improvements.
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