
Origins of Answer-Set Programming – Some
Background And Two Personal Accounts

Victor W. Marek
Department of Computer Science
University of Kentucky
Lexington, KY 40506-0633, USA

Ilkka Niemelä
Department of Information and Computer Science
Aalto University
Finland

Mirosław Truszczyński
Department of Computer Science
University of Kentucky
USA

Abstract: We discuss the evolution of aspects of nonmonotonic reasoning towards
the computational paradigm of answer-set programming (ASP). We give a general
overview of the roots of ASP and follow up with the personal perspective on research
developments that helped verbalize the main principles of ASP and differentiated it
from the classical logic programming.

1 Introduction — Answer-Set Programming Now
Merely ten years since the term was first used and its meaning formally elaborated,
answer-set programming has reached the status of a household name, at least in the
logic programming and knowledge representation communities. In this paper, we
present our personal perspective on influences and ideas — most of which can be
traced back to research in knowledge representation, especially nonmonotonic reason-
ing, logic programming with negation, constraint satisfaction and satisfiability testing
— that led to the two papers Marek and Truszczyński (1999); Niemelä (1999) marking
the beginning of answer-set programming as a computational paradigm.

Answer-set programming (ASP, for short) is a paradigm for declarative program-
ming aimed at solving search problems and their optimization variants. Speaking in-
formally, in ASP a search problem is modeled as a theory in some language of logic.
This representation is designed so that once appended with an encoding of a particular
instance of the problem, it results in a theory whose models, under the semantics of
the formalism, correspond to solutions to the problem for this instance. The paradigm
was first formulated in these terms by Marek and Truszczyński (1999) and Niemelä
(1999).



2 V. W. Marek, I. Niemelä and M. Truszczyński

The ASP paradigm is most widely used with the formalism of logic programming
without function symbols, with programs interpreted by the stable-model semantics
introduced by Gelfond and Lifschitz (1988). Sometimes the syntax of programs is
extended with the strong negation operator and disjunctions of literals are allowed in
the heads of program rules. The semantics for such programs was also defined by
Gelfond and Lifschitz (1991). They proposed to use the term answer sets for sets
of literals, by which programs in the extended syntax were to be interpreted. Ten
years after the answer-set semantics was introduced, answer sets lent their name to
the budding paradigm. However, there is more to answer-set programming than logic
programming with the stable-model and answer-set semantics. Answer-set program-
ming languages rooted directly in first-order logic, extending it in some simple in-
tuitive ways to model definitions, have also been proposed over the years and have
just matured to be computationally competitive with the original logic programming
embodiments of the paradigm (Denecker, 1998; Denecker and Ternovska, 2008; East
and Truszczyński, 2006).

Unlike Prolog-like logic programming, ASP is fully declarative. Neither the order
of rules in a program nor the order of literals in rules have any effect on the semantics
and only negligible (if any) effect on the computation. All ASP formalisms come with
the functionality to model definitions and, most importantly, inductive definitions, in
intuitive and concise ways. Further, there is a growing body of works that start ad-
dressing methods of modular program design (Dao-Tran, Eiter, Fink, and Krennwall-
ner, 2009; Janhunen, Oikarinen, Tompits, and Woltran, 2009) and program develop-
ment and debugging (Brain and Vos, 2005; Brummayer and Järvisalo, 2010). These
features facilitate modeling problems in ASP, and make ASP an approach accessible
to non-experts.

Most importantly, though, ASP comes with fast software for processing answer-
set programs. Processing of programs in ASP is most often done in two steps. The first
step consists of grounding the program to its equivalent propositional version. In the
second step, this propositional program is solved by a backtracking search algorithm
that finds one or more of its answer sets (they represent solutions) or determines that
no answer sets (solutions) exist. The current software tools employed in each step,
commonly referred to as grounders and solvers, respectively, have already reached
the level of performance that makes it possible to use them successfully with programs
arising from problems of practical importance.

This effectiveness of answer-set programming tools is a result of a long, sustained
and systematic effort of a large segment of the Knowledge Representation community,
and can be attributed to a handful of crucial ideas, some of them creatively adapted to
ASP from other fields. Specifically, domain restriction was essential to help control
the size of ground programs. It was implemented in lparse, the first ASP grounder
Niemelä and Simons (1996). The well-founded semantics Van Gelder et al. (1991)
inspired strong propagation methods implemented in the first full-fledged ASP solver
smodels Niemelä and Simons (1996). Program completion Clark (1978) provided a
bridge to satisfiability testing. For the class of tight programs Erdem and Lifschitz
(2003), it allowed for a direct use of satisfiability testing software in ASP, the idea
first implemented in an early version of the solver cmodels1. Loop formulas Lin and
Zhao (2002) extended the connection to satisfiability testing to arbitrary programs.

1http://www.cs.utexas.edu/users/tag/cmodels.html



Origins of ASP 3

They gave rise to such successful ASP solvers as assat Lin and Zhao (2002), pb-
models Liu and Truszczyński (2005) and later implementations of cmodels Lierler
and Maratea (2004). Database techniques for query optimization influenced the de-
sign of the grounder for the dlv system2 (Leone, Pfeifer, Faber, Eiter, Gottlob, Perri,
and Scarcello, 2006). Important advances of satisfiability testing including the data
structure of watched literals, restarts, and conflict-clause learning were incorporated
into the ASP solver clasp3, at present the front-runner among ASP solvers and the
winner of one track of the 2009 SAT competition. Some of the credit for the ad-
vent of high-performance ASP tools is due to the initiative to hold ASP grounder and
solver contests. The two editions of the contest so far (Gebser, Liu, Namasivayam,
Neumann, Schaub, and Truszczyński, 2007; Denecker, Vennekens, Bond, Gebser, and
Truszczynski, 2009) focused on modeling and on solver performance, and introduced
a necessary competitive element into the process.

The modeling features of ASP and computational performance of ASP software
find the most important reflection in a growing range of successful applications of
ASP. They include molecular biology (Gebser, Guziolowski, Ivanchev, Schaub, Siegel,
Thiele, and Veber, 2010a; Gebser, König, Schaub, Thiele, and Veber, 2010b), deci-
sion support system for space shuttle controllers (Balduccini, Gelfond, and Nogueira,
2006), phylogenetic systematics (Erdem, 2011), automated music composition (Boenn,
Brain, Vos, and Fitch, 2011), product configuration (Soininen and Niemelä, 1998;
Tiihonen, Soininen, Niemelä, and Sulonen, 2003; Finkel and O’Sullivan, 2011) and
repair of web-service workflows (Friedrich, Fugini, Mussi, Pernici, and Tagni, 2010).

And so, ASP is now a declarative programming paradigm built on top of a solid
theoretical foundation, with features that facilitate its use in modeling, with software
supporting effective computation, and with a growing list of successful applications
to its credit. How did it all come about? This paper is an attempt to reconstruct our
personal journey to ASP.

2 Knowledge Representation Roots of Answer-Set Pro-
gramming

One of the key questions for knowledge representation is how to model commonsense
knowledge and how to automate commonsense reasoning. The question does not seem
particularly relevant to ASP understood, as it now commonly is, as a general purpose
computational paradigm for solving search problems. But in fact, knowledge repre-
sentation research was essential. First, it recognized and emphasized the importance
of principled modeling of commonsense and domain knowledge. The impact of the
modeling aspect of knowledge representation and reasoning is distinctly visible in the
current implementations of ASP. They support high level programming that separates
modeling problem specifications from problem instances, provide intuitive means to
model aggregates, and offer direct means to model defaults and inductive definitions.
Second, knowledge representation research, and especially nonmonotonic reasoning
research, provided the theoretical basis for ASP formalisms: the answer-set semantics
of programs can be traced back to the semantics of default logic and autoepistemic

2www.dbai.tuwien.ac.at/proj/dlv/
3www.cs.uni-potsdam.de/clasp/



4 V. W. Marek, I. Niemelä and M. Truszczyński

logic, the semantics of the logic FO(ID) (Denecker, 2000; Denecker and Ternovska,
2008) has it roots in the well-founded semantics of nonmonotonic provability opera-
tors.

In this section we discuss the development of those ideas in knowledge represen-
tation that eventually took shape of answer-set programming. In their celebrated 1969
paper, McCarthy and Hayes wrote

[...] intelligence has two parts, which we shall call the epistemological
and the heuristic. The epistemological part is the representation of the
world in such a form that the solution of problems follows from the facts
expressed in the representation. The heuristic part is the mechanism that
on the basis of the information solves the problem and decides what to
do.

With this paragraph McCarthy and Hayes ushered knowledge representation and rea-
soning into artificial intelligence and moved it to one of the most prominent positions
in the field. Indeed, what they referred to as the epistemological part is now under-
stood as knowledge representation, while the heuristic part has evolved into broadly
understood automated reasoning — a search for proofs or models.

The question how to do knowledge representation and reasoning quickly reached
the forefront of artificial intelligence research. McCarthy suggested first-order logic
as the formalism for knowledge representation. The reasons behind the proposal were
quite appealing. First-order logic is “descriptively universal” and proved itself as the
formal language of mathematics. Moreover, key reasoning tasks in first-order logic
could be automated, assuming one adopted appropriate restrictions to escape semi-
decidability of first-order logic in its general form.

However, there is no free lunch and it turned out that first-order logic could not
be just taken off the shelf and used for knowledge representation with no extra effort
required. The problem is that domain knowledge is rarely complete. More often than
not, information available to us has gaps. And the same is true for artificial agents
we would like to function autonomously on our behalf. Reasoning with incomplete
knowledge is inherently defeasible. Depending on how the world turns out to be (or
depending on how the gaps in our knowledge are closed), some conclusions reached
earlier may have to be withdrawn. The monotonicity of first-order logic consequence
relation is at odds with the nonmonotonicity of defeasible reasoning and makes mod-
eling defeasible reasoning in first-order logic difficult.

To be effective even when available information is incomplete, humans often de-
velop and use defaults, that is, rules that typically work but in some exceptional situa-
tions should not be used. We are good at learning defaults and recognizing situations in
which they should not be used. In everyday life, it is thanks to defaults that we are not
bogged down in the qualification problem McCarthy (1977), that is, normally we do
not check that every possible precondition for an action holds before we take it. And
we naturally take advantage of the frame axiom McCarthy and Hayes (1969) when
reasoning, that is, we take it that things remain as they are unless they are changed
by an action. Moreover, we do so avoiding the difficulties posed by the ramification
problem Finger (1987), which is concerned with side effects of actions. However,
first-order logic conspicuously lacks defaults in its syntactic repertoire nor does it pro-
vide an obvious way to simulate them. It is not at all surprising, given that defaults



Origins of ASP 5

have a defeasible flavor about them. Not being aware that a situation is “exceptional”
one may apply a default but later be forced to withdraw the conclusion upon finding
out the assumption of “non-exceptionality” was wrong.

Yet another problem for the use of first-order logic in knowledge representation
comes from the need to model definitions, most notably the inductive ones. The way
humans represent definitions has an aspect of defeasibility that is related to the closed-
world assumption. Indeed, we often define a concept by specifying all its known
instantiations. We understand such a definition as meaning also that nothing else is
an instance of the concept, even though we rarely if ever say it explicitly. But the
main problem with definitions lies elsewhere. Definitions often are inductive and their
correct meaning is captured by the notion of a least fixpoint. First-order logic cannot
express the notion of a least fixpoint and so does not provide a way to specify inductive
definitions.

These problems did not go unrecognized and in late 1970s researchers were seek-
ing ways to address them. Some proposals called for extensions of first-order logic
by explicit means to model defaults while other argued that the language can stay the
same but the semantics had to change. In 1980, the Artificial Intelligence Journal pub-
lished a double issue dedicated to nonmonotonic reasoning, a form of reasoning based
on but departing in major ways from that in first-order logic. The issue contained
three papers by McCarthy (1980), Reiter (1980), and McDermott and Doyle (1980)
that launched the field of nonmonotonic reasoning.

McCarthy’s proposal to bend the language of first-order logic to the needs of
knowledge representation was to adjust the semantics of first-order logic and to base
the entailment relation among sentences in first-order logic on minimal models only
McCarthy (1980). He called the resulting formalism circumscription and demon-
strated how circumscription could be used in several settings where first-order logic
failed to work well. Reiter (1980) extended the syntax of first-order logic by defaults,
inference rules with exceptions, and described formally reasoning with defaults. Re-
iter was predominantly interested in reasoning with normal defaults but his default
logic was much more general. Finally, McDermott and Doyle proposed a logic based
on the language of modal logic which, as they suggested, was also an attempt to
model reasoning with defaults. This last paper was found to suffer from minor tech-
nical problems. Two years later, McDermott (1982) published another paper which
corrected and extended the earlier one.

These three papers demonstrated that shortcomings of first-order logic in model-
ing incomplete knowledge and supporting reasoning from these representations could
be addressed without giving up on the logic entirely but by adjusting it. They sparked
a flurry of research activity directed at understanding and formalizing nonmonotonic
reasoning. One of the most important and lasting outcomes of those efforts was the au-
toepistemic logic proposed by Moore (1984, 1985). Papers by Moore can be regarded
as closing the first phase of the nonmonotonic reasoning as a field of study.

Identifying nonmonotonic reasoning as a phenomenon deserving an in-depth study
was a major milestone in logic, philosophy and artificial intelligence. The prospect of
understanding and automating reasoning with incomplete information, of the type we
humans are so good at, excited these research communities and attracted many re-
searchers to the field. Accordingly, the first 10-12 years of nonmonotonic reasoning
research brought many fundamental results and established solid theoretical founda-



6 V. W. Marek, I. Niemelä and M. Truszczyński

tions for circumscription McCarthy (1980); Lifschitz (1988), default logic (Reiter and
Criscuolo, 1981; Hanks and McDermott, 1986; Marek and Truszczyński, 1989; Pearl,
1990), autoepistemic logic (Moore, 1985; Niemelä, 1988; Marek and Truszczyński,
1991; Shvarts, 1990; Schwarz, 1991) and modal nonmonotonic logics in the style
of McDermott and Doyle (Marek, Shvarts, and Truszczyński, 1993; Schwarz, 1992;
Schwarz and Truszczyński, 1992). Researchers made progress in clarifying the rela-
tionship between these formalisms Konolige (1988, 1989); Marek and Truszczyński
(1989b); Bidoit and Froidevaux (1991); Truszczyński (1991). Computational aspects
received much attention, too. First complexity results appeared in late 1980s and early
1990s Cadoli and Lenzerini (1990); Marek and Truszczyński (1991); Kautz and Sel-
man (1989); Gottlob (1992); Stillman (1992) and early, still naive at that time, imple-
mentations of automated reasoning with nonmonotonic logics were developed around
the same time Etherington (1987); Niemelä and Tuominen (1986, 1987); Ginsberg
(1989). Several research monographs were published in late 1980s and early 1990s
systematizing that phase of nonmonotonic reasoning research and making it accessi-
ble to outside communities Besnard (1989); Brewka (1991); Marek and Truszczyński
(1993).

Expectations brought up by the advent of nonmonotonic reasoning formalisms
were high. It was thought that nonmonotonic logics would facilitate concise and elab-
oration tolerant representations of knowledge, and that through the use of defeasible
inference rules like defaults it would support fast reasoning. However, around the
time of the first Knowledge Representation and Reasoning Conference, KR 1989 in
Toronto, concerns started to surface in discussions and papers.

First, there was the issue of multiple belief sets, depending on the logic used rep-
resented as extensions or expansions. A prevalent interpretation of the problem was
that multiple belief sets provided the basis for skeptical and brave modes of reasoning.
Skeptical reasoning meant considering as consequences a reasoner was sanctioned to
draw only those formulas that were in every belief set. Brave reasoning required a
non-deterministic commitment to one of the possible belief sets with all its elements
becoming consequences of the underlying theory (in the nonmonotonic logic at hand).
The first approach was easy to understand and accept at the intuitive level. But as a
reasoning mechanism it was rather weak as in general it supported few non-trivial in-
ferences. The second approach was underspecified — it provided no guidelines on
how to select a belief set, and it was not at all obvious how if at all humans perform
such a selection. Both skeptical and brave reasoning suffered from the fact that there
were no practical problems lying around that could offer some direction as to how to
proceed with any of these two approaches.

Second, none of the main nonmonotonic logics seemed to provide a good for-
malization of the notion of a default or of a defeasible consequence relation. This
was quite a surprising and in the same time worrisome observation. Nonmonotonic
reasoning brought attention to the concept of default and soon researchers raised the
question of how to reason about defaults rather than with defaults (Pearl, 1990; Kraus,
Lehmann, and Magidor, 1990; Lehmann and Magidor, 1992). A somewhat different
version of the same question asked about defeasible consequence relations, whether
they can be characterized in terms of intuitively acceptable axioms, and whether they
have semantic characterizations Gabbay (1989); Makinson (1989). Despite the suc-
cess of circumscription, default and autoepistemic logics in addressing several prob-



Origins of ASP 7

lems of knowledge representation, it was not clear if or how they could contribute
to the questions above. In fact, it still remains an open problem whether any deep
connection between these logics and the studies of abstract nonmonotonic inference
relations exists.

Next, the complexity results obtained at about same time Marek and Truszczyński
(1991); Eiter and Gottlob (1993a); Gottlob (1992); Stillman (1992); Eiter and Gottlob
(1993b, 1995) were viewed as negative. They dispelled any hope of higher computa-
tional efficiency of nonmonotonic reasoning. Even under the restriction to the propo-
sitional case, basic reasoning tasks turned out to be as complex as and in some cases
even more complex (assuming polynomial hierarchy does not collapse) than reasoning
in propositional logic. Even more discouraging results were obtained for the general
language.

Finally, the questions of applications and implementations was becoming more
and more urgent. There were no practical artificial intelligence applications under
development at that time that required nonmonotonic reasoning. Nonmonotonic log-
ics continued to be extensively studied and discussed at AI and KR conferences, but
the belief that they can have practical impact was diminishing. There was a growing
feeling that they might amount to not much more but a theoretical exercise. Complex-
ity results notwithstanding, the ultimate test of whether an approach is practical can
only come from experiments, as the worst-case complexity is one thing but real life
is another. But there was little work on implementations and one of the main reasons
was lack of test cases whose hardness one could control. Researchers continued to
analyze “by hand” small examples arguing about correctness of their default or au-
toepistemic logic representations. These toy examples were appropriate for the task
of understanding basic reasoning patterns. But they were simply too easy to provide
any meaningful insights into automated reasoning algorithms and their performance.

And so the early 1990s saw a growing sentiment that in order to prove itself,
to make any lasting impact on the theory and practice of knowledge representation
and, more generally, on artificial intelligence, practical and efficient systems for non-
monotonic reasoning had to be developed and their usefulness in a broad range of
applications demonstrated. Despite of all the doom and gloom of that time, there were
reasons for optimism, too. The theoretical understanding of nonmonotonic logics
reached the level when development of sophisticated computational methods became
possible. Complexity results were disappointing but the community recognized that
they concerned the worst case setting only. Human experience tells us that there are
good reasons to think that real life does not give rise to worst-case instances too often,
in fact, that it rarely does. Thus, through experiments and the focus on reasoning with
structured theories one could hope to obtain efficiency sufficient for practical applica-
tions. Moreover, it was highly likely that once implemented systems started showing
up, they would excite the community, demonstrate the potential of nonmonotonic log-
ics, and spawn competition which would result in improvements of algorithms and
performance advances.

It is interesting to note that many of the objections and criticisms aimed at non-
monotonic reasoning were instrumental in helping to identify key aspects of answer-
set programming. Default logic did not provide an acceptable formalization of reason-
ing about defaults but inspired the answer-set semantics of logic programs Bidoit and
Froidevaux (1987); Gelfond and Lifschitz (1988, 1991) and helped to solve a long-



8 V. W. Marek, I. Niemelä and M. Truszczyński

standing problem of how to interpret negation in logic programming. Answer-set
programming, which adopted the syntax of logic programs, as well as the answer-set
semantics, can be regarded as an implementation of a significant fragment of default
logic. The lack of obvious test cases for experimentation with implementations forced
researchers to seek them outside of artificial intelligence and led them to the area of
graph problems. This experience showed that the phenomenon of multiple belief sets
can be turned from a bug to a feature, when researchers realized that it allows one
to model arbitrary search problems, with extensions, expansions or answer sets, de-
pending on the logic used, representing problem solutions (Cadoli, Eiter, and Gottlob,
1997; Marek and Remmel, 2003).

However important, knowledge representation was not the only source of inspira-
tion for ASP. Influences of research in several other areas of computer science, such as
databases, logic programming and satisfiability, are also easily identifiable and must
be mentioned, if only briefly. One of the key themes in research in logic programming
in the 1970s and 1980s was the quest for the meaning of the negation operator. Stan-
dard logic programming is built around the idea of a single intended Herbrand model.
A program represents the declarative knowledge about the domain of a problem to
solve. Some elements of the model, more accurately, ground terms the model deter-
mines, represent solutions to the problem. All works well for Horn programs, with the
least Herbrand model of a Horn program as the natural choice for the intended model.
But the negation operator, being ingrained in the way humans describe knowledge,
cannot be avoided. The logic programming community recognized this and the nega-
tion was an element of Prolog, an implementation of logic programming, right from
the very beginning. And so, the question arose for a declarative (as opposed to the
procedural) account of its semantics.

Subsequent studies identified a non-classical nature of the negation operator. This
nonmonotonic aspect of the negation operator in logic programming was also a com-
plicating factor in the effort to find a single intended model of logic programs with
negation. It became clear that to succeed one either had to restrict the class of pro-
grams or to move to the three-valued settings. The first line of research resulted in an
important class of stratified programs (Apt, Blair, and Walker, 1988), the second one
led Fitting (1985) and Kunen (1987) to the Kripke-Kleene model and, later on, Van
Gelder, Ross, and Schlipf (1991) to the well-founded model.

In the hindsight, the connection to knowledge representation and nonmonotonic
reasoning should have been quite evident. However, the knowledge representation
and logic programming communities had little overlap at the time. And so it was not
before the work by Bidoit and Froidevaux (1987) and Gelfond (1987) that the con-
nection was made explicit and then exploited. That work demonstrated that intuitive
constraints on an intended model cannot be reconciled with the requirement of its
uniqueness. In other words, with negation in the syntax, we must accept the reality
of multiple intended models. The connection between logic programming and knowl-
edge representation, especially, default and autoepistemic logics was important. On
the one hand, it showed that logic programming can provide syntax for an interest-
ing non-trivial fragment of these logics, and drew attention of researchers attempting
implementations of nonmonotonic reasoning systems. On the other hand, it led to
the notion of a stable model of a logic program with negation. It also reinforced the
importance of the key question how to adapt the phenomenon of multiple intended



Origins of ASP 9

models for problems solving.
The work in databases provided a link between query languages and logic pro-

gramming. One of the outcomes of this work was DATALOG, a fragment of logic
programming without function symbols, proposed as a query language. The database
research resulted in important theoretical studies concerning complexity, expressive
power and connection of DATALOG to the SQL query language (Cadoli et al., 1997).
DATALOG was implemented, for instance as a part of DB2 database management
system. DATALOG introduced an important distinction between extensional and in-
tentional database components. Extensional database is the collection of tables that are
stored in the database, the corresponding relation names known as extensional pred-
icate symbols. The intensional database is a collection of intentional tables defined
by DATALOG queries. In time this distinction was adopted by answer-set program-
ming as a way to separate problem specification from data. The database community
also considered extensions of DATALOG with the negation connective. Because of
the semantics of the resulting language, multiplicity of answers in DATALOG¬ was
a problem, as it was in a more general setting of arbitrary programs with negation.
Therefore, DATALOG¬ never turned into a practical database query language (al-
though, its stratified version could very well be used to this end). However, it was
certainly an interesting fragment of logic programming. And even though its expres-
sive power was much lower than that of general programs,4 there was hope that fast
tools to process DATALOG¬ can be developed. Jumping ahead, we note here that
it was DATALOG¬ that was eventually adopted as the basic language of answer-set
programming.

3 Towards Answer-Set Programming at the University
of Kentucky

Having outlined some of the key ideas behind the emergence of answer-set program-
ming, we now move on to a more personal account of research ideas that eventually
resulted in the formulation of the answer-set programming paradigm. In this section,
Victor Marek and Mirek Truszczynski, discuss the evolution of their understanding of
nonmonotonic logics and how they could be used for computation that led to their pa-
per Stable logic programming — an alternative logic programming paradigm Marek
and Truszczyński (1999). A closely intertwined story of Ilkka Niemelä, follows in the
subsequent section. As the two accounts are strongly personal and necessarily quite
subjective, for the most part they are given in the first person. And so, in this section
“we” and us refers to Victor and Mirek, just as “I” in the next one to Ilkka.

In mid 1980s, one of us, Victor, started to study nonmonotonic logics following a
suggestion from Witold Lipski, his former Ph.D. student and close collaborator. Lip-
ski drew Victor’s attention to Reiter’s papers on closed-world assumption and default
logic Reiter (1978, 1980). In 1984, Victor attended the first Nonmonotonic Reason-
ing Workshop at Mohonk, NY, and came back convinced about the importance of

4It has to be noted though that the expressive power of general programs with function symbols and
negation goes well beyond what could be accepted as computable under all reasonable semantics (Schlipf,
1995; Marek, Nerode, and Remmel, 1994).



10 V. W. Marek, I. Niemelä and M. Truszczyński

problems that were discussed there. In the following year, he attracted Mirek to the
program of the study of mathematical foundations of nonmonotonic reasoning.

In 1988 Michael Gelfond visited us in Lexington and in his presentation talked
about the use of autoepistemic logic Moore (1985) to provide a semantics to logic
programs. At the time we were already studying autoepistemic logic, inspired by
talks Victor attended at Mohonk and by Moore’s paper on autoepistemic logic in the
Artificial Intelligence Journal Moore (1985). We knew by then that stable sets of
formulas of modal logic, introduced by Stalnaker (1980) and shown to be essential for
autoepistemic logic, can be constructed by an iterated inductive definition from their
modal-free part Marek (1989). We also realized the importance of a simple normal
form for autoepistemic theories introduced by Konolige (1988).

Thus, we were excited to see that logic programs can be understood as some sim-
ple autoepistemic theories thanks to Gelfond’s interpretation Gelfond (1987). Soon
thereafter, we also realized that logic programs could be interpreted also as default
logic theories and that the meaning of logic programs induced on them by default
logic extensions is the same as that induced by autoepistemic expansions Marek and
Truszczyński (1989b). It is important to note that default logic was first used to as-
sign the meaning to logic programs by Bidoit and Froidevaux (1987), but we did not
know about their work at the time. Bidoit and Froidevaux effectively defined the
stable model semantics for logic programs. They did so indirectly and with explicit
references to default extensions. The direct definition of stable models in logic pro-
gramming terms came about one year later in the celebrated paper by Gelfond and
Lifschitz (1988).

What became apparent to us soon after Gelfond’s visit was that despite both au-
toepistemic expansions and default extensions inducing the same semantics on logic
programs, it was just serendipidity and not the result of the inherent equivalence of
the two logics. In fact, we noticed that there was a deep mismatch between Moore’s
autoepistemic logic with the semantics of expansions and Reiter’s default logic with
the semantics of extensions. In the same time, we discovered a form of default logic,
to be more precise, an alternative semantics of default logic, which was the perfect
match for that of expansions for autoepistemic logic Marek and Truszczyński (1989).
This research culminated about 15 years later with a paper we co-authored with Marc
Denecker that provided a definitive account of the relationship between default and au-
toepistemic logics (Denecker, Marek, and Truszczyński, 2003) and resolved problems
and flaws of an earlier attempt at explaining the relationship due to Konolige (1988).
Another paper in this volume (Denecker, Marek, and Truszczynski, 2011) discusses
the informal basis for that work and summarizes all the key results.

The relationship between default and autoepistemic logic was of only marginal
importance for the later emergence of answer-set programming. But another result in-
spired by Gelfond’s visit turned out to be essential. In our study of autoepistemic logic
we wanted to establish the complexity of the existence of expansions. We obtained
the result by showing that the problem of the existence of a stable model of a logic
program is NP-complete and, by doing so, we obtained the same complexity for the
problem of the existence of expansions of autoepistemic theories of some simple form
but still rich enough to capture logic programs under Gelfond’s interpretation Marek
and Truszczyński (1991).

The result for autoepistemic logic did not turn out to be particularly significant



Origins of ASP 11

as the class of autoepistemic theories it pertained to was narrow. And it was soon
supplanted by a general result due to Gottlob (1992), who proved the existence of the
expansions problem to be ΣP

2 -complete. But it was an entirely different matter with
the complexity result concerning the existence of stable models of programs!

First, our proof reduced a combinatorial problem, that of the existence of a kernel
in a directed graph, to the existence of stable model of a suitably defined program.
This was a strong indication that stable semantics may, in principle, lead to a general
purpose formalism for solving combinatorial and, more generally, search problems.
Of course we did not fully realize it at the time. Second, it was quite clear to us,
especially after the first KR conference in Toronto in May 1989 that the success of
nonmonotonic logics can come only with implementations. Many participants of the
conference (we recall David Poole and Matt Ginsberg being especially vocal) called
for working systems. Since by then we understood the complexity of stable-model
computation, we asked two University of Kentucky students Elizabeth and Eric Free-
man to design and implement an algorithm to compute stable models of propositional
programs. They succeeded albeit with limits — the implementation could process
programs with about 20 variables only. Still, theirs was most likely the first working
implementation of stable-model computation. Unfortunately, with the M.S. degrees
under their belts, Eric and Elizabeth left the University of Kentucky.

For about three years after this first dab into implementing reasoning systems
based on a nonmonotonic logic, our attention was focused on more theoretical studies
and on the work on a monograph on mathematical foundations of nonmonotonic rea-
soning based on the paradigm of context-dependent reasoning. However, the matter
of implementations had constantly been on the backs of our minds and in 1992 we
decided to give the matter another try. As we felt we understood default logic well
and as it was commonly viewed as the nonmonotonic logic of the future, in 1992 we
started the project, Default Reasoning System DeReS. We aimed at implementing rea-
soning in the unrestricted language of propositional default logic. We also started a
side project to DeReS, the TheoryBase project, aimed at developing a software system
generating default theories to be used for testing DeReS. The time was right as two
promising students, Pawel Cholewinski and Artur Mikitiuk, joined the University of
Kentucky to pursue doctorate degrees in computer science.

As is common in such circumstances, we were looking for a sponsor of this re-
search and found one in the US Army Research Office (US ARO), which was willing
to support this work. A colleague of ours, Jurek Jaromczyk, also at the University
of Kentucky, coined the term DeReS, a pun on an old polish word “deresz” presently
rarely used and meaning a stallion, quite appropriate for the project to be conducted in
Lexington, “the world capital of the horse.” In the proposal to US ARO we promised
to investigate basic reasoning problems of default logic:

1. Computing of extensions

2. Skeptical reasoning with default theories — testing if a formula belongs to all
extensions of an input default theory

3. Brave reasoning with default theories — testing if a formula belongs to some
extension of an input default theory.

The basic computational device was backtracking search for a basis of an extension



12 V. W. Marek, I. Niemelä and M. Truszczyński

of a finite default theory (D,W ). This was based on two observations due to Reiter:
that while default extensions of a finite default theory are infinite, they are finitely
generated; and that the generators are all formulas of W and the consequent formulas
of some defaults from D. We also employed ideas such as relaxed stratification of
defaults Cholewiński (1995); Lifschitz and Turner (1994) for pruning the search space
and relevance graphs for simplifying provability.

We also thought it was important to have the nonmonotonic reasoning community
accept the challenge of developing implementations of automated nonmonotonic rea-
soning. Our proposal to US ARO contained a request for funding of a retreat dedicated
to knowledge representation, nonmonotonic reasoning and logic programming. The
key goals for the retreat were:

1. To stimulate applications of nonmonotonic formalisms and implementations of
automated reasoning systems based on nonmonotonic logics

2. To promote the project to create a public domain library of benchmark problems
in nonmonotonic reasoning.

We held the workshop in Shakertown, KY, in October 1994. Over 30 leading re-
searchers in nonmonotonic reasoning participated in talks and we presented there early
prototypes of DeReS and TheoryBase. Importantly, we heard then for the first time
from Ilkka Niemelä about the work on systems to perform nonmonotonic reasoning
in the language of logic programs in his group at the Helsinki University of Technol-
ogy. The meeting helped to elevate the importance of implementations of nonmono-
tonic reasoning systems and their applications. It evidenced first advances in the area
of implementations, as well as in the area of benchmarks, essential as so far most
problems considered as benchmarks were toy problems such as “Tweety” and “Nixon
Diamond.”

The DeReS system was not designed with any specific applications in mind. At
the time we believed that, since default logic could model several aspects of com-
monsense reasoning, once DeReS became available, many artificial intelligence and
knowledge representation researchers would use it in their work. And we simply
regarded broadly understood knowledge representation problems as the main applica-
tion area for DeReS.

Working on DeReS immediately brought up to our attention the question of test-
ing and performance evaluation. In the summer of 1988, Mirek attended a meeting
on combinatorics where Donald Knuth talked about the problem of testing graph al-
gorithms and his proposal how to do it right. Knuth was of the opinion that testing
algorithms on randomly generated graphs is insufficient and, in fact, often irrelevant.
Graphs arising in real-life settings rarely resemble graphs generated at random from
some probabilistic model. To address the problem, Knuth developed a software sys-
tem, Stanford GraphBase, providing a mechanism for creating collections of graphs
that could be then used in projects developing graph algorithms. Graphs produced by
the Stanford GraphBase were mostly generated from real-life objects such as maps,
dictionaries, novels and images. Some were based on rather obscure sources such
as sporting events in Australia. The documentation was superb (the book by Knuth
on the Stanford GraphBase is still available). The Stanford GraphBase was free and
its use was not restricted. From our perspective, two aspects were essential. First,
the Stanford GraphBase provided a unique identifier to every graph it created and so



Origins of ASP 13

experiments could be described in a way allowing others to repeat them literally and
perform comparisons on identical sets of graphs. Second, the Stanford GraphBase
supported creating families of examples similar but increasing in size, thus allowing
to test scalability of algorithms being developed.

In retrospect, the moment we started talking about testing our implementations of
default logic was the defining moment on our path towards the answer-set program-
ming paradigm. Based on our complexity result concerning the existence of stable
models and its implication for default logic, we knew that all NP-complete graph
problems could be reduced to the problem of the existence of extensions. The reduc-
tions expressed instances of graph problems as default theories. Thus, in order to get
a family of default theories, similar but growing in size, we needed to select an NP-
complete problem on graphs (say, the hamiltonian cycle problem), generate a family
of graphs, and generate for each graph in the family the corresponding default the-
ory. These theories could be used to test algorithms for computing extensions. This
realization gave rise to the TheoryBase, a software system generating default theories
based on reductions of graph problems to the existence of the extension problem and
developed on top of the Stanford GraphBase, which served as the source of graphs.
The TheoryBase provided default theories based on six well-known graph problems:
the existence of k-colorings, Hamiltonian cycles, kernels, independent sets of size at
least k, and vertex covers of size at most k. As the Stanford GraphBase provided an
unlimited supply of graphs, the TheoryBase offered an unlimited supply of default
theories.

We will recall here the TheoryBase encoding of the existence of a k-coloring prob-
lem as it shows that already then some fundamental aspects of the methodology of rep-
resenting search problems as default theories started to emerge. Let G = (V,E) be an
undirected graph with the set of vertices V = {v1, . . . , vn}. Let C = {c1, . . . , ck} be
a set of colors. To express the property that vertex v is colored with c, we introduced
propositional atoms clrd(v, c). For each vertex vi, i = 1, . . . , n, and for each color
cj , j = 1, . . . , k, we defined the default rule

color(vi, cj) =
: ¬clr(vi, c1), ...,¬clr(vi, cj−1),¬clr(vi, cj+1), ...,¬clr(vi, ck)

clr(vi, cj)
.

The set of default rules {color(vi, cj) : j = 1, . . . , k} models a constraint that vertex
vi obtains exactly one color. The default theory (D0, ∅), where

D0 = {color(vi, cj) : i = 1, . . . , n, j = 1, . . . , k},

has kn extensions corresponding to all possible colorings (not necessarily proper) of
the vertices of G. Thus, the default theory (D0, ∅) defines the basic space of objects
within which we need to search for solutions. In the present-day answer-set program-
ming implementations choice or cardinality rules, which offer much more concise
representations, are used for that purpose. Next, our TheoryBase encoding imposed
constraints to eliminate those colorings that are not proper. To this end, we used ad-
ditional default rules, which we called killing defaults, and which now are typically
modeled by logic program rules with the empty head. To describe them we used a
new propositional variable F and defined

local(e, c) =
clrd(x, c) ∧ clrd(y, c) : ¬F

F
,



14 V. W. Marek, I. Niemelä and M. Truszczyński

for each edge e = (x, y) of the graph and for each color c. Each default local(e, c)
“kills” all color assignments which give color c to both ends of edge e. It is easy to
check (and it also follows from now well-known more general results) that defaults
of the form local(e, c) “kill” all non-proper colorings and leave precisely those that
are proper. This two-step modeling methodology, in which we first define the space of
objects that contains all solutions, and then impose constraints to weed away those that
fail some problem specifications, constitutes the main way by which search problems
are modeled in ASP.

The key lesson for us from the TheoryBase project was that combinatorial prob-
lems can be represented as default theories and that constructing these representations
is easy. It was then for the first time that we sensed that programs finding extensions
of default theories could be used as general purpose problem solving tools. It also
lead us, in our internal discussions to thinking about “second-order” flavor of default
logic, given the way it was used for computation. Indeed, in all theories we developed
for the TheoryBase, extensions rather than their single elements represented solutions.
In other words, the main reasoning task did not seem to be that of skeptical or brave
reasoning (does a formula follow skeptically or bravely from a default theory) but
computing entire extensions. We talked about this second-order flavor when present-
ing our paper on DeReS at the KR conference in 1996 (Cholewiński, Marek, and
Truszczyński, 1996). At that time, we knew we were closing in on a new declarative
problem-solving paradigm based on nonmonotonic logics.

A problem for us was, however, a fairly poor performance of DeReS. The default
extensions are closed under consequence. This means that processing of default the-
ories requires testing provability of prerequisites and justifications of defaults. This
turned out to be a major problem affecting the processing time of our implementa-
tions. It is not surprising at all in view of the complexity results of Gottlob (1992) and
Stillman (1992). Specifically, existence of extensions is a ΣP

2 -complete problem.
There is, of course, an easy case of provability when all formulas in a default

theory are conjunctions of literals only. Now the problem with the provability of
premises disappears. However, DeReS organized its search for solutions by looking
for sets of generating defaults, inheriting this approach from the case of general default
theories, rather than for literals generating an extension. And that was still a problem.
There are typically many more rules in a default theory than atoms in the language.

At the International Joint Conference and Symposium on Logic Programming in
1996, Ilkka and his student Patrik Simons presented the first report on their smod-
els system Niemelä and Simons (1996). But it seems fair to say that only a similar
presentation and a demo Ilkka gave at the Logic Programming and Non-Monotonic
Reasoning Conference in 1997, in Dagstuhl, made the community really take notice.
The lparse/smodels constituted a major conceptual breakthrough and handled nicely
all the traps DeReS did not avoid. First, lparse/smodels focused on the right fragment
of default logic, logic programming with the stable-model semantics. Next, it orga-
nized search for a stable model by looking for atoms that form it. Finally, it supported
programs with variables and separated, as was the standard in logic programming and
databases, a program (a problem specification) from an extensional database (an in-
stance of the problem).

The work by Niemelä had us focus our thinking about nonmonotonic logics as
computational devices on the narrower but all-important case of logic programs. We



Origins of ASP 15

formulated our ideas about the second-order flavor of problem solving with nonmono-
tonic logics and contrasted them with the traditional Prolog-style interpretation of
logic programming. We stated our initial thoughts on the methodology of problem
solving that exploited our ideas of modeling combinatorial problems that we used in
the TheoryBase project, as well as the notion of program-data separation that came
from the database community and was, as we just mentioned, already used in our field
by Niemelä. These ideas formed the backbone of our paper on an alternative way logic
programming could be used for solving search problems Marek and Truszczyński
(1999).

4 Towards Answer-Set Programming at the Helsinki
University of Technology

In this section Ilkka Niemelä discusses the developments at the Helsinki University
of Technology that led to the paper Logic Programs with Stable Model Semantics as
a Constraint Programming Paradigm Niemelä (1999). Similarly as in the previous
section, the account is very personal and quite subjective. Hence, in this section ”I”
refers to Ilkka.

I got exposed to nonmonotonic reasoning when I joined the group of Professor
Leo Ojala at the Helsinki University of Technology in 1985. The group was studying
specification and verification techniques of distributed systems. One of the themes
was specification of distributed systems using modal, in particular, temporal and dy-
namic logics. The group had got interested in the solutions of the frame problem
based on nonmonotonic logics when looking for compact and computationally effi-
cient logic-based specification techniques for distributed systems. My role as a new
research assistant in the group was to examine autoepistemic logic by Moore, non-
monotonic modal logics by McDermott and Doyle, and default logic by Reiter from
this perspective.

There was a need for tool support and together with a doctoral student Heikki
Tuominen we developed a system that we called the Helsinki Logic Machine, “an
experimental reasoning system designed to provide assistance needed for application
oriented research in logic” (Niemelä and Tuominen, 1986, 1987). The system in-
cluded tools for theorem proving, model synthesis, model checking, formula manip-
ulation for modal, temporal, epistemic, deontic, dynamic, and nonmonotonic logics.
It was written in Quintus Prolog and contained implementations, for instance, for
Reiter’s default logic, McDermott and Doyle style nonmonotonic modal logic, and
autoepistemic logic in the propositional case based on the literature and some own
work (Etherington, 1987; McDermott and Doyle, 1980; Niemelä, 1988). While non-
monotonic reasoning was a side-track in the Helsinki Logic Machine, it seems that it
was one of the earliest working nonmonotonic reasoning systems although we were
not very well aware of this at the time.

The work and, in particular, the difficulties in developing efficient tools led me to
further investigations to gain a deeper understanding of algorithmic issues and related
complexity questions (Niemelä, 1988; Niemelä, 1988, 1990; Niemelä, 1992). Similar
questions were studied by others and in the early 90s results explaining the algorith-
mic difficulties started emerging. These results showed that key reasoning tasks in



16 V. W. Marek, I. Niemelä and M. Truszczyński

major nonmonotonic logics are complete for the second level of the polynomial hier-
archy Cadoli and Lenzerini (1990); Gottlob (1992); Stillman (1992); Niemelä (1992).
This indicated that these nonmonotonic logics have two orthogonal sources of com-
plexity that we called classical reasoning and conflict resolution. Orthogonality means
that even if we assume that classical reasoning can be done efficiently, nonmonotonic
reasoning still remains NP-hard (unless the polynomial hierarchy collapses).

These results made me to focus more on conflict resolution to develop techniques
for pruning the search space of potential expansions/extensions. One approach was to
develop compact characterizations of expansions/extensions capturing their key ingre-
dients. For autoepistemic logic I developed such a characterization based on the idea
that expansions can be captured in terms of the modal subformulas in the premises and
classical reasoning and exploited the idea in a decision procedure for autoepistemic
logic Niemelä (1988). Together with Jussi Rintanen we also showed that if one lim-
its the theory in such a way that conflict resolution is easy by requiring stratification,
then efficient reasoning is possible by further restrictions affecting the other source of
complexity Niemelä and Rintanen (1992).

The characterization based on modal subformulas generalizes also to default logic
where extensions can be captured using justifications in the rules and leads to an inter-
esting way of organizing the search for expansions/extensions as a binary search tree
very similar to that in the DPLL algorithm for SAT Niemelä (1994, 1995). Further
pruning techniques can be integrated to cut substantial parts of the potential search
space for expansions/extensions and exploit, for instance, stratified parts of the rule
set. My initial but very unsystematic experimentation gave promising results.

In 1994 encouraged and challenged by the Shakertown Workshop organized by
Victor and Mirek, I decided to restrict to a simple subclass of default theories, that is,
logic programs with the stable model semantics. For this subclass classical reasoning
is essentially limited to Horn clauses and can be done efficiently in linear time using
techniques proposed by Dowling and Gallier in the 1980s Dowling and Gallier (1984).
I had no particular application in mind. The goal was to study whether the conflict
resolution techniques I had developed for autoepistemic and default logic would scale
up so that it would be possible to handle very large sets of rules which meant at that
time thousands or even tens of thousands of rules.

At that time Patrik Simons joined my group and started working on a C++ imple-
mentation of the general algorithm tailored to logic programs. Patrik had excellent
insights into the key implementation issues from very early on and the first version
was released in 1995 Niemelä and Simons (1995). The C++ implementation was
called smodels and it computed stable models for ground normal programs. It gave
surprising good results immediately and could handle programs with a few thousand
ground rules. Challenge benchmarks were combinatorial problems, mainly colorabil-
ity and Hamiltonian cycles, an idea that I learnt from Mirek and Victor in Shakertown.
For such hard problems the performance of smodels was substantially better than
state-of-the-art tools such as the SLG system Chen and Warren (1996).

When developing benchmarks for evaluating novel algorithmic ideas and imple-
mentation techniques we soon realized that working with ground programs is too cum-
bersome. In practice, for producing large enough interesting ground programs for
benchmarking we needed to write separate programs in some other language to gen-
erate ground logic programs. This took considerable time for each benchmark family



Origins of ASP 17

and was quite inflexible and error-prone. We realized that in order to attract users and
to be able to attack real applications we needed to support logic program rules with
variables.

For handling rules with variables we decided to employ a two level architecture.
The first phase was concerned with grounding, a process to generate a set of ground
instances of the rules in the program so that stable models are preserved. Actual
stable-model computation was taking place in the second model search phase on the
program grounded in the previous one. The idea was to have a separation of concern,
that is, be able to exploit advanced database and other such techniques in the first
phase and novel search and pruning techniques in the other in such a way that both
steps could be developed relatively independently. We released the first such system
in 1996 Niemelä and Simons (1996).

This was a major step forward in attracting users and getting closer to applica-
tions. Such a system supporting rules with variables enabled compact and modular
encodings of problems without any further host language. It was now also possible to
separate the problem specification and the data providing the instance to be solved.

Working with the system and studying potential applications made me realize that
logic programming with the stable model semantics is very different from traditional
logic programming implemented in various Prolog systems. These systems are an-
swering queries by SLD resolution and producing answer substitutions as results. But
we were using logic programs more like in a constraint programming approach where
rules are seen as constraints on a solution set (stable model) of the program and where
a solution is not an answer substitution but a stable model, that is, a valuation that sat-
isfies all the rules. This is like in constraint satisfaction problems where a solution is a
variable assignment satisfying all the constraints. I wrote down these ideas in a paper
Logic Programs with Stable Model Semantics as a Constraint Programming Paradigm
which was first presented in a workshop on Computational Aspects of Nonmonotonic
Reasoning in 1998 Niemelä (1998) and then appeared as an extended journal version
in 1999 Niemelä (1999). The paper emphasized, in particular, the knowledge repre-
sentation advantages of logic programs as a constraint satisfaction framework:

“Logic programming with the stable model semantics is put forward as
an interesting constraint programming paradigm. It is shown that the
paradigm embeds classical logical satisfiability but seems to provide a
more expressive framework from a knowledge representation point of
view.”

In 1998 we put more and more emphasis on potential applications and, in partic-
ular, on product configuration. This made us realize that a more efficient grounder
supporting an extended modeling language is needed. At that point another student,
Tommi Syrjänen, with excellent implementation skills and insight on language design,
joined the group and work on a new grounder, lparse, started. The goal was to en-
force a tighter typing of the variables in the rules to facilitate the application of more
advanced database techniques for grounding and the integration of built-in predicates
and functions, for instance, for arithmetic.

We also realized that for many applications normal logic programs were inade-
quate not allowing compact and intuitive encodings. This led to the introduction of
new language constructs: (i) choice rules for encoding choices instead of recursive odd



18 V. W. Marek, I. Niemelä and M. Truszczyński

loops needed in normal programs and (ii) cardinality and weight constraints for typ-
ical conditions needed in many practical applications Soininen and Niemelä (1998);
Niemelä et al. (1999). In order to fully exploit the extensions computationally Patrik
Simons developed techniques to provide built-in support for them also in the model
search phase in the version 2 of smodels Simons (1999).

So in 1999 when Vladimir Lifschitz coined the term answer-set programming, the
system that we had with lparse as the grounder and smodels version 2 as the
model search engine offered quite promising performance. For example, for propo-
sitional satisfiability the performance of smodels compared nicely to the best SAT
solvers at that time (before more efficient conflict driven clause learning solvers like
zchaff emerged). Moreover, very interesting serious application work started. For
example, at the Helsinki University of Technology we cooperated with the product
data management group on automated product configuration which eventually led to
a spin-off company Variantum (http://www.variantum.com/). Moreover, in
Vienna the dlv project for handling disjunctive programs had started a couple years
earlier and had already made promising progress.

5 Conclusions

Now, more than 12 years since ASP became a recognizable paradigm of search prob-
lem solving, we see that the efforts of researchers in various domains: artificial intel-
ligence, knowledge representation, nonmonotonic reasoning, satisfiability and others
resulted in a programming formalism that is being used in a variety of areas, but prin-
cipally in those where the modelers face the issues of defaults, frame axioms and
other nonmonotonic phenomena. The experience of ASP programmers shows that
these phenomena can be naturally incorporated into the practice of modeling real-life
problems.

We believe ASP is here to stay. It provides a venue for problem modeling, prob-
lem description and problem solving. This does not mean that the process of devel-
oping ASP is finished. Certainly new extensions of ASP will emerge in the future.
Additional desiderata include: software engineering tools for testing correctness of
implementation, integrated development environments and other tools that will speed
up the process of the use of ASP in normal programming practice. Better grounders
and better solvers able to work with incremental grounding only will certainly emerge.
Similarly, new application domains will surface and bring new generations of investi-
gators and, more importantly, users for ASP.

Acknowledgments

The work of the second author was partially supported by the Academy of Finland
(project 122399). The work of the third author was partially supported by the NSF
grant IIS-0913459.



Origins of ASP 19

References
K. Apt, H. A. Blair, and A. Walker. Towards a theory of declarative knowledge. In J. Minker,

editor, Foundations of deductive databases and logic programming, pages 89–142. Morgan
Kaufmann, 1988.

M. Balduccini, M. Gelfond, and M. Nogueira. Answer set based design of knowledge systems.
Annals of Mathematics and Artificial Intelligence, 47(1-2):183–219, 2006.

P. Besnard. An Introduction to Default Logic. Springer, Berlin, 1989.

N. Bidoit and C. Froidevaux. Minimalism subsumes default logic and circumscription. In
Proceedings of IEEE Symposium on Logic in Computer Science, LICS 1987, pages 89–97.
IEEE Press, 1987.

N. Bidoit and C. Froidevaux. General logical databases and programs: default logic semantics
and stratification. Information and Computation, 91(1):15–54, 1991.

G. Boenn, M. Brain, M. De Vos, and J. Fitch. Automatic music composition using answer set
programming. Theory and Practice of Logic Programming, 11(2-3):397-427, 2011.

M. Brain and M. De Vos. Debugging logic programs under the answer set semantics. In
Answer Set Programming, Advances in Theory and Implementation, Proceedings of the 3rd
International ASP’05 Workshop, CEUR Workshop Proceedings 142, 2005.

G. Brewka. Nonmonotonic Reasoning: Logical Foundations of Commonsense, volume 12 of
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, Cam-
bridge, UK, 1991.

R. Brummayer and M. Järvisalo. Testing and debugging techniques for answer set solver de-
velopment. Theory and Practice of Logic Programming, 10(4-6):741–758, 2010.

M. Cadoli and M. Lenzerini. The complexity of closed world reasoning and circumscription. In
Proceedings of the 8th National Conference on Artificial Intelligence, pages 550–555. MIT
Press, 1990.

M. Cadoli, T. Eiter, and G. Gottlob. Default logic as a query language. IEEE Transactions on
Knowledge and Data Engineering, 9(3):448–463, 1997.

W. Chen and D.S. Warren. Computation of stable models and its integration with logical query
processing. IEEE Transactions on Knowledge and Data Engineering, 8(5):742–757, 1996.

P. Cholewiński. Stratified default theories. In L. Pacholski and J. Tiuryn, editors, Computer
Science Logic, volume 933 of LNCS, pages 456–470. Springer, 1995

P. Cholewiński, W. Marek, and M. Truszczyński. Default reasoning system DeReS. In Pro-
ceedings of the 5th International Conference on Principles of Knowledge Representation
and Reasoning, KR 1996, pages 518–528. Morgan Kaufmann, 1996.

K.L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and data bases,
pages 293–322. Plenum Press, New York-London, 1978.

M. Dao-Tran, T. Eiter, M. Fink, and T. Krennwallner. Modular nonmonotonic logic program-
ming revisited. In P. M. Hill and D. S. Warren, editors, Proceedings of the 25th International
Conference on Logic Programming, ICLP 2009, volume 5649 of LNCS, pages 145–159.
Springer, 2009.



20 V. W. Marek, I. Niemelä and M. Truszczyński

M. Denecker. The well-founded semantics is the principle of inductive definition. In J. Dix,
L. Fariñas del Cerro, and U. Furbach, editors, Proceedings of the 6th European Workshop on
Logics in Artificial Intelligence, JELIA 1998, volume 1489 of LNCS, pages 1–16. Springer,
1998.

M. Denecker. Extending classical logic with inductive definitions. In J. W. Lloyd, V. Dahl, U.
Furbach, M. Kerber, K.-K. Lau, C. Palamidessi, L. Moniz Pereira, Y. Sagiv, P. J. Stuckey,
editors, Computational Logic, volume 1861 of LNCS, pages 703–717. Springer, 2000.

M. Denecker and E. Ternovska. A logic for non-monotone inductive definitions. ACM Trans-
actions on Computational Logic, 9(2), 2008.

M. Denecker, V.W. Marek, and M. Truszczyński. Uniform semantic treatment of default and
autoepistemic logics. Artificial Intelligence Journal, 143:79–122, 2003.

M. Denecker, J. Vennekens, S. Bond, M. Gebser, and M. Truszczynski. The second answer
set programming competition. In E. Erdem, F. Lin, and T. Schaub, editors, Proceedings of
the 10th International Conference on Logic Programming and Nonmonotonic Reasoning,
LPNMR 2009, volume 5753 of LNCS, pages 637–654. Springer, 2009.

M. Denecker, V.W. Marek, and M. Truszczynski. Reiter’s Default Logic Is a Logic of Autoepis-
temic Reasoning And a Good One, Too. This volume.

W.F. Dowling and J.H. Gallier. Linear-time algorithms for testing the satisfiability of proposi-
tional Horn formulae. Journal of Logic Programming, 1(3):267–284, 1984.

D. East and M. Truszczyński. Predicate-calculus based logics for modeling and solving search
problems. ACM Transactions on Computational Logic, 7:38–83, 2006.

T. Eiter and G. Gottlob. Propositional circumscription and extended closed world reasoning are
πp
2 -complete. Theoretical Computer Science, 114(2):231 – 245, 1993a.

T. Eiter and G. Gottlob. Complexity results for disjunctive logic programming and application to
nonmonotonic logics. In D. Miller, editor, Proceedings of the 1993 International Symposium
on Logic Programming, pages 266–278. MIT Press, 1993b.

T. Eiter and G. Gottlob. On the computational cost of disjunctive logic programming: proposi-
tional case. Annals of Mathematics and Artificial Intelligence, 15(3-4):289–323, 1995.

E. Erdem. Applications of answer set programming in phylogenetic systematics. In M. Balduc-
cini and T.C. Son, editors, Essays in Honor of Michael Gelfond. Springer, 2011.

E. Erdem and V. Lifschitz. Tight logic programs. Theory and Practice of Logic Programming,
3(4-5):499–518, 2003.

D. W. Etherington. Formalizing nonmonotonic reasoning systems. Artificial Intelligence, 31
(1):41–85, 1987.

J. J. Finger. Exploiting Constraints in Design Synthesis. PhD thesis, Stanford University, 1987.

R. A. Finkel and B. O’Sullivan. Reasoning about conditional constraint specifications. Artificial
Intelligence for Engineering Design, Analysis and Manufacturing, 25(2):163-174, 2011.

M. C. Fitting. A Kripke-Kleene semantics for logic programs. Journal of Logic Programming,
2(4):295–312, 1985.



Origins of ASP 21

G. Friedrich, M. Fugini, E. Mussi, B. Pernici, and G. Tagni. Exception handling for repair in
service-based processes. IEEE Transactions on Software Engineering, 36(2):198–215, 2010.

D.M. Gabbay. Theoretical foundations for non-monotonic reasoning in expert systems. In
Proceedings of the NATO Advanced Study Institute on Logics and Models of Concurrent
Systems, pages 439–457. Springer, 1989.

M. Gebser, L. Liu, G. Namasivayam, A. Neumann, T. Schaub, and M. Truszczyński. The first
answer set programming system competition. In C. Baral, G. Brewka, and J. Schlipf, editors,
Proceedings of the 9th International Conference on Logic Programming and Nonmonotonic
Reasoning, LPNMR 2007, volume 4483 of LNCS, pages 3–17. Springer, 2007.

M. Gebser, C. Guziolowski, M. Ivanchev, T. Schaub, A. Siegel, S. Thiele, and P. Veber. Repair
and prediction (under inconsistency) in large biological networks with answer set program-
ming. In F. Lin, U. Sattler and M. Truszczynski, editors, Proceedings of the 12th Inter-
national Conference on Principles of Knowledge Representation and Reasoning, KR 2010,
pages 497–507. AAAI Press, 2010a.

M. Gebser, A. König, T. Schaub, S. Thiele, and P. Veber. The BioASP library: ASP solutions
for systems biology. In Proceedings of the 22nd IEEE International Conference on Tools
with Artificial Intelligence, ICTAI 2010, pages 383–389, 2010b.

M. Gelfond. On stratified autoepistemic theories. In Proceedings of AAAI 1987, pages 207–211.
Morgan Kaufmann, 1987.

M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In R. A.
Kowalski and K. A. Bowen, editors, Proceedings of the International Joint Conference and
Symposium on Logic Programming, pages 1070–1080. MIT Press, 1988.

M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases.
New Generation Computing, 9:365–385, 1991.

M.L. Ginsberg. A circumscriptive theorem prover. In M. Reinfrank, J. de Kleer, M. L. Ginsberg,
and E. Sandewall, editors, Proceedings of the 2nd International Workshop on Non-Monotonic
Reasoning, volume 346 of LNCS, pages 100–114. Springer, 1989.

G. Gottlob. Complexity results for nonmonotonic logics. Journal of Logic and Computation, 2
(3):397–425, 1992.

S. Hanks and D. McDermott. Default reasoning, nonmonotonic logics and frame problem. In
Proceedings of AAAI 1986, pages 328–333. Morgan Kaufmann, 1986.

T. Janhunen, E. Oikarinen, H. Tompits, and S. Woltran. Modularity aspects of disjunctive stable
models. Journal of Artificial Intelligence Research, 35:813–857, 2009.

H.A. Kautz and B. Selman. Hard problems for simple default logics. In R. J. Brachman,
H. J. Levesque, and R. Reiter, editors, Proceedings of the 1st International Conference on
Principles of Knowledge Representation and Reasoning, KR 1989, pages 189–197. Morgan
Kaufmann, 1989.

K. Konolige. On the relation between default and autoepistemic logic. Artificial Intelligence,
35(3):343–382, 1988.

K. Konolige. Errata: On the relation between default and autoepistemic logic. Artificial Intelli-
gence, 41(1):115, 1989.



22 V. W. Marek, I. Niemelä and M. Truszczyński

S. Kraus, D. Lehmann, and M. Magidor. Nonmonotonic reasoning, preferential models and
cumulative logics. Artificial Intelligence, 44:167–207, 1990.

K. Kunen. Negation in logic programming. Journal of Logic Programming, 4(4):289–308,
1987.

D. Lehmann and M. Magidor. What does a conditional knowledge base entail? Artificial
Intelligence, 55:1–60, 1992.

N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The DLV system
for knowledge representation and reasoning. ACM Transactions on Computational Logic,
7(3):499–562, 2006.

Y. Lierler and M. Maratea. Cmodels-2: SAT-based answer set solver enhanced to non-tight
programs. In V. Lifschitz, I. Niemelä, editors, Proceedings of the 7th International Confer-
ence on Logic Programming and Nonmonotonic Reasoning, LPNMR 2004, volume 2923 of
LNCS, pages 346–350. Springer, 2004.

V. Lifschitz. Circumscriptive theories: a logic-based framework for knowledge representation.
Journal of Philosophical Logic, 17(4):391–441, 1988.

V. Lifschitz and H. Turner. Splitting a logic program. In P. Van Hentenryck, editor, Proceedings
of the 11th International Conference on Logic Programming, ICLP 1994, pages 23–37. MIT
Press, 1994.

F. Lin and Y. Zhao. ASSAT: Computing answer sets of a logic program by SAT solvers. In
Proceedings of the 18th National Conference on Artificial Intelligence, AAAI 2002, pages
112–117. AAAI Press, 2002.

L. Liu and M. Truszczyński. Pbmodels - software to compute stable models by pseudoboolean
solvers. In C. Baral, G. Greco, N. Leone, G. Terracina Proceedings of the 8th International
Conference on Logic Programming and Nonmonotonic Reasoning, LPNMR 2005, volume
3662 of LCNS, pages 410–415. Springer, 2005.

D. Makinson. General theory of cumulative inference. In M. Reinfrank, J. de Kleer, M. L.
Ginsberg, and E. Sandewall, editors, Proceedings of the 2nd International Workshop on Non-
Monotonic Reasoning, volume 346 of LNCS, pages 1–18. Springer, 1989.

V.W. Marek and J.B. Remmel. On the expressibility of stable logic programming. Theory and
Practice of Logic Programming, 3:551–567, 2003.

V.W. Marek and M. Truszczyński. Stable models and an alternative logic programming
paradigm. In K.R. Apt, W. Marek, M. Truszczyński, and D.S. Warren, editors, The Logic
Programming Paradigm: a 25-Year Perspective, pages 375–398. Springer, 1999.

W. Marek. Stable theories in autoepistemic logic. Fundamenta Informaticae, 12(2):243–254,
1989.

W. Marek and M. Truszczyński. Relating autoepistemic and default logics. In R. J. Brachman,
H. J. Levesque, and R. Reiter, editors, Proceedings of the 1st International Conference on
Principles of Knowledge Representation and Reasoning, KR 1989, pages 276–288. Morgan
Kaufmann, 1989.

W. Marek and M. Truszczyński. Stable semantics for logic programs and default theories. In
E.Lusk and R. Overbeek, editors, Proceedings of the North American Conference on Logic
Programming, pages 243–256. MIT Press, 1989b.



Origins of ASP 23

W. Marek and M. Truszczyński. Autoepistemic logic. Journal of the ACM, 38(3):588–619,
1991.

W. Marek and M. Truszczyński. Nonmonotonic Logic; Context-Dependent Reasoning.
Springer, 1993.

W. Marek, G.F. Shvarts, and M. Truszczyński. Modal nonmonotonic logics: ranges, character-
ization, computation. Journal of the ACM, 40(4):963–990, 1993.

W. Marek, A. Nerode, and J. B. Remmel. The stable models of predicate logic programs.
Journal of Logic Programming, 21(3):129–154, 1994.

J. McCarthy. Epistemological problems of Artificial Intelligence. In Proceedings of the 5th
International Joint Conference on Artificial Intelligence, pages 1038–1044, 1977.

J. McCarthy. Circumscription — a form of non-monotonic reasoning. Artificial Intelligence,
13(1-2):27–39, 1980.

J. McCarthy and P. Hayes. Some philosophical problems from the standpoint of artificial in-
telligence. In B. Meltzer and D. Michie, editors, Machine Intelligence 4, pages 463–502.
Edinburgh University Press, 1969.

D. McDermott. Nonmonotonic logic II: nonmonotonic modal theories. Journal of the ACM, 29
(1):33–57, 1982.

D. McDermott and J. Doyle. Nonmonotonic logic I. Artificial Intelligence, 13(1-2):41–72,
1980.

R. C. Moore. Possible-world semantics for autoepistemic logic. In R. Reiter, editor, Proceed-
ings of the Workshop on Non-Monotonic Reasoning, pages 344–354, 1984. Reprinted in:
M. Ginsberg, editor, Readings on Nonmonotonic Reasoning, pages 137–142, Morgan Kauf-
mann, 1990.

R.C. Moore. Semantical considerations on nonmonotonic logic. Artificial Intelligence, 25(1):
75–94, 1985.

I. Niemelä. On the complexity of the decision problem in propositional nonmonotonic logic. In
E. Börger, H. Kleine Büning, M. M. Richter, editors, Proceedings of the 2nd Workshop on
Computer Science Logic, CSL 1988, volume 385 of LNCS, pages 226–239. Springer, 1988.

I. Niemelä. Decision procedure for autoepistemic logic. In R. Overbeek E. Lusk, editor, Pro-
ceedings of the 9th International Conference on Automated Deduction, volume 310 of LNCS,
pages 675–684. Springer, 1988.

I. Niemelä. Towards automatic autoepistemic reasoning. In J. van Eijck, editor, Proceedings
of the European Workshop on Logics in Artificial Intelligence, JELIA 1990, volume 478 of
LNCS, pages 428–443. Springer, 1990.

I. Niemelä. On the decidability and complexity of autoepistemic reasoning. Fundamenta Infor-
maticae, 17(1-2):117–155, 1992.

I. Niemelä. A decision method for nonmonotonic reasoning based on autoepistemic reasoning.
In J. Doyle, E. Sandewall and P. Torasso, Proceedings of the 4th International Conference on
Principles of Knowledge Representation and Reasoning, pages 473–484. Morgan Kaufmann,
1994.



24 V. W. Marek, I. Niemelä and M. Truszczyński

I. Niemelä. Towards efficient default reasoning. In C. S. Mellish, editor, Proceedings of IJCAI
1995, pages 312–318. Morgan Kaufmann, 1995.

I. Niemelä. Logic programs with stable model semantics as a constraint programming paradigm.
In Proceedings of the Workshop on Computational Aspects of Nonmonotonic Reasoning,
pages 72–79. Helsinki University of Technology, Digital Systems Laboratory, Research Re-
port A52, May 1998.

I. Niemelä. Logic programming with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence, 25(3-4):241–273, 1999.

I. Niemelä and J. Rintanen. On the impact of stratification on the complexity of nonmonotonic
reasoning. In B. Nebel, C. Rich, and W. R. Swartout, editors, Proceedings of the 3rd In-
ternational Conference on Principles of Knowledge Representation and Reasoning, pages
627–638. Morgan Kaufmann, 1992.

I. Niemelä and P. Simons. Evaluating an algorithm for default reasoning. In Working Notes of
the IJCAI’95 Workshop on Applications and Implementations of Nonmonotonic Reasoning
Systems, Montreal, Canada, pages 66–72, Montreal, Canada, August 1995.

I. Niemelä and P. Simons. Efficient implementation of the well-founded and stable model
semantics. In M. Maher, editor, Proceedings of the Joint International Conference and Sym-
posium on Logic Programming, pages 289–303. MIT Press, 1996.

I. Niemelä and H. Tuominen. A system for logical expertise. In Proceedings of the Finnish
Artificial Intelligence Symposium, Volume 2, pages 44–53, Espoo, Finland, August 1986.
Finnish Society of Information Processing Science, 1986.

I. Niemelä and H. Tuominen. Helsinki Logic Machine: a system for logical expertise. Technical
report B1, Helsinki University of Technology, Digital Systems Laboratory, Espoo, Finland,
December 1987.

I. Niemelä, P. Simons, and T. Soininen. Stable model semantics of weight constraint rules. In M.
Gelfond, N. Leone, and G. Pfeifer, editors, Proceedings of the 5th International Conference
on Logic Programming and Nonmonotonic Reasoning, LPNMR 1999, volume 1730 of LNCS,
pages 317–331. Springer, 1999.

J. Pearl. System Z: A natural ordering of defaults with tractable applications to nonmonotonic
reasoning. In R. Parikh, editor, Proceedings of the 3rd Conference on Theoretical Aspects of
Reasoning about Knowledge, TARK 1990, pages 121–135. Morgan Kaufmann, 1990.

R. Reiter. On closed world data bases. In H. Gallaire and J. Minker, editors, Logic and data
bases, pages 55–76. Plenum Press, 1978.

R. Reiter. A logic for default reasoning. Artificial Intelligence, 13(1-2):81–132, 1980.

R. Reiter and G. Criscuolo. On interacting defaults. In P. J. Hayes, editor, Proceedings of IJCAI
1981, pages 270–276. William Kaufman, 1981.

J. Schlipf. The expressive powers of the logic programming semantics. Journal of Computer
and System Sciences, 51(1):64–86, 1995.

G.F. Schwarz. Autoepistemic logic of knowledge. In A. Nerode, W. Marek, and V.S. Subrah-
manian, editors, Proceedings of the 1st International Workshop on Logic Programming and
Nonmonotonic Reasoning, LPNMR 1991, pages 260–274. MIT Press, 1991.



Origins of ASP 25

G.F. Schwarz. Minimal model semantics for nonmonotonic modal logics. In Proceedings of
LICS 1992, pages 34–43. IEEE Computer Society, 1992.

G.F. Schwarz and M. Truszczyński. Modal logic S4F and the minimal knowledge paradigm. In
Y. Moses, editor, Proceedings of TARK 1992, pages 34–43. Morgan Kaufmann, 1992.

G.F. Shvarts. Autoepistemic modal logics. In R. Parikh, editor, Proceedings of TARK 1990,
pages 97–109, Morgan Kaufmann, 1990.

P. Simons. Extending the stable model semantics with more expressive rules. In M. Gelfond,
N. Leone, and G. Pfeifer, editors, Proceedings of the 5th International Conference on Logic
Programming and Nonmonotonic Reasoning, LPNMR 1999, volume 1730 of LNCS, pages
305–316. Springer, 1999.

T. Soininen and I. Niemelä. Developing a declarative rule language for applications in product
configuration. In G. Gupta, editor, Proceedings of the 1st International Workshop on Practi-
cal Aspects of Declarative Languages, PADL 1999, volume 1551 of LNCS, pages 305–319.
Springer, 1998.

R.C. Stalnaker. A note on nonmonotonic modal logic. Artificial Intelligence, 64(2):183–196,
1993; broadly available as unpublished manuscript, 1980.

J. Stillman. The complexity of propositional default logics. In W. R. Swartout, editor, Proceed-
ings of the 10th National Conference on Artificial Intelligence, AAAI 1992, pages 794–800,
MIT Press, 1992.

J. Tiihonen, T. Soininen, I. Niemelä, and R. Sulonen. A practical tool for mass-customizing
configurable products. In Proceedings of the 14th International Conference on Engineering
Design, pages 1290–1299, 2003.

M. Truszczyński. Modal interpretations of default logic. In R. Reiter and J. Mylopoulos, editors,
Proceedings of IJCAI 1991, pages 393–398. Morgan Kaufmann, 1991.

A. Van Gelder, K.A. Ross, and J.S. Schlipf. The well-founded semantics for general logic
programs. Journal of the ACM, 38(3):620–650, 1991.


