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Abstract

In this paper, we consider the question of skeptical reasoning for an impor-
tant nonmonotonic reasoning system — the autoepistemic logic of Moore.
Autoepistemic logic is a method of reasoning which assigns to a set of for-
mulas the collection of theories called stable expansions. A naive method
to perform skeptical autoepistemic reasoning — deciding whether a given
formula ϕ belongs to all expansions of a theory — is to compute first all ex-
pansions and then check whether ϕ belongs to each of them. This approach
to skeptical autoepistemic reasoning is however prohibitively inefficient.

The goal of this paper is to propose a different approach to computing
intersection of all expansions of a theory. Our approach does not require us to
compute any expansion of a theory. It reduces the question of membership in
the intersection of all expansions to the question of propositional provability.
More precisely, we describe a method that assigns to a modal theory I a
propositional theory PI and to a modal-free formula ϕ another formula ϕ′

in such a manner that ϕ is in the intersection of all expansions of I if and
only if PI ⊢ ϕ

′.
In general, the theory PI is much larger than the original theory I. We

have found, however, several cases when it is not so and the size of the theory
PI is a polynomial in the size of I. These classes of theories are closely related
to logic programs and disjunctive logic programs. Consequently, we obtain
methods to check whether an atom is in the intersection of all supported
(or stable) models of a (disjunctive) logic program, as well as numerous
complexity results.

1 Introduction

In nonmonotonic reasoning, there are two main ways of defining conse-
quences of a set of assumptions. A general scheme is that to every set
I of “initial assumptions”, we assign a number of belief sets B1, B2, . . . .
Then, we either accept as the agent’s set of consequences the intersection
of all Bis — this mode of reasoning is called skeptical — or, we select one



particular belief set Bi — this mode of reasoning is called brave. Of course,
both modes can be used in the same time.

From this point of view, classical logic reasoning can be viewed as skep-
tical — we take as Bi’s all complete theories containing I and then accept as
the set of theorems their intersection. Similarly, a well-founded semantics for
logic programs [VRS88, Prz89] can be regarded as an example of skeptical
reasoning. Skeptical reasoning was also considered in the context of disjunc-
tive logic programming [RLM89] and for inheritance nets with exceptions
[HTT87].

One might expect that skeptical reasoning is much more costly than brave
one. At first glance it seems that to perform skeptical reasoning one has to
know all possible belief sets Bi and only then compute their intersection.
Fortunately, in many important cases it is not so. For example, in the case
of classical propositional logic we can decide whether a formula ϕ follows
from a theory I without constructing all complete theories containing I
(models of I). The same is true for important fragments of first-order logic,
where in some case the decision can be reached in polynomial time (like in
the case of Horn theories)

In this paper, we consider the question of skeptical reasoning for an im-
portant nonmonotonic reasoning system — the autoepistemic logic of Moore
[Moo85]. This logic serves as a formalization of nonmonotonic reasoning
about beliefs and was thoroughly investigated [Moo85, MT91, Kon88, Shv88,
Shv90]. Autoepistemic logic is a method of reasoning which assigns to a set
of formulas I ⊆ LL, the collection of stable expansions of I. A theory T is a
stable expansion of I if T satisfies the equation:

T = Cn(I ∪ {Lϕ:ϕ ∈ T} ∪ {¬Lϕ:ϕ /∈ T}). (1)

Since T appears on both sides of the equation (1), a theory I may have none,
one or many expansions. The possibility of existence of many expansions
implies that autoepistemic logic admits both skeptical and brave modes of
reasoning.

A naive method to perform skeptical autoepistemic reasoning — deciding
whether a given formula ϕ belongs to all expansions of a theory — is to
compute first all expansions and then check whether ϕ belongs to each of
them. This approach was investigated in many papers [Nie88, MT91, Shv88,
JK90]. The method of computing all expansions involves, in particular,
testing 2m candidate theories, where m is the size of I, and this estimate is
valid only when I is already in the so called Moore’s normal form. Each such
test requires numerous calls to a procedure for testing whether a formula is
a propositional consequence of a theory. Thus, this approach to skeptical
autoepistemic reasoning is prohibitively expensive.

The goal of this paper is to propose a different approach to computing
intersection of all expansions of a theory. Our approach does not require us to
compute all expansions of a theory. It reduces the question of membership in
the intersection of all expansions to the question of propositional provability.



More precisely, we describe a method that assigns to a modal theory I a
propositional theory PI and to a modal-free formula ϕ another formula ϕ′ in
such a manner that ϕ is in the intersection of all expansions of I if and only
if PI ⊢ ϕ

′. In addition, ϕ belongs to some expansion if and only if PI ∪ {ϕ
′}

is consistent.
We have to comment, though, that so far we were successful in applying

our technique only to compute the intersection of modal-free parts of the
expansions of a theory I. While even our restricted results have useful
applications in logic programming, the general question of how to avoid
explicit computation of all expansions in skeptical autoepistemic reasoning
involving nested beliefs still needs to be investigated.

In general the size of the theory PI is much bigger than I. This is to be
expected. After all, one of the main objectives of nonmonotonic reasoning is
to allow concise representation of vast amounts of information — large parts
of knowledge, especially negative information, is only implicitly represented
(by the fact of its absence). A somewhat surprising result of our research
is that in some important cases theory PI consists of propositional clauses
and is of roughly the same size as the original theory I. Among classes
of theories I with such property are the classes of epistemic programs and
disjunctive epistemic programs, which correspond naturally to the classes of
logic programs and disjunctive logic programs.

We discuss these two important cases here. As an additional application
of our approach, we show how to compute the intersection of all supported
and all stable models of finite propositonal logic program. (A similar result
for stable models of arbitrary logic programs, but with Lω1,ω theories, has
been obtained in [MNR90]). The last result is not surprising. Supported
models are models of Clark’s completion, and an epistemic interpretation of
programs corresponding to Clark’s completion has been given in [MS89].

An important technique used to ensure that the theories we built consist
of clauses (and so classical complexity results apply) is to introduce new
propositional variables which play a role of abbreviations. We borrowed this
technique from proof theory.

The paper is organized as follows. In the next section we review au-
toepistemic logic. In Section 3, we consider the special, and most elegant,
case of epistemic programs. In Section 4, we consider the general case and,
in Section 5, we give a number of applications of our technique. In Section
6 we give a proof of Theorem 4.1, the main result of the paper.

2 Review of Autoepistemic Logic

In the paper, we restrict ourselves to the propositonal case only. We consider
a fixed language L of propositional calculus and its modal extension LL by
one modal operator L. The set of atoms of L is denoted by At.

Definition 2.1 A theory T ⊆ LL, is stable if T satisfies these conditions:



1. T is closed under propositional consequence.

2. For every formula ϕ ∈ LL, if ϕ ∈ T then Lϕ ∈ T .

3. For every formula ϕ ∈ LL, if ϕ /∈ T then ¬Lϕ ∈ T .

A stable theory T is uniquely determined by its objective (or modal-free)
part, that is T ∩ L ([Moo85, Kon88]). In fact there is an operator E such
that for every modal-free theory S, E(S) is the unique stable theory T such
that T ∩ L = Cn(S) ([Mar89]).

It follows immediately from the definition of a stable expansion (given
by equation (1)) that theories I1 and I2 such that Cn(I1) = Cn(I2) have
precisely the same expansions. This, in turn, implies that for every theory
I1 there is a theory I2 consisting of epistemic clauses that is formulas of the
form

Lα1 ∧ . . . ∧ Lαk ∧ ¬Lβ1 ∧ . . . ∧ ¬Lβm ⇒ γ (2)

with γ ∈ L, and such that I1 and I2 have precisely the same expansions. We
can even assume that γ is a propositional clause. Actually, although it does
not follow directly from the definition of expansions, we can assume that αi,
and βi belong to L as well [MT91, Kon88].

For a theory I consisting of epistemic clauses, we define H(I) to consist
of all formulas γ ∈ L such that for some αi and βi, the clause

Lα1 ∧ . . . ∧ Lαk ∧ ¬Lβ1 ∧ . . . ∧ ¬Lβm ⇒ γ

is in I. The crucial role in our considerations is played by two results char-
acterizing expansions of theories consisting of epistemic clauses. The first
was obtained in [MT91], the second is an easy consequence of the first one.
To formulate them, we need one more definition.

Definition 2.2 Let I be an epistemic theory and let T be stable. We say
that a formula ϕ ∈ H(I) has an I-support in T if for some clause

Lα1 ∧ . . . ∧ Lαk ∧ ¬Lβ1 ∧ . . . ∧ ¬Lβm ⇒ ϕ

from I, αi ∈ T , 1 ≤ i ≤ k, and βi /∈ T , 1 ≤ i ≤ m.

The two characterizations mentioned earlier are gathered in the theorem
below.

Theorem 2.3 Let I ⊆ LL consist of epistemic clauses.
(a) A theory T is an expansion of I if and only if I ⊆ T and for some set
S ⊆ H(I), such that each γ ∈ S has an I-support in T , we have T = E(S).
(b) A theory E(S) is an expansion of I if and only if I ⊆ E(S) and for
every ϕ ∈ S, there is Γ ⊆ H(I), such that Γ ⊢ ϕ and each γ ∈ Γ has a
support in E(S).



3 Case of epistemic programs

We start the presentation of our results with the discussion of computing
skeptical autoepistemic reasoning in the case of particularly simple theories
— epistemic programs. In this simple case we get elegant results and we are
able to introduce main concepts of our approach.

An epistemic program clause is a clause of the form

La1 ∧ . . . Lan ∧ ¬Lb1 ∧ . . .¬Lbm ⇒ c (3)

where all ai’s, b
′j, and c are atoms of L. An epistemic program is a collection

of epistemic program clauses.
Let I be an epistemic program. A propositional transform of the theory

I, in symbols TI , is a theory in a propositional language L′ which is generated
by the atoms of L and, in addition, by some other atoms. Namely, for each
clause C ∈ I we add a new atom dC .

We describe now the construction of the transform TI of I. First, for
each clause C of the form (3) we add to TI two formulas

ΦC := dC ⇒ c, and

ΨC := dC ⇔ a1 ∧ . . . ∧ an ∧ ¬b1 ∧ . . . ∧ ¬bm.

Next, for each atom s of L add to TI the formula

Σs := s⇒
∨
{dC : s is a head of C}.

This last clause has as an effect that if s is not the head of a clause in I,
then ¬s is added to the transform.

It should be clear that the transform, TI is equivalent to a set of clauses
of at most twice the size of I. It is also important to note that the size of
TI is of the same order as the size of I. Another important fact that needs
to be realized is that the transform TI is not monotonic in the argument I.

Given a theory T ⊆ L′, by a model of T we mean any assignment (valu-
ation) V of atoms of L′ into {0, 1} such that for every ϕ ∈ T , V (ϕ) = 1.

Informally, the idea behind the construction of TI is as follows: Formulas
ΦC and ΨC ensure that a valuation V of L′ is a model of TI if and only if I is
a subset of a stable set generated by the atoms of L satisfied by V . Formulas
Σs guarantee that atoms satisfied by V have an I-support in the expansion
corresponding to V .
Example: Consider the following epistemic program I:

Lp ∧ ¬Ls⇒ r
Lr ⇒ p.

Its transform TI consists of the following formulas (here the two new
atoms, one for each clause, are denoted by d1 and d2:

d1 ⇒ r,
d2 ⇒ p,



d1 ⇔ p ∧ ¬s,
d2 ⇔ r,
r ⇒ d1,
p⇒ d2,
¬s.

It is easy to see that I has two expansions: E(∅) and E({p, r}). An
examination of the transform shows that there are exactly two valuations
that satisfy TI : in one each original atom is assigned 0, in the other, p and
r are assigned 1 and s is assigned 0. As we will see below, this is not a
coincidence.

Let us also, observe that if I ⊆ I ′ then we do not have, in general, that
TI ⊆ TI′ . For example if I ′ = I ∪ {s}, then TI′ no longer contains ¬s. Such
behavior is to be expected, as autoepistemic logic is nonmonotonic. 2

Making these intuitions precise and using Theorem 2.3(a) gives a theorem
establishing a one-to-one correspondence between the models of the theory
TI and expansions of I.

Theorem 3.1 Let I be an epistemic program, and TI its transform. Then
a valuation V is a model of TI if and only if E({s ∈ L:V (s) = 1}) is an
expansion of I.

The proof of Theorem 3.1 is a simplified version of the proof of Theorem
4.1, and is omitted.

Let us briefly comment on the role of atoms dC in our theorem. These
atoms are uniquely determined by their defining formulas ΨC . Therefore
we can find a theory tI not involving any extra atoms (that is, a theory in
L) which has the property that its models are in one-to-one correspondence
with expansions of I. But if we do so, the resulting theory tI does not consist
of clauses, nor can it be transformed to an equivalent theory consisting of
clauses only without exponential growth in size. Thus, our introduction of
new atoms dC may be viewed as a device to obtain a clausal form at a modest
cost.

Theorem 3.1 implies a result which, in turn, determines the complexity of
membership problem for literals in the intersection (and union) of expansions
of an epistemic program.

Proposition 3.2 Let I be an epistemic program, and let a be an atom.
(i) a belongs to all expansions of I if and only if TI ⊢ a.
(ii) a belongs to no expansion of I if and only if TI ⊢ ¬a.
(iii) a belongs to some expansion of I if and only if TI ∪ {a} is consistent.

When we look closely on the size of the theory TI as a function of the size
of theory I (they are, as was said earlier, of the same order) we get, as a
corollary of Proposition 3.2, the following complexity results.

Proposition 3.3 (i) The problem of membership of an atom in all expan-
sions of an epistemic program is co-NP complete.



(ii) The problem of membership of an atom in some expansion of an epis-
temic program is NP complete.

Proposition 3.3 gives a complete picture of the complexity of the problems
for both intersection and union of all expansions of epistemic programs.

4 The case of arbitrary clauses of L-depth 1

In this section we will consider a more general situation. We are interested
here in the class of theories consisting of clauses of the form (2), with αi,
βi and γ being modal-free. Such clauses will be referred to as 1-epistemic
clauses and collections of 1-epistemic clauses are called 1-epistemic theories.

Our goal is to reduce the problem of computing the intersection of the
modal-free parts of expansions of an epistemic theory to the problem of
provability in propositional calculus. Our approach is based on the ideas
illustrated earlier in the special case of epistemic programs.

The crucial role in our considerations in this section is played by Theorem
2.3(b). Let I be a 1-epistemic theory. We will construct now a propositional
theory PI (we use a different symbol than before because our construction
here differs slightly form that applied in the case of epistemic programs) with
the property that expansions of I correspond to models of PI . This will allow
us to reduce the problem of the membership of a modal-free formula in the
intersection of expansions of I to the question whether some other formula
is provable from PI . To describe PI we need some additional terminology.

First, by U(I) we denote the set of all formulas ϕ ∈ L such that Lϕ
occurs in a clause from I or such that ϕ ∈ H(I). For each ϕ ∈ U(I), we
introduce a new propositional variable ϕ. Now, for a 1-epistemic clause C
of I, given by (2), we define

sC = α1 ∧ . . . αk ∧ ¬β1 ∧ . . . ∧ ¬βm.

Next, for a formula ϕ ∈ U(I) we define

Sϕ =
∨
{sC : ϕ is the head of C}.

Note that if ϕ is not the head of any clause from I, then Sϕ = ⊥. Finally,
for a set of formulas Γ ⊆ U(I), we define

SΓ =
∧
{Sϕ : ϕ ∈ Γ}.

The intuition behind this notation is as follows: we will design PI so that
models of PI can be associated with expansions of I. More precisely, we will
have that formula Sϕ is true in a model if and only if ϕ has an I-support in
the corresponding expansion T , and formula SΓ is true in the model if and
only if all formulas of Γ have I-supports in T .



Now, we formally define the theory PI . For each 1-epistemic clause (2)
of I, we include in PI a formula

sC ⇒ γ. (4)

In addition, for each ϕ ∈ U(I) we include in PI the formula

ϕ⇔
∨
{SΓ : Γ ⊆ H(I) is minimal such that Γ ⊢ ϕ}. (5)

(Let us mention that this last formula could be repalced by the formula
ϕ⇔

∨
{SΓ : Γ ⊢ ϕ}, but the formula we have chosen is, in general, shorter.)

Informally, formulas of the first type correspond to the requirement of
Theorem 2.3(b) that I ⊆ E(S) and formulas of the second type correspond
to the requirement that each element in S be provable from elements having
I-supports.

Theorem 4.1 (a) Let a valuation V of atoms ϕ be a model of PI . Then

E({ϕ : V (ϕ) = 1})

is an expansion of I.
(b) Let E be an expansion of I. Then the valuation V defined by

V (ϕ) = 1 if and only if ϕ ∈ E

is a model of PI .

Theorem 4.1 establishes a one-to-one correspondence between expansions
of I and models of PI . This correspondence yields a method to check whether
a formula ϕ ∈ U(I) belongs to the intersection of all expansions of I. The
method can easily be obtained from the following corollary to Theorem 4.1.

Corollary 4.2 Let I be an epistemic theory and let ϕ ∈ U(I). Then, ϕ is
in the intersection of all expansions of I if and only if PI ⊢ ϕ.

For the case of an arbitrary formula ϕ ∈ L, we have the following result.

Corollary 4.3 Let I be a finite epistemic theory and let ϕ ∈ L. Let Γ1, . . . ,Γn

be all minimal subsets of H(I) proving ϕ. Then, ϕ is in the intersection of
all expansions of I if and only if PI ⊢

∨n
i=1

∧
{γ: γ ∈ Γi}.

Example. Consider the following 1-epistemic theory I consisting of the
formulas:

L(p ∨ r)⇒ p ∨ ¬q, L(p ∨ r)⇒ q ∨ r.
We will slightly change notation in this example. Instead of denoting the

new atom for p ∨ r by p ∨ r, we denote this atom by a. Similarly, the new
atom for p ∨ ¬q is denoted by b and the new atom for q ∨ r is denoted by c.
Now, the theory PI consists of the following formulas:

a⇒ b,



a⇒ c,
a⇒ a ∧ a,
b⇔ a,
c⇔ a.

Clearly, theory PI is propositionally equivalent to P ′

I = {b ⇔ a, c⇔ a}.
It can be verified that I has two expansions E(∅) and E({p∨¬q, q∨ r}) (the
latter contains p ∨ r, as well), and P ′

I (and hence PI , as well) is satisfied
by two valuations: one that makes atoms a, b and c false, the other which
makes them true. 2

A general conclusion of our results from this section is that autoepistemic
logic, at least as far as modal-free formulas are concerned, can be expressed
in a very natural way by means of propositional logic. The theory we obtain,
PI , that carries the same information as I is, usually, very large. This seems
to be in agreement with the expectation that nonmonotonic logics, as they
were originally envisioned, are capable of expressing the same information
as classical logic but by means of a smaller theory. The problem is that the
price that is paid for this size efficiency is in the loss of efficiency in reasoning
methods.

5 Applications

First, we will consider the question of computing the intersection of sup-
ported models of a finite, propositional logic program. Modifying slightly
the results of [MS89], one can see that under the translation interpreting a
clause

c← a1, . . . , ak,¬b1, . . . ,¬bm, (6)

where ai, bi and ci are propositional variables, by the epistemic program
clause

La1 ∧ . . . ∧ Lak ∧ ¬Lb1 ∧ . . . ∧ ¬Lbm ⇒ c, (7)

there is a one-to-one correspondence between supported models of programs
and expansions of translations. Thus, we get the following results as corol-
laries to the results of Section 3.

Corollary 5.1 Let P be a finite propositional logic program and let I be a
theory obtained by replacing each clause (6) of P with a formula (7).
(i) a belongs to all supported models of P if and only if TI ⊢ a.
(ii) a belongs to no supported model of P if and only if TI ⊢ ¬a.
(iii) a belongs to some supported model of P if and only if TI ∪ {a} is
consistent.
(iv) The problem of membership of an atom in all supported models of a
logic program is co-NP complete.
(v) The problem of membership of an atom in some supported model of a
logic program is NP complete.



Let us note that in [MS89] an interpretation of logic programs is given
that assigns to a program P expansions of (complete) theories determined by
supported models of P . This requires formulas (7) and additional formulas,
essentially similar to formulas of form Σs. Since here we are interested only
in expansions of sets of atoms true in supported models, the formulas (7)
are enough.

Using our general results of Section 4, we can reduce questions concerning
membership in stable models to provability and satisfiability in propositional
logic. This is achieved by means of the following result obtained indepen-
dently by many authors ([Elk89, MT89]), but the credit for which has to
be given to Michael Gelfond: under the interpretation of a clause (6) by a
formula

¬Lb1 ∧ . . . ∧ ¬Lbm ⇒ (a1 ∧ . . . ∧ ak ⇒ c), (8)

there is a one-to-one correspondence between stable models of a logic pro-
gram and sets of atoms of expansions of the corresponding 1-epistemic the-
ory.

Thus, for example, to check if an atom a belongs to all stable models
of P , we first build a corresponding 1-epistemic theory I interpreting each
clause of P by the formula (8). Next we build the theory PI and see whether
PI ⊢ a. The details of this procedure, as well as precise statements of the
relevant results will be given in the full version of the paper.

It was already mentioned that in general the theory PI has much larger
size than the theory I. The case of epistemic programs shows, however, that
sometimes the size of PI is of the same order as the size of I. There are several
other case when the size of PI is kept small (bounded by a polynomial in the
size of I). For example, our method of Section 4 simplifies in the following
two cases:
Case 1. Theory I consists of epistemic clauses (2), where αi, βi and γ are
literals. This is a slightly more general case than that of epistemic programs.
In this case, for each formula ϕ ∈ U(I) (ϕ is a literal), there is at most one
minimal set Γ ⊆ H(I) such that Γ ⊢ ϕ, namely, Γ = {ϕ}. Thus, the size
of PI is of the order of the size of I. Moreover, as in the case of epistemic
programs in Section 3, introducing additional atoms allows us to convert PI

into a theory consisting of propositional clauses, without significant increase
in size. The complete discussion of this case will be given in the full version
of the paper.
Case 2. Theory I consists of epistemic clauses (2), where αi, βi and γ are
disjunctions of atoms. In this case formulas of type (5) simplify. First of all
notice that if Γ is a minimal subset of H(I) such that Γ ⊢ ϕ then, since ϕ
and all formulas in Γ are disjuntions of atoms, it follows that Γ has the size
1, and for the unique formula ψ in Γ, all the atoms in ψ appear in ϕ. Hence
SΓ = ψ. Consequently, in this case, the formulas of the type (5) simplify to
the following form:

ϕ⇔ {ψ:ψ ∈ H(I) and ψ subsumes ϕ}



for each formula ϕ ∈ U(I). This analysis allows us to estimate the size of PI .
The size of each simplified formula of type (5) is now O(| I |). Consequently,
the size of PI is O(size(I) + size(I)· | I |). Thus the size of PI is at most
quadratic in the size of I.

6 Proof of Theorem 4.1

Theorem 4.1(a) Let a valuation V of atoms ϕ be a model of PI . Then:

E({ϕ ∈ U(I) : V (ϕ) = 1})

is an expansion of I.
Proof: Consider a valuation V of atoms ϕ such that V (PI) = 1. Let us
denote E = E({ϕ ∈ U(I) : V (ϕ) = 1}). We need to show that:

(1) I ⊆ E, and

(2) for every ϕ ∈ U(I) such that V (ϕ) = 1, there is Γ ⊆ H(I) such that
Γ ⊢ ϕ and each γ ∈ Γ has an I-support in E.

First, we prove a claim to be used in both parts of our argument.
Claim: Let α ∈ U(I). Then,

V (α) = 1 if and only if {ϕ:V (ϕ) = 1} ⊢ α

Proof of the claim: Only the implication from right to left needs a proof. So
assume {ϕ:V (ϕ) = 1} ⊢ α. For each ϕ ∈ U(I) and such that V (ϕ) = 1,

V (
∨
{SΓ : Γ ⊆ H(I) is minimal such that Γ ⊢ ϕ}) = 1.

Hence, for each ϕ ∈ U(I) and such that V (ϕ) = 1 there is a Γϕ ⊆ H(I) such
that Γϕ ⊢ ϕ and V (SΓϕ

) = 1. Consequently, for each γ ∈ Γϕ V (Sγ) = 1.
Thus there is a clause C ∈ I with γ in the head and such that V (sC) = 1.
Since sC ⇒ γ belongs to PI , it follows that V (γ) = 1. Thus there exists a
minimal subset Γ ⊆ H(I) ∩ {ϕ:V (ϕ) = 1} such that Γ ⊢ α. In particular

V (
∨
{SΓ : Γ ⊆ H(I) is minimal such that Γ ⊢ α}) = 1.

But all the instances of formula (5) are evaluated by valuation V as 1. Thus
V (α ⇔

∨
{SΓ : Γ ⊆ H(I) is minimal such that Γ ⊢ α}) = 1. Therefore,

V (α) = 1. 2 Claim

(1) Consider a 1-epistemic clause C ∈ I:

Lα1 ∧ . . . ∧ Lαn ∧ ¬Lβ1 ∧ . . . ∧ ¬Lβm ⇒ γ

If αi /∈ E for some 1 ≤ i ≤ n or βj ∈ E for some 1 ≤ j ≤ m then by
stability of E, C ∈ E. So assume that for all 1 ≤ i ≤ n, αi ∈ E, and for



all 1 ≤ j ≤ m, βj /∈ E. By the claim, V (αi) = 1, and V (βj) = 0 for all
1 ≤ i ≤ n and 1 ≤ j ≤ m. Thus V (sC) = 1. Since sC ⇒ γ belongs to PI ,
V (sC ⇒ γ) = 1. Therefore V (γ) = 1, and so γ ∈ E. But then C ∈ E.

(2) Let ϕ ∈ U(I) and V (ϕ) = 1. Since V (ϕ) = 1, there is Γ ⊆ H(I) such
that Γ ⊢ ϕ, and V (SΓ) = 1. Let γ ∈ Γ. Then, V (Sγ) = 1. Consequently,
there is a clause C ∈ I of the form

Lα1 ∧ . . . ∧ Lαn ∧ ¬Lβ1 ∧ . . . ∧ ¬Lβm ⇒ γ

such that V (sC) = 1. Hence, V (αi) = 1, 1 ≤ i ≤ n and V (βj) = 0,
1 ≤ j ≤ m. By the claim, for each 1 ≤ i ≤ n, αi ∈ E, and for each
1 ≤ j ≤ m, βi /∈ E. Thus, γ has an I-support in E. 24.1.(a)

Theorem 4.1(b) Let E be an expansion of I. Then the valuation V defined
by

V (ϕ) = 1 if and only if ϕ ∈ E

is a model of PI .
Proof: Let E be an expansion of I. Then, by Theorem 2.3(a), E = E(S),
for some S ⊆ H(I) and such that each γ ∈ S has an I-support in E.
Consequently, by the definition of the formulas Sγ and by the definition of
the valuation V , for each γ ∈ S, V (Sγ) = 1.

Consider a formula ϕ ∈ U(I) and the formula

ϕ⇔
∨
{SΓ : Γ ⊆ H(I) is minimal such that Γ ⊢ ϕ}. (9)

from PI . Assume that V (ϕ) = 1. Then, ϕ ∈ E. Consequently, S ⊢ ϕ. Let
Γ ⊆ S be a minimal subset of S such that Γ ⊢ ϕ. Since for each element γ
of Γ ⊆ S, V (Sγ) = 1, we have V (SΓ) = 1. Thus,

V (
∨
{SΓ : Γ ⊆ H(I) is minimal such that Γ ⊢ ϕ}) = 1.

Conversely, assume that for some minimal Γ ⊆ H(I) such that Γ ⊢ ϕ,
V (SΓ) = 1. As in part (a), it is easy to show now that each formula γ ∈ Γ
has an I-support in E. Thus, Γ ⊆ E. Consequently, ϕ ∈ E and, by the
definition of V , V (ϕ) = 1. Summarizing, V satisfies each formula in PI of
the form (9).

Consider now a formula sC ⇒ γ from PI , where C is a 1-epistemic clause
in I of the form

Lα1 ∧ . . . ∧ Lαn ∧ ¬Lβ1 ∧ . . . ∧ ¬Lβm ⇒ γ.

Since E is an expansion of I, C ∈ E. Consequently, at least one of the
following three possibilities holds:

(1) For some i, 1 ≤ i ≤ n, αi /∈ E. Then V (αi) = 0 and V (sC) = 0. Hence,
V (sC ⇒ γ) = 1.



(2) For some i, 1 ≤ i ≤ m, βi ∈ E. Then, V (βi) = 1 and V (sC) = 0. Hence,
V (sC ⇒ γ) = 1.

(3) γ ∈ E. Then V (γ) = 1 and V (sC ⇒ γ) = 1. 24.1.(b)
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