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Abstract. We prove the recent result of Liu and Zhu [2] and discuss
some consequences of that and related facts for the development of rough
set theory.
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1 Introduction

The goal of this note is to provide a proof of the recent statement by Liu and
Zhu [2] and look at some properties of rough sets related to Liu and Zhu re-
alization [10] that rough sets [4, 6, 9, 8, 7] relate to one of classical structures of
combinatorics and computer science, namely matroid. The importance of that
result is that it allows to tie various rough set methods to greedy algorithms
that succeed when underlying combinatorial structure is defined by matroid [1,
3]. This allows for developments of algorithms for finding properties of maximal
and minimal sets in various classes of sets (see also Propositions 2 and 3 below.)

2 Preliminaries

Below we introduce basic notions used in this paper. Generally, we assume that
the reader is familiar with the notion of rough sets of [4, 6, 9].

2.1 Rough Sets

Any pair (U,∼), where U i a finite set and ∼ is an equivalence relation in U
is called an approximation space. We denote by [x] the set {y ∈ U : x ∼ y}.
We call sets of the form [x], monads (or elementary granules [9]). Monads of an
equivalence relation ∼ form a partition of the set U . Given a set X ⊆ U , the sets
X and X are defined as

⋃
{[x] : [x] ⊆ X}, and

⋃
{[x] : [x]∩X 6= ∅}, respectively.

The sets X and X are called the lower approximation of X (relative to ∼) and the
upper approximation of X (relative to ∼), respectively. The set BN(X) = X \X
is called the boundary region of X (relative to ∼). If BN(X) = ∅ then X is crisp
(relative to ∼), otherwise X is rough (relative to ∼). Pawlak, in [4], established
the basic properties of these operations. We assume that the reader is familiar
with these properties.



2.2 Matroids

Matroids are one of basic structures studied by combinatorists [3, 1]. Matroids
occur in many areas of Mathematics and Computer Science as a common gen-
eralization of concepts such a collection of independent sets in a linear space
and of the cycle-free sets in a graph. Matroids are closely related to issues in
combinatorial optimization because of relationship between greedy algorithms
and matroids.

Formally, a matroid over a set U is a nonempty family M of subsets of U
satisfying the following conditions:
1. ∅ ∈ M.
2. Whenever X ∈M, and Y ⊆ X, then Y ∈M.
3. (Steinitz Exchange Principle) Whenever X,Y ∈ M and |X| < |Y | then for

some y ∈ Y \X, X ∪ {y} ∈ M.
By a parameterized matroid over an index set I we mean a family of matroids

〈Mi〉i∈I . In our case the set I will be the powerset of U , P(U).

3 Matroids Generated by Approximation Spaces

In this section we give a proof of the result of Liu and Zhu [2] on the paramet-
ric matroid associated with an approximation space defined by an equivalence
relation ∼ over a finite set U .

Definition 1. Given an approximation space (U,∼) we define for a set Y ⊆ U
the family of sets MY as

{A ⊆ U : A ⊆ Y }. (1)

Then, we prove

Theorem 1 (Liu and Zhu). Let (U,∼) be an approximation space. Then for
every subset Y ⊆ U , MY is a matroid.

Proof: The family MY is closed under subsets because whenever B ⊆ A and
A ∈ MY , then, by the definition, A ⊆ Y . Since B ⊆ A, we have B ⊆ A, thus
B ⊆ Y , i.e. B ∈ MY . Therefore the first two conditions on matroid hold for
MY .

We will now show the exchange property forMY . To this end, let A,B be two
sets, A,B ∈MY , |A| < |B|. We need to find x ∈ B \A so that A ∪ {x} ∈ MY .

Our argument consists of two cases.
Case 1. Some x ∈ B \ A has the property that [x] = {x}. That is, for y 6= x,
y 6∼ x. We claim that for that x, A ∪ {x} ∈ MY .

Since [x] = {x} and x /∈ A, we have

A ∪ {x} = A ∪ {x}

Now, A ⊆ Y (because A ∈ MY ), and also x ∈ Y because B ⊆ Y and {x} =
[x] ⊆ B ⊆ Y . Thus A ∪ {x} ⊆ Y , and so A ∪ {x} ∈ MY .



Case 2. No x ∈ B \A has the property that [x] = {x}. We will now assume that
for no x ∈ B \A, A ∪ {x} ∈ MY and show that this leads to the contradiction.

Let us look at an arbitrary x ∈ B\A. Under our assumption (A∪{x} /∈MY ),
it must be the case that A ∪ {x} is strictly bigger than A (because if A ∪ {x} =
A then as A ⊆ Y , then, since A ⊆ Y , A ∪ {x} ⊆ Y , so A ∪ {x} ∈ MY , a
contradiction.)

But what is A ∪ {x}?
There are two possibilities:

1. A ∪ {x} = A, or
2. A ∪ {x} = A ∪ [x].

Since the first possibility has already been eliminated, it must be the case that
A ∪ {x} = A ∪ [x]. But this means that for all y such that y 6= x, y ∼ x, the
element y must belong to A.

Moreover, since x was an arbitrary element of B \A, it must be the case that
whenever x ∈ B \A, y 6= x, y ∼ x then y ∈ A.

Next, we ask if it is possible that for some x, y ∈ B\A, x 6= y, x ∼ y. We claim
that this is impossible. Indeed let us assume that for some x, y ∈ B \ A, x 6= y,
x ∼ y, then [x] = [y] and [x] \ {x} ⊆ A and [y] \ {y} ⊆ A. Then y ∈ [x] \ {x}, i.e.
{y} ⊆ [x] \ {x}. Therefore

[y] = ([y] \ {y}) ∪ {y} ⊆ ([y] \ {y}) ∪ ([x] \ {x}) ⊆ A

contradicting the fact that y /∈ A.
Now, for every x ∈ B \A let us select an element yx so that:

1. yx ∼ x
2. yx ∈ A.

BA \ AB \

xxy

Fig. 1. Mapping B \A into A \B

Figure 1 illustrates the fact that B \A can be injected into A \B.
We observe that there is such mapping x 7→ yx because we are in Case 2.

Also, the mapping x 7→ yx is an injection, i.e., x1 6= x2 implies yx1 6= yx2 . But, of
course yx belongs to A\B (because yx ∼ x and yx /∈ B). Therefore we now have
an injection of B \ A into A \ B. But then, |B \ A| ≤ |A \ B|. This contradicts
the fact that |A| < |B| and completes the proof. 2



The matroid MY is called the matroid defined by Y and the approximation
space (U,∼).

4 Properties of Parameterized Matroids of
Approximation Spaces, and Their Characterization

For a given approximation space (U,∼) we consider a parameterized matroid
associated with the approximation space (U,∼) assuming that M∼ = {MY :
Y ∈ P(U)}, where MY is a matroid defined by Y and the approximation space
(U,∼), and P(U) is the powerset of U . InsteadM∼ we also writeM, for short.

We now show the following fact.

Proposition 1. Let M be a parameterized matroid associated with the approx-
imation space (U,∼). Then

Z = X iff MZ =MX for any X,Z ∈ P(U). (2)

Proof: First assume that Z = X. Then if A ∈MZ , then A ⊆ Z and thus A ⊆ Z.
Therefore A ⊆ X, thus A ⊆ X, so A ∈ MX . Therefore MZ ⊆ MX . But if
A ∈MX , then A ⊆ X. Then A ⊆ X = Z ⊆ Z. This completes implication ⇒.
Conversely, let us assume that MZ = MX . We want to show that Z = X. If
Z 6= X then there is Y such that Y = Y , Y 6= ∅ and Y ⊆ Z, Y ∩ X = ∅, or
Y ⊆ X, Y ∩ Z = ∅.
We consider the first case, the other is similar. For that set Y , Y ∈ MZ since
Y ⊆ Z ⊆ Z and Y = Y . But Y ∩X = ∅ so Y ∩X = ∅, a contradiction. 2

Definition 2. Let (U,∼) be an approximation space. Let X ⊆ U be a crisp
set, i.e., X = X. We define DX as the collection of all monads M such that
M ∩X = ∅.

We observe that the elements of DX are pairwise disjoint and nonempty. More-
over, the union of all monades from DX is equal to the lower approximation
of U \ X, i.e., U \X =

⋃
DX . Let us assume that X 6= U . Then the family

DX possesses selectors, i.e., sets S such that S ⊆
⋃
DX and for all D ∈ DX ,

|S ∩D| = 1. We can now present the description of bases of matroids in M.

Proposition 2 (Truszczynski). Let (U,∼) be an approximation space, and let
M be its parameterized matroid. Then for every set X 6= U such that X = X,
the bases for MX are precisely the sets of the form U \ S, where S is a selector
for DX .

Proof: A base B of MX is an inclusion-maximal set in MX . This means that
for any x /∈ B, B∪{x} does not belong toMX , that is B ∪ {x} is strictly larger
than B. But B = X. Thus B ∪ {x} contains at least one more monad M . This
means that all the remaining elements of the monad M are already in B. But as
this monad M was arbitrary among those not included in X, we have that B is
of the form U \ S where S is a selector for the family {M ∈ U/ ∼: M ∩X = ∅}.
The converse implication is obvious. 2



One consequence of Proposition 2 is that one can use a greedy algorithm to
compute a maximal weight set roughly equivalent to a given set X.

To make this claim precise, let us say that subsets X and Y of U are roughly
equivalent if and only if X = Y and X = Y [6]. The following property charac-
terizes roughly equivalent sets X,Y ⊆ U : [x] ⊆ X if and only if [x] ⊆ Y , for all
x ∈ U .

A weight function on the set U is any function wt : U → R+, where R+ is
the set of all positive reals. The weight of a set Z ⊆ U is equal to

∑
z∈Z wt(z).

Our task now is, given X ⊆ U to find a roughly equivalent to X set Y of
maximum weight. Each basis ofMX is roughly equivalent to X and by Proposi-
tion 2 all we need to do is to find a selector for DX of minimal weight. But such
selector can be found by choosing in each element [z] of DX a single element of
least possible weight (we observe that such element does not need to be unique.)

Another class of sets associated with rough sets is that of representative sets3.
A set X ⊆ U is representative if X = U , that is for every x ∈ U , there

is y ∈ X so that x ∼ y. The parameterized matroid M∼ associated with the
approximation space (U,∼) determines a class of special representative sets.
Specifically, let X ⊆ U be a crisp set in an approximation space (U,∼), i.e.,
X = X. Then we characterize the minimal representative sets including X that
belong to the matroid MX as follows.

Proposition 3. Let X ⊂ U be a crisp set in an approximation space (U,∼),
i.e., X = X. Then the minimal representative sets including X belonging to the
matroid MX are precisely the sets of the form X ∪ S where S is a selector for
DX .

Given Proposition 3, a greedy algorithm can be used to find the minimal
representative set of minimal weight.

We now list a number of properties of the parameterized matroid M∼.

Proposition 4. 1. For every X ∈ P(U), X ∈MX .
2. For every X ∈ P(U), MX =MX .
3. For all X,Y ∈ P(U), X ⊆ Y implies MX ⊆MY .
4. For every X ∈ P(U), X is the ⊆-least set in MX \

⋃
{MY :MY ⊂MX}.

5. The family {X : X ∈ P(U)} forms a Boolean algebra.
6. For all X,Y ∈ P(U) if Y ∈MX than Y \X = ∅.
7. For all X,Y, Z ∈ P(U) if Y = X ∪ Z and Z = ∅ then Y ∈MX .
8. If X ⊆ Z ⊆ Y and MX =MY then MX =MZ .

Points (1)–(8) are almost obvious, except possibly (4).
But the same points provide a key to the answer to the following question:

Given a parameterized matroid

N = {NX : X ∈ P(X)},
3 Note that in [6, 9] such sets are called externally or totally undefinable relative to a

given approximation space. Such sets were also used by Pawlak in investigating the
notion of rough truth [5].



when there exists an approximation space (U,≈) so that

N =M≈.

Specifically, we will formulate seven abstract conditions, corresponding to
points (1)–(7) above and show that under these conditions, indeed the param-
eterized matroid is determined by an approximation space (U,≈) that is deter-
mined by a parameterized matroid N .

So let N = 〈NX〉X∈P(U) be a parameterized matroid. We formulate condi-
tions (A)-(F) that N needs to satisfy.
(A) For all X ∈ P(U), X ∈ NX .
(B) For all X,Y ∈ P(U), X ⊆ Y implies NX ⊆ NY .
(C) For all X ∈ P(U), the family

NX \
⋃
{NY : NY ⊂ NX},

possesses a ⊆-least element, further referred as [X].
(D) The family {[X] : X ∈ P(U)} forms a Boolean Algebra, further referred as
BN , or simply B.

(E) For all X ∈ P(U), NX = N[X].
(F) For all X,Y ∈ P(U), if Y ∈ NX then [Y \ [X]] = ∅.
(G) For all X,Y, Z ∈ P(U), if Y = [X] ∪ Z and [Z] = ∅ than Y ∈ NX .

Once N is a parameterized matroid satisfying conditions (A)-(F), we define
a relation ≈ in U by setting:

x ≈ y if and only if there is an atom A of B such that x ∈ A and y ∈ A.

It is easy to see that (under conditions (A)-(G), in particular condition (D),
we have

Proposition 5. x ≈ y if and only if

for every X ⊆ U, x ∈ [X] if and only if y ∈ [X].

One can also observe the following fact:

Proposition 6. Let N = 〈NX〉X∈P(U) be a parameterized matroid satisfying
conditions (A)-(G). Then for any Y ⊆ U we have [Y ] = Y , where Y is the lower
approximation of Y in the approximation space (U,≈) and [Y ] ∈ B.

Proof: Let us assume x ∈ [Y ]. Then from Proposition 5 we have y ∈ Y for y ≈ x.
Since [Y ] ⊆ Y , we obtain [x]≈ ⊆ Y, i.e., x ∈ Y .

Now let us assume x ∈ Y , i.e., [x]≈ ⊆ Y . Suppose that x /∈ [Y ]. Then by
Proposition 5 we have [x]≈ ⊆ U \ [Y ]. Hence, [x]≈ ⊆ Y \ [Y ], a contradiction
with (F) (where we take X = Y ). 2

We now show the main result of this section.

Proposition 7. Let N = 〈NX〉X∈P(U) be a parameterized matroid. Then N is
a parameterized matroid defined by some approximation space, i.e., N =M∼ for
some approximation space (U,∼) if and only if N satisfies conditions (A)–(G)
above.



Proof: By Proposition 4, if N is a parameterized matroid for an approximation
space, then N satisfies conditions (A)–(G).

Conversely, if N satisfies conditions (A)-(G), then we show that M≈ = N .
That is we show that for every X ⊆ U , NX =M≈X .

First, assume Y ∈ M≈X . The set Y \ [Y ] is sparse w.r.t. ≈, i.e., Y \ [Y ] = ∅,
where the lower approximation is relative to the approximation space (U,≈). By
proposition 6 we obtain [y \ [Y ]] = ∅. By condition (G), [X] ∪ (Y \ [Y ]) ∈ NX .
But Y ⊆ X. Hence, by Proposition 6 [Y ] ⊆ X. Therefore [Y ] ⊆ [X]. But then,
Y = [Y ] ∪ (Y \ [Y ]) ⊆ [X] ∪ (Y \ [Y ]) ∈ NX , as desired.

Conversely, let Y ∈ NX . By Proposition 6 we need only to show that [Y ] ⊆ X.
But Y ∈ NX means (see (F)) that [Y ] ⊂ [X] or [Y ] = [X]. In either case, as
[X] ⊆ X, we have [Y ] ⊆ X, that is Y ⊆ X, by Proposition 6. Hence Y ∈ M≈X .
This completes the argument. 2

5 Conclusions

In the paper we have presented some relationships between rough set theory
and metroid theory. We plan to explore possibilities of application of heuristics
based on combinatorial optimization developed in matroid theory to algorithmic
problems in rough set theory.
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