
Disjunctive Programs with Set Constraints

Victor W. Marek1 and Jeffrey B. Remmel2

1 Department of Computer Science, University of Kentucky, Lexington, KY 40506 ⋆

2 Departments of Mathematics and Computer Science, University of California at
San Diego, La Jolla, CA 92903 ⋆⋆

To Vladimir Lifschitz on the occasion
of his 65-th birthday: in recognition of
his many contributions to Nonmonotonic
Reasoning which have inspired so many
researchers in the field.

Abstract. We study an extension of disjunctive logic programs called
set constraint disjunctive (SCD) programs where the clauses of the pro-
gram are allowed to have a disjunction of monotone set constraints in
their head and arbitrary monotone and antimonotone set constraints in
their body. We introduce new class of models called selector stable mod-
els which represent all models which can be computed by an analogue
the Gelfond-Lifschitz transform. We show that the stable models of dis-
junctive logic programs can be defined in terms of selector stable models
and then extend this result to SCD logic programs. Finally we show that
there is a natural proof theory associated with selector stable models.

1 Introduction

The answer-set semantics for disjunctive programs both resembles and differs
from the answer set semantics for normal logic programs. On the one hand, it
is based on the notion of the Gelfond-Lifschitz reduct [6]. On the other hand,
it involves an additional element, namely, the minimality of a model. This con-
joining of two seemingly different notions results of the increased expressibility.
That is, propositional disjunctive programs capture the class of ΣP

2 problems [3].
In this paper, we investigate a class of programs, called set constraint disjunc-
tive (SCD) logic programs, which generalize disjunctive logic programs [11] and
set constraint logic programs [13]. Clauses in SCD logic programs are allowed
to have heads which are a disjunction of monotone set constraints and bodies
which are conjunctions of monotone and antimonotone set constraints.

We define a natural class of models called selector stable models which can
be constructed via an analogue of the standard method of constructing stable
models for normal logic programs based on the Gelfond-Lifschitz reduct. Selector
stable models are based on an underlying selector function f which selects for
each SCD clause C in a SCD program D, a specific set of atoms f(C) such that

⋆ email:marek@cs.uky.edu
⋆⋆ email: jremmel@ucsd.edu



f(C) satisfies at least one monotone constraint that occurs in the head of the C.
When D is an SCD program which has no antimonotone set constraints in the
body of its clauses, then D behaves like a Horn program in that we can assign an
analogue of the one-step provability operator Tf,D to D and f . Tf,D is always a
monotone operator whose least fixpoint is a model of P . Conversely, each model
M of such a Horn-like program determines a canonical function f so that the
least fixpoint of Tf,D is included inM . We can then define the notion of a selector
stable model for D and f via the usual Gelfond-Lifschitz transform assuming
that the selector function f satisfies a simple coherence condition which assures
that f(C1) = f(C2) whenever the Horn parts of clauses C1 and C2 coincide.

In the special case of disjunctive logic programs, we will show that a stable
model is just a minimal selector stable model. A similar result holds for general
SCD programs. We will also show that selector stable models have a natural
proof theory associated with them.

The outline of this paper is as follows. In Section 2, we shall define the basic
notions of set constraints and SCD programs. In Section 3, we shall show how
stable models of disjunctive logic programs can be defined via selector stable
models and define a proof theory of selector stable models. In Section 4, we will
show how the results of Section 3 naturally extend to SCD logic programs. In
Section 5, we will state our conclusions and perspectives for further research.

2 Preliminaries

Given any set X , we let 2X denote the set of all subsets of X . Let At be a set
of propositional variables. A set constraint over At is a pair 〈X,F 〉 where X is
a finite subset of At and F ⊆ 2X . A set constraint 〈X,F 〉 is called monotone
if whenever Y ∈ F and Y ⊆ Z ⊆ X , Z ∈ F . 〈X,F 〉 is called antimonotone if
whenever Y ∈ F and Z ⊆ Y , Z ∈ F . Set constraints were introduced by the au-
thors in [13] and were further studied in [9, 12]. The semantics for programs with
set constraints introduced in [13] was a natural generalization of the proposal
of [18]. An alternative semantics for those constraints (with the name abstract
constraints) was studied in [19]. A more general proposal for the semantics of
abstract constraints was introduced in [10] which included a set of postulates
that should be satisfied by any reasonable semantics for abstract constraints.

Given a set constraint S = 〈X,F 〉, we define the monotonic closure of S to
be the set constraint S = 〈X,F 〉 where A ∈ F if and only if A ⊆ X and there
is a B ∈ F such that B ⊆ A. Similarly, we define the antimonotonic closure of
S to be the set constraint S = 〈X,F 〉 where A ∈ F if and only if there is a
B ∈ F such that A ⊆ B. We say a subset M of At is a model of 〈X,F 〉, written
M |= 〈X,F 〉, if M ∩X ∈ F . One advantage of monotone constraints 〈X,F 〉 is
that if M ⊆ N ⊆ At and M |= 〈X,F 〉, then N |= 〈X,F 〉, Among the monotone
constraints, a special role is played by monotone cardinality constraints and by
cones i.e., constraints of the form CZ = 〈X, {Y : Z ⊆ Y ⊆ X}〉. In particu-
lar, every monotone constraint and every monotone cardinality constraint can



be represented as union of cones. An analogous result holds for antimonotone
constraints [12].

Set constraints or abstract constraints are a common generalization of con-
straints pervasive in ASP literature such as cardinality constraints, weight con-
straints, parity constraints, SQL constraints (i.e., those using constructs such
as min,max avg, etc.) One complaint about the practicality of set constraints is
that when a set constraint is represented explicitly the size of such representa-
tion may be exponential in |X |. While this is true in general, there are many
set constraints which have exponential size when written out explicitly, but still
can be processed efficiently. For example, the monotone cardinality constraint
{Y : |Y | ≥ .5 ∗ |X |} has exponential size when written out explicitly. Neverthe-
less, cardinality constraints and weight constraints that have been implemented
effectively. That is, we write kXℓ for the set constraint such that M |= kXℓ
if and only if k ≤ |M ∩ X | ≤ ℓ. Thus kXℓ = 〈X,F 〉 where F is the family
of sets A ⊆ X such that k ≤ |A| ≤ ℓ. Even though explicitly representing
kXℓ in set form can be exponential in |X |, the reason one can build effective
systems in ASP which allow for cardinality constraints is that there is is an ef-
ficient algorithm to test whether M |= kXℓ. That is, given a total order < on
At, and X = {x1 < . . . < xn}, then we can represent M ∩ X as a sequence
sM∩X = s1 . . . sn in {0, 1}n where si = 1 if and only if xi ∈ M . Given sM∩X

and k and ℓ, it is simple to determine if M |= kXℓ by taking one pass through
sM∩X . In fact, every set constraint 〈X,F 〉 where X = {x1 < . . . < xn} can be
thought of a Boolean function over {0, 1}n where f(s1 . . . sn) = 1 if and only if
{xi : si = 1} ∈ F . Thought of in this way, set constraints can be given a variety
of representations, for instance as CNFs, DNFs, ROBDDs, Boolean polynomials,
etc., which allow for efficient processing. The topic of such representations will
be studied in [14].

In this paper, we shall define an answer set or stable model semantics for
an extension of disjunctive logic programs [11] and set constraint programs [13]
which we call set constraint disjunctive (SCD) logic programs. An SCD clause
is a clause of the form

C = H1 ∨ . . . ∨Hk ← K1, . . . ,Kn, L1, . . . , Lm (1)

where H1, . . . , Hk,K1, . . .Kn are monotone constraints and L1, . . . , Lm are an-
timonotone constraints. We refer to H1 ∨ . . . ∨ Hk as the head of C and K1 ∧
. . . ∧Kn ∧ L1 ∧ . . . ∧ Lm as the body of C and write concl(C) = {H1, . . . , Hk},
prem(C) = {K1, . . . ,Kn} and constr(C) = {L1, . . . , Lm}. We say that C is a
Horn clause if constr(C) = ∅. If M ⊆ At, then we say that M satisfies the body
of C if and only if M |= Ki and M |= Lj for all i and j and M satisfies the head
of C if there is at least one i such that M |= Hi. We say that M is model of C
if and only if either M does not satisfy the body of C or M satisfies the head of
C. An SCD -program P is a collection of SCD clauses. M is model of P if and
only if M is model of every clause in P .



3 Selector stable models for disjunctive logic programs

A disjunctive logic programming clause is a clause of the form

C = a1 ∨ a2 ∨ . . . ∨ an ← b1, . . . , bn,¬c1, . . . ,¬cm (2)

where a1, . . . , ak, b1, . . . , bn, c1, . . . , cm are atomic formulas in a first order lan-
guage. We call a1 ∨ a2 ∨ . . . ∨ ak the head of C, b1, . . . , bn the premises of C,
c1, . . . , cm the constraints of C, b1 ∧ . . . ∧ bn ∧ ¬c1 ∧ . . . ∧ ¬cm the body of
C, and write concl(C) = {a1, . . . , ak}, prem(C) = {b1, . . . , bn}, constr(C) =
{c1, . . . , cm}. C is called a (disjunctive) Horn clause if constr(C) = ∅, i.e., if C
has no negated atoms in its body. C is a ground clause if C has no free vari-
ables. If C has no disjunctions in the head, i.e., if k = 1, the C is a normal logic
programming clause.

A disjunctive logic program D is a set of clauses of the form (2). D is said
to be a Horn program if all its clauses are Horn clauses. A ground instance of
a clause is a clause obtained by substituting ground terms (terms without free
variables) for all the free variables of the clause. We let ground(D) denote the
disjunctive propositional logic program consisting of all the ground instances of
the clauses in D. The Herbrand base of D, H(D), is the set of all ground atoms
that are instances of atoms that appear in D. If M ⊆ H(D) and

C = a1 ∨ a2 ∨ · · · ∨ ak ← b1, . . . , bm,¬c1, . . . ,¬cn ∈ ground(D),

then we say that M is a model of D if either M does not satisfy the body of C
or M satisfies the head of C. M is a model of D if M is a model of all clauses
in ground(D). Thus, as usual, one can reduce models and stable models from
predicate disjunctive logic programs and to models and stable model of their
grounded versions. That is, the semantics of predicate logic programs can be
reduce to the semantics of propositional logic programs. Thus for the rest of this
section, we shall focus on propositional disjunctive logic programs.

One of the significant differences between disjunctive logic programs and
normal logic programs is that disjunctive Horn programs have multiple intended
models. In disjunctive logic programming, one takes the point of view of that
models which are minimal with respect to inclusion are the preferred models.
We let mm(D) denote the set of minimal models of D.

Example 1. Let D be the propositional disjunctive logic program consisting of
the following two clauses.
C1 = a ∨ b←.
C2 = c ∨ d← b.
Then is is easy to check that the models of D are M1 = {a}, M2 = {b, c},
M3 = {b, d}, M4 = {b, c, d}, M5 = {a, b, c}, M6 = {a, b, d}, and M7 = {a, b, c, d}.
Thus mm(D) = {M1,M2,M3}. �

Given a disjunctive propositional logic program D and a set M ⊆ H(D),
we define the Gelfond-Lifschitz reduct DM by first removing all clauses C ∈ D



such that constr(C) ∩M 6= ∅ and then for each of the remaining clauses C,
replacing C by the clause a1 ∨ a2 ∨ . . .∨ ak ← b1, . . . , bn where a1 ∨ a2 ∨ . . .∨ ak
is the conclusion of C and prem(C) = {b1, . . . , bn}. Clearly DM will always be a
disjunctive logic Horn program. Then we say that M is a stable model (answer
set) of D if M ∈ mm(DM ).

The main goal of this section is define an alternative approach to defining
models and stable models of disjunctive logic programs that can be extended to
a much larger class of programs. Our approach is to use what we call selector
functions.

Let us suppose that D is a disjunctive propositional logic Horn program. We
say that f : D → 2H(D) is a selector function forD if for each clause C ∈ D, f(C)
is a non-empty subset of concl(C). This given, we can then define an analogue of
the one-step provability operator relative to D and f . That is, for M ⊆ H(D),
we define

Tf,D(M) =
⋃
{A : (∃C ∈ D)(prem(C) ⊆M & A = f(C)}.

The idea is that one cannot define a one-step provability operator for proposi-
tional disjunctive logic programs because if M ⊆ H(D) and C is a clause of the
form

C = a1 ∨ a2 ∨ . . . ∨ ak ← b1, . . . , bn

where {b1, . . . , bn} ⊆ M and k ≥ 2, then we do not know which elements from
a1, . . . , ak that we should put into TD(M) for the clause C. The selector function
overcomes this difficulty in that it says that elements from a1, . . . , ak that we
should put into Tf,D(M) are precisely the elements in f(C). It is easy to see that
the usual proof that the one-step provability operator TP for propositional Horn
programs is monotone and continuous [20] also applies to the operators Tf,D.
Thus, Tf,D is monotone and continuous and Tf,D reaches the fixpoint in at most
ω steps. This given, then we define the selector model Mf,D of D relative to f
to be

Mf,D = Tf,D ↑ω (∅) =
⋃

n≥0

T n
f,D(∅)

where for any S ⊆ H(D), T 0
f,D(S) = S and T n+1

f,D (S) = Tf,D(T n
f,D(S)).

For example, consider the programD in Example 1. We have 3 choices for the
value of selector function f on C1, namely, we can have f(C1) = {a}, f(C1) =
{b}, or f(C1) = {a, b}. Similarly, we have 3 choices for the value of selector
function f on C2, namely, we can have f(C1) = {c}, f(C2) = {d}, or f(C2) =
{c, d}. Now if f1(C1) = {a}, then it is easy to see that Mf1,D = {a} = M1 no
matter what the value of f1(C2) is. If f2(C1) = {b}, then it is easy to see that
Mf2,D = {b, c} = M2 if f2(C2) = {c}, Mf2,D = {b, d} = M3 if f2(C2) = {d},
and Mf2,D = {b, c, d} = M4 if f2(C2) = {c, d}. If f3(C1) = {a, b}, then it is easy
to see that Mf3,D = {a, b, c} = M5 if f3(C2) = {c}, Mf3,D = {a, b, d} = M6 if
f3(C2) = {d}, and Mf3,D = {b, c, d} = M7 if f3(C2) = {c, d}.

Theorem 1. Suppose that D is a propositional disjunctive logic Horn program.
Then



1. for all selector functions f : D → 2H(D), Mf,D is a model of D and
2. for every minimal model M of D, M = Mg,D where for any clause C ∈ D,

g(C) = M ∩ concl(C) if prem(C) ⊆M and g(C) = concl(C) otherwise.

Proof: For (1), note that we have observed that Tf,D is a monotone operator.
Thus if A ⊆ B ⊆ H(D), then Tf,D(A) ⊆ Tf,D(B). It then easily follows that for
all n, T n

f,D(∅) ⊆ T n+1
f,D (∅). Now suppose that C = a1∨a2∨. . .∨ak ← b1, . . . , bm is

a clause in D. Now if {b1, . . . , bm} ⊆Mf,D, then for each i, there is stage ni such
that bi ∈ T ni

f,D(∅). Thus if n = max({n1, . . . , nk}), then {b1, . . . , bm} ⊆ T n
f,D(∅).

But then f(C) ⊆ T n+1
f,D (∅). Since we are assuming that f(C) 6= ∅, it follows that

f(C) ⊆ Mf,D ∩ {a1, . . . , ak} so that Mf,D is a model of C. Hence Mf,D is a
model of D.

For (2), it is easy to prove by induction that T n
g,D(∅) ⊆ M for all n so

that Mg,D ⊆ M . That is, T 1
g,D(∅) = {g(C) : C ∈ D & prem(C) ⊆ ∅}. But if

prem(C) = ∅, then C must be of the form a1 ∨ . . . ∨ ak ← and since M is a
model of C, g(C) = {a1, . . . , ak} ∩M . Thus g(C) is a nonempty subset of M .
Hence T 1

g,D(∅) ⊆M . Now by induction, suppose that T n
g,D(∅) ⊆M . Then

T n+1
g,D (∅) = {g(C) : C ∈ D & prem(C) ⊆ T n

g,D(∅)}.

Now if prem(C) ⊆ T n
g,D(∅), then prem(C) ⊆M so that g(C) = M ∩concl(C). It

follows that T n+1
g,D (∅) ⊆ M . Hence Mg,D = Tg,D ↑ω (∅) ⊆ M . But by (1), Mg,D

is model of D so that Mg,D = M since M is a minimal model of D. �

We note that the hypothesis that M is a minimal model in part 2 of Theorem
1 is necessary. That is, suppose that D consists of the clauses C1 and C2 from
Example 1 plus the clause

C3 = e ∨ k ← g.

Then it is to see M = {a, b, c, e} is model of D, but that M cannot be of the
form Mf,D for any selector function. That is, since g is not in the head of any

clause of D, it follows that it is impossible that e could be derived in process
of computing Tf,D ↑ω (∅) no matter how one defines the selector function f . In
fact, in this case, it is easy to see that the selector models of D from Example 1
and D are the same.

We can also define selector stable models for disjunctive propositional logic
programs admitting negation in the body as follows. Suppose D is such dis-
junctive propositional logic program. We say that f : D → 2H(D) is a selector
function for D if it satisfies the following two properties.
1. If C is a clause in D, then f(C) is a non-empty subset of concl(C).
2. If C1 and C2 are clauses in D such that concl(C1) = concl(C2) and

prem(C1) = prem(C2), then f(C1) = f(C2).
Now suppose that we are given a subset M of H(P ) and a selector function
f . We define the Gelfond-Lifschitz reduct of D, DM , via the following two step
process. In Step 1, we eliminate all clauses C ∈ D such that constr(C)∩M 6= ∅.
In Step 2, for each remaining clause

C = a1 ∨ a2 ∨ . . . ∨ ak ← b1, . . . , bn,¬c1, . . . ,¬cm,



we replace C by

CM = a1 ∨ a2 ∨ . . . ∨ ak ← b1, . . . , bn.

The resulting program DM is a disjunctive propositional Horn program. We
then let fM be the selector function for DM defined by letting fM (CM ) = f(C).
Note that condition (2) of our definition of a selector function for D ensures
that fM is a well defined function from DM into 2H(D). Then we say that M
is a selector stable model of D relative to f if M = MfM ,DM . We say that M
is a selector stable model if M is a selector stable model relative to f for some
selector function for D. We let SS(D) denote the set of selector stable models
of D. Then we say that M is a minimal selector stable model of D if and only if
M is a minimal element of SS(D) relative to inclusion.

We then have the following theorem.

Theorem 2. Let D be disjunctive logic program. Then M is a stable model of
D if and only if M is a minimal selector stable model of D.

Proof: First assume that M is a stable model of D. Then M is a minimal
model of DM . Since DM is a disjunctive propositional logic Horn program, it
follows from Theorem 1 that there is selector function gM for M such that M =
MgM ,DM where for any clause C ∈ D, gM (C) = M ∩ concl(C) if prem(C) ⊆M

and gM (C) = concl(C) otherwise. Then we define f : D → 2H(D) by letting
f(C) = gM (E) if there is a clause E ∈ DM such that concl(C) = concl(E)
and prem(C) = prem(E) and defining f(C) = concl(C), otherwise. It is easy
to see that f is a selector function for D and that fM = gM . It follows that
MfM ,DM = M so that M is a selector stable model.

Now suppose that N is a selector model and N ⊆ M . Then we know that
DM ⊆ DN and N is a model of DN . But then N is a model of DM . Since M is
a minimal model of DM , it follows that N = M . Hence M is a minimal selector
stable model.

Next suppose that N is a minimal selector stable model of D. Then N is
a model of DN by Theorem 1. We claim that N is a minimal model of DN

so that N is stable model of D. That is, suppose that M ⊂ N and M is a
minimal model of DN . Then by Theorem 1, there is a selector function g for
DN such that Mg,DN = M . Then as above, we define f : D → 2H(D) by letting
f(C) = g(E) if there is a clause E ∈ DN such that concl(C) = concl(E) and
prem(C) = prem(E) and defining f(C) = concl(C), otherwise. Then f is a
selector function for D such that fN = g. It follows that MfN ,DN = M so
that M is a selector stable model which violates the fact that N was a minimal
selector stable model. Thus it must be the case that N is a minimal model of
DN so that N is a stable model. �

We view the collection of selector stable models of a disjunctive logic program
D as the collection of models that can reasonably be computed from D. Since
selector stable models are intrinsic to D, we can use the set of selector stable
models to define alternative stable logic semantics for D. For example, one might
prefer models that are minimal with respect to cardinality rather than just mod-
els that are minimal with respect to inclusion. It is easy to see that our proof of



Theorem 1 also shows that M is minimal model of a disjunctive propositional
logic Horn program with respect to cardinality, then it will be of the form Mf,D

for some selector program. This allows to define “cardinality stable models” of
a disjunctive logic program by defining it to a selector stable model of minimal
cardinality.

One advantage of selector stable models is that there is a natural proof the-
ory associated with them. That is, recall [15] that normal propositional logic
programs P have an associated collection of P -proof schemes. That is, given a
normal propositional logic program P , the notion of a P -proof scheme is defined
by induction on its length n. Specifically, the set of P -proof schemes are defined
inductively by declaring that
(I) 〈〈C1, p1〉, U〉 is a P -proof scheme of length 1 if C1 ∈ P , p1 is the head of C1,

prem(C1) = ∅, and U = constr(C1) and
(II) for n > 1, 〈〈C1, p1〉, . . . , 〈Cn, pn〉, U〉 is a P -proof scheme of length n if
〈〈C1, p1〉, . . . , 〈Cn−1, pn−1〉, Ū〉 is a P -proof scheme of length n − 1 and Cn

is a clause in P such that pn is the head of Cn, prem(Cn) ⊆ {p1, . . . , pn−1}
and U = Ū ∪ constr(Cn).

If S = 〈〈C1, p1〉, . . . , 〈Cn, pn〉, U〉 is a P -proof scheme of length n, then we let
supp(S) = U and concl(S) = pn.

Example 2. Let P be the normal propositional logic program consisting of the
following four clauses:
C1 = p←, C2 = q ← p,¬r, C3 = r ← ¬q, and C4 = s← ¬t.
Then we have the following useful examples of P -proof schemes:
(a) 〈〈C1, p〉, ∅〉 is a P -proof scheme of length 1 with conclusion p and empty

support.
(b) 〈〈C1, p〉, 〈C2, q〉, {r}〉 is a P -proof scheme of length 2 with conclusion q and

support {r}.
(c) 〈〈C1, p〉, 〈C3, r〉, {q}〉 is a P -proof scheme of length 2 with conclusion r and

support {q}.
(d) 〈〈C1, p〉, 〈C2, q〉, 〈C3, r〉, {q, r}〉 is a P -proof scheme of length 3 with conclu-

sion r and support {q, r}.
In this example we see that the proof scheme in (c) had an unnecessary item,
the first term, while in (d) the proof scheme was supported by a set containing
q, one of atoms that were proved on the way to r. �

A P -proof scheme differs from the usual Hilbert-style proofs in that it carries
within itself its own applicability condition. In effect, a P -proof scheme is a
conditional proof of its conclusion. It becomes applicable when all the constraints
collected in the support are satisfied. Formally, for a set M of atoms, we say that
a P -proof scheme S is M -applicable or that M admits S if M ∩supp(S) = ∅. The
fundamental connection proved in between proof schemes and stable models is
given by the following proposition which is proved in [15].

Proposition 1. For every normal propositional logic program P and every set
M of atoms, M is a stable model of P if and only if



(i) for every p ∈ M , there is a P -proof scheme S with conclusion p such that
M admits S and

(ii) for every p /∈M , there is no P -proof scheme S with conclusion p such that
M admits S.

We can define an analogous notion of selector proof schemes for disjunctive
logic programs. Suppose that we are given a disjunctive propositional logic pro-
gram D and a selector function f for D. Then we can define a (D, f)-proof
scheme by induction on its length n. Specifically, the set of (D, f)-proof schemes
are defined inductively by declaring that
(I) 〈〈C1, f(C1)〉, U〉 is a (D, f)-proof scheme of length 1 if C1 ∈ D, prem(C1) =
∅, and U = constr(C1) and

(II) for n > 1, 〈〈C1, f(C1)〉, . . . , 〈Cn, f(Cn)〉, U〉 is a (D, f)-proof scheme of
length n if 〈〈C1, f(C1)〉, . . . , 〈Cn−1, f(Cn−1)〉, Ū〉 is a (D, f)-proof scheme of

length n− 1 and Cn is a clause in D such that prem(Cn) ⊆
⋃n−1

i=1 f(Ci) and
U = Ū ∪ constr(Cn)

If S = 〈〈C1, f(C1)〉, . . . , 〈Cn, f(Cn)〉, U〉 is a (D, f)-proof scheme of length n,
then we let supp(S) = U and concl(S) =

⋃n

i=1 f(Ci).

Example 3. Let D be the normal propositional logic program consisting of the
following four clauses:
C1 = p ∨ q ←, C2 = a ∨ b← p,¬r, C3 = r ← a, b,¬q, and C4 = s ∨ t← ¬t.
and f(C1) = {p}, f(C2) = {a, b}, f(C3) = {r}, and f(C4) = {t}. Then
(a) 〈〈C1, {p}〉, ∅〉 is a (D, f)-proof scheme of length 1 with conclusion {p} and

empty support.
(b) 〈〈C1, {p}〉, 〈C2, {a, b}〉, {r}〉 is a (D, f)-proof scheme of length 2 with con-

clusion {p, a, b} and support {r}.
(c) 〈〈C1, {p}〉, 〈C2, {a, b}〉, 〈C3, {r}〉, {q, r}〉 is a (D, f)-proof scheme of length 3

with conclusion {p, a, b, r} and support {q, r}. �

For a set M of atoms, we say that a (D, f)-proof scheme S is M -applicable
or that M admits S if M ∩ supp(S) = ∅. Then we have the following analogue
of Proposition 1.

Proposition 2. For every disjunctive propositional logic program D, every se-
lector function f for D, and every set M of atoms, M = MfM ,DM is the selector
stable model of D relative to the selector function f if and only if
(i) for every p ∈ M , there is a (D, f)-proof scheme S with p ∈ concl(S) such

that M admits S and
(ii) for every p /∈ M , there is no (D, f)-proof scheme S such that p ∈ concl(S)

and M admits S.

Proof: First suppose that M = Mf,D is a selector stable model. It is easy to see
by induction on the length of (D, f) proof schemes that if S is a (D, f)-proof
scheme admitted by M , then concl(S) ⊆ M . That is, if S = 〈〈C1, f(C1)〉, U〉
is a (D, f)-proof scheme of length 1 which is admitted by M , then C1 ∈ D,
prem(C1) = ∅, and U = constr(C1) is such that U ∩M = ∅. It then follows



that (C1)M is of the form a1 ∨ . . . ∨ ak ← and fM ((C1)M ) = f(C1). Thus
concl(S) = f(C1) ⊆ T 1

fM ,DM (∅) ⊆M .

Next suppose that n > 1 and S = 〈〈C1, f(C1)〉, . . . , 〈Cn, f(Cn)〉, U〉 is a
(D, f)-proof scheme of length n admitted by M . Then

S = 〈〈C1, f(C1)〉, . . . , 〈Cn−1, f(Cn−1)〉, Ū〉

is a (D, f)-proof scheme of length n − 1 admitted by M and Cn is a clause in

D such that prem(Cn) ⊆
⋃n−1

i=1 f(Ci) and U = Ū ∪ constr(Cn). By induction,⋃n−1
i=1 f(Ci) ⊆ M . Hence there is a q such that

⋃n−1
i=1 f(Ci) ⊆ T q

fM ,DM (∅). Then

it is easy to see that Cn will witness that f(Cn) ⊆ T q+1
fM ,DM (∅).

Vice versa, it is also easy to prove by induction that for all n ≥ 1, if p ∈
T n
fM ,DM (∅), then there is a (D, f)-proof scheme S such that p ∈ concl(S) and M

admits S. That is, if p ∈ T 1
fM ,DM (∅), there there must be a clause B of the form

a1 ∨ . . . ∨ ak ← and belonging to DM such that p ∈ fM (B). But then there is a
clause C ∈ D such that CM = B which means that C is of the form

a1 ∨ . . . ∨ ak ← ¬c1, . . . ,¬cm

where M∩{c1, . . . , cm} = ∅. Since in the case f(C) = fM (B), it follows that S =
〈〈C, f(C)〉, {c1, . . . , cm}〉 is (D, f) proof scheme of length 1 with p ∈ concl(S).

Next assume that p ∈ T n+1
fM ,DM (∅) \ T n

fM ,DM (∅). Then there must be a clause
B of the form

a1 ∨ . . . ∨ ak ← b1, . . . , bp ∈ DM

such that p ∈ f(B) and b1, . . . , bp ∈ T n
fM ,DM (∅). But then there are (f,D)-proof

schemes S1, . . . , Sp admitted by M such that bi ∈ f(Si) and a clause C in D of
the form

a1 ∨ . . . ∨ ak ← b1, . . . , bp,¬c1, . . . ,¬cm

such that M ∩ {c1, . . . , cm} = ∅ and f(C) = fM (B). It follows that we if take
the proof scheme S which combines the proof schemes S1, . . . , Sp followed by

the 〈C, f(C)〉, {c1, . . . , cm} ∪
⋃n−1

i=1 supp(Si)〉, then S will be a (D, f) admitted
by M such that p ∈ concl(S). Thus (i) and (ii) hold.

Now if (i) and (ii) hold, our arguments show that M = TfM ,DM ↑ω (∅) so
that M is a selector stable model. �

4 A stable model semantics for SCD programs

In this section, we shall extend the ideas of Section 2 to define a stable model
semantics for SCD programs.

We start by defining the notion of a selector functions. Suppose D is an SCD
Horn program, i.e., D has no antimonotone constraints appearing in the body of
any of its clauses, and C ∈ D is an SCD Horn clause with headH1∨. . .∨Hk where
each Hi is a monotone set constraint of the form 〈Xi, Fi〉. To avoid trivialities,
we shall always assume that there is no i such that Fi = 2Xi since otherwise



every M is a model of H1 ∨ . . .∨Hk. Thus, in particular, we assume that ∅ 6∈ Fi

for all i. The Herbrand base H(D) of D is the set of all atoms that appear in
some set constraint which occurs in a clause in D. A selector function f for D
is a map from D into 2H(D) where for each such clause C, f(C) is a non-empty
subset of X1∪ . . .∪Xk such that there is at least one i such that f(C)∩Xi ∈ Fi.

Suppose that D is an SCD propositional Horn program and f : D → 2H(D)

is a selector function for D. Then we can define the one-step provability operator
TD,f : 2H(D) → 2H(D) for D relative to f by defining for S ⊆ H(D),

Tf,D(S) =
⋃
{f(C) : (∃C ∈ D)(S satisfies the body of C)}.

Again, it is easy to see that the usual proof that the one-step provability operator
TP for propositional Horn programs is monotone and continuous [20] also applies
to the operators Tf,D. Thus, Tf,D is monotone and continuous and Tf,D reaches
the fixpoint in at most ω steps. We then define the selector model Mf,D of D
relative to f to be

Mf,D = Tf,D ↑ω (∅) =
⋃

n≥0

T n
f,D(∅)

where for any S ⊆ H(D), T 0
f,D(S) = S and T n+1

f,D (S) = Tf,D(T n
f,D(S)).

Theorem 3. Suppose that D is an SCD propositional Horn program. Then
1. for all selector functions f : D → 2H(D), Mf,D is a model of D and
2. for every minimal model M of D, M = Mg,D where for any clause C ∈ D

whose head is of the form 〈X1, F1〉∨. . .∨〈Xk, Fk〉, g(C) = M∩(X1∪. . .∪Xk)
if M satisfies the body of C and g(C) = X1 ∪ . . . ∪Xk otherwise.

Proof: For (1), observe that since Tf,D is a monotone operator, T n
f,D(∅) ⊆

T n+1
f,D (∅) for all n. Now suppose that C = H1 ∨H2 ∨ . . . ∨Hk ← K1, . . . ,Km is

an SCD Horn clause in D and that Mf,D |= Ki = 〈Yi, Gi〉 for each i ≤ m. Then
M∩Yi ∈ Gi for each i. Thus there must be a stage ni such that M∩Yi ⊆ T ni

f,D(∅).
Thus if n = max({n1, . . . , nk}), then T n

f,D(∅) satisfies the body of C. But then

f(C) ⊆ T n+1
f,D (∅). Since we are assuming that f(C) |= Hj for at least one j, it

follows that Mf,D |= Hj since f(C) ⊆ Mf,D and Hj is monotone constraint.
Thus Mf,D is a model of C. It follows that Mf,D is a model of D.

For (2), it is easy to prove by induction that T n
g,D(∅) ⊆ M for all n so

that Mf,D ⊆ M . That is, T 1
g,D(∅) = {g(C) : C ∈ D & prem(C) ⊆ ∅}. But

if prem(C) = ∅, then C must be of the form: H1 ∨ . . . ∨ Hk ←, where each
Hi is a monotone constraint of the form 〈Xi, Fi〉. Since M is a model of C,
g(C) = M ∩ (X1 ∪ . . . ∪ Xk). Thus g(C) is a nonempty subset of M . Hence
T 1
g,D(∅) ⊆M . Now by induction, suppose that T n

g,D(∅) ⊆M . Then

T n+1
g,D (∅) = {g(C) : C ∈ D & T n

g,D(∅) satisfies the body of C}.

Now if T n
g,D(∅) satisfies the body of C, then M must satisfy the body of C

since all the elements in the body of C are monotone constraint. If the head
of C is of the form H1 ∨ . . . ∨ Hk ← where each Hi = 〈Xi, Fi〉 is a monotone



constraint, then g(C) = M∩(X1∪. . .∪Xk). It follows that T
n+1
g,D (∅) ⊆M . Hence

Mg,D = Tg,D ↑ω (∅) ⊆ M . But by (1), Mg,D is model of D so that Mg,D = M
since M is a minimal model of D. �

We define selector stable models for SCD propositional logic programs as
follows. Suppose D is a SCD propositional logic program. We say that f : D →
2H(D) is a selector function for D if it satisfies the following two properties.
1. If C is a clause in D whose head is of the form 〈X1, F1〉 ∨ . . .∨ 〈XkFk〉, then

f(C) is a non-empty subset of X1 ∪ . . . ∪Xk such that there is at least one
i such that f(C) ∩Xi ∈ Fi.

2. If C1 and C2 are clauses in D such that concl(C1) = concl(C2) and
prem(C1) = prem(C2), then f(C1) = f(C2).

Now suppose that we are given a subset M of H(P ) and a selector function
f . We define the Gelfond-Lifschitz reduct of D, DM , via the following two step
process. Suppose that C is a SCD clause in D of the form

C = H1 ∨H2 ∨ . . . ∨Hk ← K1, . . . ,Kn, L1, . . . , Lm

where H1, . . . , Hk,K1, . . . ,Km are monotone constraints and L1, . . . , Ln are an-
timonotone constraints. In Step 1, we eliminate all clauses C ∈ D such that M
does not satisfy Li for some i, 1 ≤ i ≤ m. In Step 2, if C was not eliminated in
Step I, then we replace C by

CM = H1 ∨H2 ∨ . . . ∨Hk ← K1, . . . ,Kn.

The resulting program DM is an SCD propositional disjunctive Horn program.
We then let fM be the selector function for DM defined by letting fM (CM ) =
f(C). Note that condition (2) of our definition of a selector function forD ensures
that fM is a well defined function from DM into 2H(D). Then we say that M
is a selector stable model of D relative to f if M = MfM ,DM . We say that M
is a selector stable model if M is a selector stable model relative to f for some
selector function for D. We let SS(D) denote the set of selector stable models
of D. Then we say that M is a minimal selector stable model of D if and only if
M is a minimal element of SS(D) relative to inclusion. Finally, we say that M
is stable model of D if and only if M is minimal model of DM .

We then have the following theorem.

Theorem 4. Let D be SCD propositional logic program. Then M is a stable
model of D if and only if M is a minimal selector stable model of D.

Proof: First assume thatM is a stable model ofD. ThenM is a minimal model of
DM . Since DM is an SCD propositional Horn program, it follows from Theorem
3 that there is selector function gM for DM such that M = MgM ,DM where for
any clause C ∈ DM whose head is of the form 〈X1, F1〉∨ . . .∨〈Xk, Fk〉, gM (C) =
M ∩ (X1 ∪ . . . ∪Xk) if M satisfies the body of C and gM (C) = X1 ∪ . . . ∪Xk,
otherwise. Then we define f : D → 2H(D) by letting f(C) = gM (E) if there is
a clause E ∈ DM such that concl(C) = concl(E) and prem(C) = prem(E) and
defining f(C) = X1 ∪ . . .∪Xk if M does not satisfy the body of C and the head



of C is of the form 〈X1, F1〉 ∨ . . .∨ 〈Xk, Fk〉. It is easy to see that f is a selector
function for D and that fM = gM . It follows that MfM ,DM = M so that M is a
selector stable model.

Now suppose that N is a selector model and N ⊆ M . Then we know that
DM ⊆ DN and N is a model of DN . But then N is a model of DM . Since M is
a minimal model of DM , it follows that N = M . Hence M is a minimal selector
stable model.

Next suppose that N is a minimal selector stable model of D. Then N is
a model of DN by Theorem 3. We claim that N is a minimal model of DN

so that N is stable model of D. That is, suppose that M ⊂ N and M is a
minimal model of DN . Then by Theorem 3, there is a selector function g for
DN such that Mg,DN = M . Then as above, we define f : D → 2H(D) by letting
f(C) = g(E) if there is a clause E ∈ DN such that concl(C) = concl(E) and
prem(C) = prem(E) and defining f(C) = X1 ∪ . . . ∪ Xk if there is no such
clause E ∈ DM and the head of C is of the form 〈X1, F1〉 ∨ . . . ∨ 〈Xk, Fk〉,
otherwise. Then f is a selector function for D such that fN = g. It follows that
MfN ,DN = M so that M is a selector stable model which violates the fact that
N was a minimal selector stable model. Thus it must be the case that N is a
minimal model of DN so that N is a stable model. �

We can also define a notion of selector proof schemes for SCD propositional
logic programs. Suppose that we are given a disjunctive propositional logic pro-
gram D and a selector function f for D. Then we can define a (D, f)-proof
scheme by induction on its length n. Specifically, the set of (D, f)-proof schemes
are defined inductively by declaring that
(I) 〈〈C1, f(C1)〉, U〉 is a (D, f)-proof scheme of length 1 if C1 ∈ D, prem(C1) =
∅, and U = constr(C1) and

(II) for n > 1, 〈〈C1, f(C1)〉, . . . , 〈Cn, f(Cn)〉, U〉 is a (D, f)-proof scheme of
length n if 〈〈C1, f(C1)〉, . . . , 〈Cn−1, f(Cn−1)〉, Ū〉 is a (D, f)-proof scheme of

length n− 1 and Cn is a clause in D such that
⋃n−1

i=1 f(Ci) is a model of all
the premises of Cn and U = Ū ∪ constr(Cn)

If S = 〈〈C1, f(C1)〉, . . . , 〈Cn, f(Cn)〉, U〉 is a (D, f)-proof scheme of length n,
then we let supp(S) = U and concl(S) =

⋃n

i=1 f(Ci).
For a set M of atoms, we say that a (D, f)-proof scheme S is M -applicable

or that M admits S if M is a model of all antimonotone constraints in supp(S).
Then we have the following analogue of Proposition 2.

Proposition 3. For SCD propositional logic program D, every selector function
f for D, and every set M of atoms, M = MfM ,DM is the selector stable model
of D relative to the selector function f if and only if
(i) for every p ∈ M , there is a (D, f)-proof scheme S with p ∈ concl(S) such

that M admits S and
(ii) for every p /∈ M , there is no (D, f)-proof scheme S such that p ∈ concl(S)

and M admits S.

Proof: First assume that M = Mf,D is selector stable model. It is easy to see
by induction on the length of (D, f) proof schemes that if S is a (D, f)-proof



scheme admitted by M , then concl(S) ⊆ M . That is, if S = 〈〈C1, f(C1)〉, U〉
is a (D, f)-proof scheme of length 1 which is admitted by M , then C1 ∈ D,
prem(C1) = ∅, and U = constr(C1) is such that M satisfies every antimonotone
constraint in U . It then follows that (C1)M is of the form H1 ∨ . . . ∨Hk ← and
fM ((C1)M ) = f(C1). Thus concl(S) = f(C1) ⊆ T 1

fM ,DM (∅) ⊆M .

Next suppose that n > 1 and S = 〈〈C1, f(C1)〉, . . . , 〈Cn, f(Cn)〉, U〉 is a
(D, f)-proof scheme of length n admitted by M . Then

S = 〈〈C1, f(C1)〉, . . . , 〈Cn−1, f(Cn−1)〉, Ū〉

is a (D, f)-proof scheme of length n − 1 admitted by M and Cn is a clause in

D such that prem(Cn) ⊆
⋃n−1

i=1 f(Ci) and U = Ū ∪ constr(Cn). By induction,⋃n−1
i=1 f(Ci) ⊆ M . Hence there is a q such that

⋃n−1
i=1 f(Ci) ⊆ T q

fM ,DM (∅). Then

it is easy to see that Cn will witness that f(Cn) ⊆ T q+1
fM ,DM (∅).

Vice versa, it is also easy to prove by induction that for all n ≥ 1, if p ∈
T n
fM ,DM (∅), then there is a (D, f)-proof scheme S such that p ∈ concl(S) and

M admits S. That is, if p ∈ T 1
fM ,DM (∅), there there must be a clause B of the

form H1 ∨ . . .∨Hk ← belonging to DM such that p ∈ fM (B). But then there is
a clause C ∈ D such that CM = B which means that C is of the form

H1 ∨ . . . ∨Hk ← L1, . . . , Lm

where each Li is an antimonotone constraint such that M |= Li. Since in the
case f(C) = fM (B), it follows that S = 〈〈C, f(C)〉, {L1, . . . , Lm}〉 is (D, f) proof
scheme of length 1 with p ∈ concl(S).

Next assume that p ∈ T n+1
fM ,DM (∅)−T n

fM ,DM (∅). Then there must be a clause
B of the form

H1 ∨ . . . ∨Hk ← K1, . . . ,Kp ∈ DM

such that p ∈ f(B) and T n
fM ,DM (∅) is a model of Ki = 〈Yi, Gi〉 for i = 1, . . . , p.

But then there are (f,D)-proof schemes S1, . . . , Sr admitted by M such that
for each b such that there exists an i with b ∈ M ∩ Yi, there exists a j with
b ∈ concl(Sj) and a clause C of the form

H1 ∨ . . . ∨Hk ← K1, . . . ,Kp, L1, . . . , Lm

where L1, . . . , Lm are antimonotone constraints such that M |= Li for i =
1, . . . ,m and f(C) = fM (B). It follows that we if take the proof scheme S which
combines the proof schemes S1, . . . , Sp followed by the 〈〈C, f(C)〉, {L1, . . . , Lm}∪⋃n−1

i=1 supp(Si)〉, then S will be a (D, f) admitted by M such that p ∈ concl(S).
Thus (i) and (ii) hold.

If (i) and (ii) hold, then our proofs show that M = Tf,D ↑ω (∅) so that M is
a selector stable model. �

5 Conclusions and further research

In this paper, we introduced the notion of selector stable models for a class
of programs called set constraint logic (SCD) programs which are a common



generalization of disjunctive logic programs and set constraint logic programs.
We defined a collection of selector stable models which we view as the set of
models that can reasonably be computed from the program via natural analogues
of the Gelfond-Lifschitz transform. Selector stable models have a natural proof
theory and can be used to define classical stable models of disjunctive logic
programs.

Selector stable models are based on the notion of selector functions which
specifies of a way to satisfy the head of any SCD clause. A moment reflection
shows that such selector functions are present even in the standard normal logic
programming. In that case, the selector function just specifies the head of the
clause so it is completely trivial. Moreover, it is not difficult to see in hindsight
that selector functions are implicit in the paper by Niemelä and his collaborators
[18] on weight constraint programs and in our generalization of their construction
in [13] on set constraint programs. That is, the selector function was hidden in
the translation of the SNS-reduct to the clauses with single-atom heads. But
since this translation produced groups of clauses that fire simultaneously, the
selector function is just the abstraction from that idea. By that same argument
the selector functions generalize the approach of [13].

We believe that selector functions play a crucial role whenever constructions
admitting disjunctions of conditions are studied. Moreover, our work opens up
several topics for further research. For example, it would be interesting to see how
the analysis of Ferraris and Lifschitz [5] of the relationship of weight constraints
and nested expressions relates to the present context. Our work also suggests that
a natural notion of equivalence of two SCD programs is that they have the same
set of selector stable models. Thus it should be interesting to study analogues
of the notions of equivalence of normal logic programs and its variations such as
those in [8] for SCD programs.

Our work suggests that one can explore alternative algorithms to the stan-
dard “guess-and-check” search method to computing stable models in the context
of selector stable models of SCD programs. For example, in the case of normal
logic programs, there is a forward chaining algorithm of [16] or a Metropolis-
type algorithm due to Brik and Remmel [2]. One should also study a number
of complexity issues associated with SCD programs such as the complexity of
finding stable models under limitations of the asymptotic complexity of selector
function that are allowed in the process. Finally, it is possible to extend our
approach to programs which allow arbitrary set constraints in the bodies and to
predicate logic versions of SCD programs.

References

1. C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving,
Cambridge University Press, 2003.

2. A. Brik and J.B. Remmel, Computing Stable Models of Logic Programs Using
Metropolis Type Algorithms, Proceedings of Workshop on Answer Set Program-
ming and Other Computing Paradigms (ASPOCP) 2011, paper no. 6, 15 pgs.



3. T. Eiter and G. Gottlob: On the Computational Cost of Disjunctive Logic Pro-
gramming: Propositional Case. Ann. Math. Artif. Intell. 15:289-323, 1995.

4. T. Eiter, W. Faber, N. Leone, and G. Pfeifer. Declarative Problem-solving in
DLV. In: J. Minker, ed. Logic-based Artificial Intelligence, pages 79 - 103, 2000.

5. P. Ferraris, V. Lifschitz: Weight constraints as nested expressions. Theor. Pract.
Logic Prog. 5:45-74, 2005.

6. M. Gelfond and V. Lifschitz. The stable semantics for logic programs. Proceedings
5th Int’l. Symp. Logic Programming, MIT Press, pages 1070-1080, 1988.

7. M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive
databases. New Gen. Comput. 9:365-385, 1991.

8. V. Lifschitz, D. Pearce, and A. Valverde: Strongly equivalent logic programs. ACM
Trans. Comput. Log. 2:526-541, 2001.

9. L. Liu, M. Truszczynski: Properties and Applications of Programs with Monotone
and Convex Constraints. J. Artif. Intell. Res. 27:299-334, 2006.

10. L. Liu, E. Pontelli, T.C. Son, and M. Truszczynski. Logic Programs with Abstract
Constraint Atoms – the Role of Computations. Artif. Intell. 174:295–315, 2010

11. J. Lobo, J. Minker, and A. Rajasekar, Foundations of Disjunctive Logic Program-
ming, MIT Press, 1992.

12. V.W. Marek. Introduction to Mathematics of Satisfiability, CRC Press, 2009.
13. V.W. Marek, J.B. Remmel: Set Constraints in Logic Programming. In: V. Lif-

schitz and I. Niemelä, eds. Proceedings of the 7th International Conference on
Logic Programming and Nonmonotonic Reasoning. Springer Lecture Notes in
Computer Science 2923, pages 167 - 179, 2004.

14. V.W. Marek, J.B. Remmel. Effective Set Constraints, in preparation.
15. W. Marek, A. Nerode and J.B. Remmel. Nonmonotonic rule systems I. Ann.

Math. Artif. Intell. 1:241-273, 1990.
16. W. Marek, A. Nerode and J.B. Remmel. Logic Programs, Well-orderings, and

Forward Chaining, Ann. Pure App. Logic 96:231-276, 1999 .
17. J. Minker: Overview of Disjunctive Logic Programming. Ann. Math. Artif. Intell.

12:1-24, 1994.
18. I. Niemelä, P. Simons, and T. Soininen. Stable Model Semantics of Weight Con-

straint Rules. In: M. Gelfond, N. Leone and G. Pfeifer, eds. Proceedings of the 5th

International Conference on Logic Programming and Nonmonotonic Reasoning,
Springer Lecture Notes in Computer Science 1730, pages 317 -331, 1999.

19. T.C. Son, E. Pontelli, and P.H. Tu. Answer Sets for Logic Programs with Arbi-
trary Abstract Constraint Atoms. J. Artif. Intell. Res. 29:353-389, 2007.

20. M.H. van Emden and R.A. Kowalski. The semantics of predicate logic as a
programming language. J. ACM, 23:733–742, 1976.

Use your QR-barcode reader to get to the e-repository of first author papers.


