
The complexity of recursive constraint satisfaction
problems.

Victor W. Marek
Department of Computer Science

University of Kentucky
Lexington, KY 40506, USA

marek@cs.uky.edu

Jeffrey B. Remmel
Department of Mathematics

University of California
La Jolla, CA 92093, USA

jremmel@ucsd.edu

January 31, 2008

Abstract

We investigate the complexity of finding solutions to infinite recursive con-
straint satisfaction problems. We show that, in general, the problem of finding a
solution to an infinite recursive constraint satisfaction problem is equivalent to
the problem of finding an infinite path through a recursive tree. We also iden-
tify natural classes of infinite recursive constraint problems where the problem
of finding a solution to the infinite recursive constraint problem is equivalent of
the problem of finding an infinite path through a recursive finitely branching
recursive trees or a recursive binary tree. There are a large number of results
in the literature on the complexity of the problem of finding an infinite path
through a recursive tree. Our main result allows us to automatically transfer
such results to to give equivalent results about the complexity of the problem
of finding a solution to a recursive CSP problem.

1 Introduction

Constraint Programming and, more specifically, Constraint Satisfaction Problems
(CSP) is a declarative paradigm normally used to describe search problems by means
of the constraints that solutions to the problem must satisfy. As such, CSP has a
very long history, essentially reaching to the beginning of mathematics, since we can
think of the problem of finding solutions to equations or systems of equations as
instances of constraint satisfaction problems. In the modern way of thinking about

1

CSPs, the constraints limit the acceptable values of variables. As such, constraints
are often represented explicitly as tables. For example, the constraint on two non-
negative integer values x and y which satisfy x + y = 7 is, in fact, a table consisting
of 8 values: (0, 7), (1, 6), etc. When a collection C of such constraints is given, we
are seeking an assignment to variables v so that for every constraint C in C, the
restriction of v to variables of C is a row in C. Thus, we can think of constraints as
“local” restrictions on the set of acceptable solutions and our goal in a given constraint
satisfaction problem is to find a solution that simultaneously satisfies all such local
restrictions.

The issue of representation of constraints, i.e. the language that is used to represent
them, is usually not the subject of theory of CSP. However, each specific domain has
its own language. We refer the reader to the recent monographs [Apt03, Dec03] for
the description of the general theory of CSPs. Of course, for specific types of CSP
problems such a finding solutions to diophantine equations, linear programming prob-
lems, or integer programming problems, the techniques developed for finding solutions
depends heavily on the particular representation of the problem. It is only when we
abstract from such particular representations that we can talk about representing
all such constraints as tables. We note that one popular knowledge representation
language that is often used to represent all finite CSPs is where the set of variables
is consider to be the set of variables of propositional logic and where the constraints
are represented by propositional clauses. That is, we encode constraints as collec-
tions of Boolean clauses. Here, for a given CSP problem P , i.e. a finite collection
of finite tables, we represent the problems as a finite CNF formula ϕP in such a
way that there is a one-to-one correspondence between satisfying valuations for ϕP
and solutions to P . This translation is modular, i.e. adding additional constraints
results in larger CNF formula. Yet another formalism that has the same property is
the Answer Set Programming [MT99, Nie99] which also allows for a faithful modular
translation. Other formalisms that have similar properties include 0-1 Integer Pro-
gramming and its variation where the variables are only allowed to take −1 and 1 as
values [Hoo00, Sch98]. One can devise many other formalisms that allow for faithful
translation of CSPs. Each of these formalisms has its specific constraint manipulation
rules. For example, the CNF representation uses Boolean constraint propagation to
manipulate formulas while integer programming allows for use of cutting plane rules.
Of course, the abstract version of CSP itself has its own rules such as arc-consistency
and its variations, see [Apt03] for a proof-theoretic presentation of this and other
techniques. In general, such techniques do not necessarily directly translate from one
formalism to another. Hence, it is possible that translating a CSP from one formalism
to another may effect the complexity of finding solutions, see [CCT87].

The goal of this paper is to define a natural class of infinite constraint satisfaction
problems in such a way that we can use the tools of modern recursion theory to study
the complexity of finding solutions. In particular, we define and classify infinite re-

2

cursive constraint satisfaction problems. In general, we shall show that the problem of
finding a solution to an infinite recursive constraint satisfaction problem is equivalent
to the problem of finding an infinite path through an infinite recursive tree. That
is, we shall show that for any infinite recursive CSP problem P , there is a recursive
tree TP such that there is a one-to-one degree preserving correspondence between the
set of solutions to P and the set of infinite paths through TP and, vice versa, for
any infinite recursive tree T , there is an infinite recursive CSP problem PT such that
there is is a one-to-one degree preserving correspondence between the set of infinite
paths through T and the set of solutions to PT . It will follow that the problem of
finding a solution to an infinite recursive CSP problem is a Σ1

1 complete problem.
We define natural classes of infinite recursive CSP problems called finitely based and
bounded CSPs where the problem of finding solutions is equivalent to the problem of
finding infinite paths through finitely branching recursive trees and, hence, the com-
plexity of the problem of finding solutions for such CSPs is greatly reduced. We also
define a class of infinite recursive CSPs called recursively bounded CSPs where the
problem of finding solutions is equivalent to the problem of finding an infinite path
through a binary recursive tree. There is an extensive literature on the complexity
of the problem of finding infinite paths through various types of recursive trees, see
[JS72a, JS72b, JLR91] for example. Our basic coding result will allow us to auto-
matically transfer such results to give corresponding results on the complexity the
problem of finding solutions to recursive CSPs.

The outline of this paper is as follows, In section 2, we shall define the various classes
of infinite recursive CSPs described above and give the required codings to show that
the problem of finding solutions to these infinite recursive CSPs is equivalent to the
problem of finding infinite paths through recursive trees. In section 3, we shall use
the results of section 2 to derive various index set results for for CSPs that possess at
least one solution, no solutions, finitely many solutions, or infinitely many solutions.
Similar, we can prove index set results on classes of CSPs which possess a recursive
solution or no recursive solution. In section 4, we give a number of results about
the degrees of solutions to infinite recursive CSPs that can be derived by transferring
results on the degrees of infinite paths through recursive trees.

2 Constraint Satisfaction Problems and Trees

As we described in the introduction, the goal of this paper is to show that there is
a close connection between the problems of finding solutions to recursive constraint
satisfaction problems and finding paths through recursive trees.

First we need to define constraint satisfaction problems.

Definition 2.1. For any set A and any natural number n, the set of all n-tuples of

3

elements of A is denoted by An. Any subset of An is called an n-ary relation over A.
The set of all finitary relations over A is denoted by RA. A constraint language
over A is a subset of RA.

Definition 2.2. For any set A and constraint language Γ over A, the constraint sat-
isfaction problem CSP(Γ, A) is the following combinatorial problem.

Problem Instances are triples (V,A,C) where

1. V is a set of variables,

2. C = {Ci : i ∈ Ω} is a set of constraints where Ω is some indexing set and each
constraint Ci is a pair 〈si, ρi〉 where si is a tuple of variables from V of length
mi called the constraint scope and ρi ∈ Γ is an mi-ary relation called the
constraint relation, and

3. for each variable vi ∈ V , there is a constraint Cj ∈ C such that vi occurs in the
tuple sj.

Solutions: A solution to (V,A,C) is a function φ : V → A such that for each
constraint Ci = 〈si, ρi〉 with si = (vj1 , . . . , vjmi), the tuple (φ(vj1), . . . , φ(vjmi)) is in
ρi.

We let S(V,A,C) denote the set of all solutions of the constraint satisfaction problem
(V,A,C).

Before we can define recursive constraint satisfaction problems, we must first establish
some basic notation from recursion theory. Let ω denote the set of natural numbers
{0, 1, . . .} Let [,] : ω×ω → ω be a fixed one-to-one and onto recursive pairing function
such that the projection functions π1 and π2 defined by π1([x, y]) = x and π2([x, y]) =
y are also recursive. Let ω<ω denote the set of all finite sequences from ω and let
2<ω denote the set of all finite sequences of 0’s and 1’s. Given α = 〈α1, . . . , αn〉
and β = 〈β1, . . . , βk〉 in ω<ω, we write α v β if α is initial segment of β, i.e., if
n ≤ k and αi = βi for i ≤ n. For the rest of this paper, we shall identify a finite
sequence α = 〈α1, . . . , αn〉 with its code c(α) = [n, [α1, . . . , αn]] in ω. We assume that
0 is the code of the empty sequence ∅. Thus, when we say that a set S ⊆ ω<ω is
recursive (recursively enumerable, etc.), we will mean that the set {c(α) : α ∈ S} is
recursive, (recursively enumerable, etc.) Given a finite set A, we let canonical index
of A, can(A), be 0 if A is empty and be 2x1 + · · ·+ 2xk if A = {x1 < · · · < xk}.

A tree T is a nonempty subset of ω<ω closed under initial segments. We shall identify
a tree T contained in ω<ω with the set of codes of the nodes in T . Thus we think of T
as a certain subset of ω. With this convention, a tree T contained in ω<ω is recursive

4

if the set of codes of nodes in T is a recursive subset of ω. If T is a tree contained
in ω<ω, then a function f : ω → ω is called an infinite path through T if for all n,
〈f(0), . . . , f(n)〉 ∈ T . Let [T] denote the set of all infinite paths through T . We shall
say that T is finitely branching if there is a function f : T → ω such that for all nodes
η = (η1, . . . , ηn) ∈ T , (η1, . . . , ηn, j) ∈ T implies j ≤ f(η). If T is recursive tree and
f is partial recursive function, then we say that T is highly recursive. It is easy
to see that a recursive tree T is highly recursive if and only if T is finitely branching
and there is an effective procedure which for each node η ∈ T produces the canonical
index of the set of all immediate successors of η ∈ T .

A set A of functions is called a Π0
1-class if there is a recursive predicate R such that

A = {f : ω → ω : ∀n(R([f(0), . . . , f(n)])}. It is well known that for each Π0
1-class

C, there is a recursive tree TC such that C = [TC] and that for any recursive tree T ,
[T] is Π0

1-class. Thus, we shall always think of a Π0
1-class as the set of paths through

a recursive tree T ⊆ ω<ω. Note that if T is a tree contained in 2<ω, then [T] is a
collection of {0, 1}-valued functions and we can identify each f ∈ [T] with the set Af ,
Af = {x : f(x) = 1}. Thus, in such a case, we can think of [T] as a Π0

1 class of sets.
We say that C is a bounded Π0

1 class if C = [T] for some finitely branching recursive
tree T and we say C is a recursively bounded Π0

1 class if C = [T] for some highly
recursive tree T .

If A is a recursive set, then we say that a relation R ⊆ An is recursive if the set of
codes c(~a) such that ~a = (a0, . . . , an−1) ∈ R is a recursive set. Let φe denote the
partial recursive function computed by the e-th Turing machine so that φ0, φ1, . . .
is an effective list of all partial recursive functions. Given any oracle A, we let φAe
denote the partial recursive function computed by the e-th oracle Turing machine
with oracle A so that φA0 , φ

A
1 , . . . is an effective list of all A-partial recursive functions.

We say that e is a recursive index of the recursive set A ⊆ ω if φe is the characteristic
function of A. Thus an index of a recursive tree T ⊆ ω<ω is just an index of the
recursive set consisting of all codes of nodes in T .

Definition 2.3. A constraint satisfaction problem (V,A,C) is said to be an infinite
recursive constraint satisfaction problem if the following hold.

1. V ⊆ {vi :∈ ω} is a recursive set of variables, i.e. if {i : vi ∈ V } is a recursive
set.

2. A is a recursive set of natural numbers,

3. C is an infinite effective sequence of recursive constraints {Ci : i ∈ Ω} where Ω
is some infinite recursive subset of the natural numbers. That is, each constraint
Ci is a pair 〈si, ρi〉 where si = (vj1 , . . . , vjmi) is a tuple of variables from V of
length mi called the constraint scope, ρi ∈ Γ is a recursive mi-array relation
called the constraint relation, and there is a partial recursive function f is that

5

for each i ∈ Ω, f(i) = [mi, ai, bi] where ai is a code of the mi-tuple (j1, . . . , jmi)
and bi is a recursive index of ρi.

4. For each variable vi ∈ V , there is a constraint Cj = 〈sj, ρj〉 such that vi occurs
in sj.

Let us observe that there is no loss in generality in assuming that V = {vi :∈ ω} and
that Ω = ω.

We now introduce a classification of recursive constraint satisfaction problems. We
say that an infinite recursive constraint problem (V,A,C) is

1. finitely based if A is finite,

2. bounded if for each constraint Ci = 〈si, ρi〉, ρi is finite, and

3. recursively bounded if either it is finitely based or there is a recursive function
g such that for all i ∈ ω and each constraint Ci = 〈si, ρi〉, ρi ⊆ {0, . . . , g(i)}mi .

We say that there is an effective one-to-one degree preserving correspondence between
the set of solutions S(P) of a recursive constraint satisfaction problem P = (V,A,C)
and the set of infinite paths [T] through a recursive tree T if there are indices e1 and
e2 of oracle Turing machines such that
(i) ∀π∈[T]φ

gr(f)
e1 = fπ ∈ S(P),

(ii) ∀f∈S(P)φ
gr(f)
e2 = πf ∈ [T], and

(iii) ∀π∈[T]∀f∈S(P)(φ
gr(π)
e1 = fπ if and only if φ

gr(fπ)
e2 = π).

Here if f is a function f : ω → ω, then gr(f) = {[x, f(x)] : x ∈ ω}. Condition (i)
says that infinite paths through tree T , uniformly produce solutions to the constraint
satisfaction problem (V,A,C) via an algorithm with index e1. Condition (ii) says that
solutions to the constraint satisfaction problem (V,A,C) uniformly produce paths
through the tree T via an algorithm with index e2. We say that A is Turing reducible
to B, written A ≤T B, if φAe = B for some e. A is Turing equivalent to B, written
A ≡T B, if both A ≤T B and B ≤T A. Thus condition (iii) asserts that our

correspondence is one-to-one and if φ
gr(π)
e1 = fπ, then fπ is Turing equivalent to π.

In what follows we will not explicitly construct indices e1 and e2, but it will be clear
that such indices exist in each case.

Theorem 2.4. Suppose that P = (V,A,C) is a finitely based infinite recursive con-
straint problem such that V = {vi : i ∈ ω} and C = {Cj : j ∈ ω}. Then there
is a highly recursive tree T such that there is an effective one-to-one correspondence
between the set S(P) of solutions to the constraint satisfaction P and the set [T] of
all infinite paths through T .

6

Proof: Let Ci = 〈si, ρi〉 where si = (vj1 , . . . , vjmi) and ρi ⊆ Ami . Let f be the partial
recursive function such that for each i ∈ ω, f(i) = [mi, ai, bi] where ai is a code of the
mi-tuple (j1, . . . , jmi) and bi is a recursive index of ρi. Then it is easy to construct T .
Specifically, we put the empty sequence ∅ in T and we put a node η = (η1, . . . , ηn) if
and only if
(1) ηj ∈ A for j = 1, . . . , n and
(2) for all i ≤ n, if the variables in si = (vj1 , . . . , vjmi) are contained in {vi : i < n}
and we define φ(vi) = ηi+1 for i = 0, . . . , n− 1, then (φ(vj1), . . . , φ(vjmi)) ∈ ρi.

It is easy to see that T is highly recursive tree and that φ ∈ [T] if and only if for all i,
if Ci = 〈si, ρi〉 where si = (vj1 , . . . , vjmi), then (φ(vj1), . . . , φ(vjmi)) ∈ ρi. Thus in this
case, S(P) = [T]. �

Before preceding with the other results of this section, we pause to make two com-
ments about the construction in Theorem 2.4. First, we can apply the construction
to any finitely based infinite CSP problem whether it is recursive or not. This shows
that we can reduce the problem of finding a solution to P to the problem of finding an
infinite path through the tree T described in the proof Theorem 2.4. One consequence
of this is the following purely combinatorial corollary.

Corollary 2.5. Suppose that P = (V,A,C) is a finitely based infinite constraint
problem such that V = {vi : i ∈ ω} and C = {Cj : j ∈ ω}. Then suppose that for any
finite set S ⊆ ω, there is a solution to the finite constraint problem PS = (VS, A, CS)
where CS = {Ci : i ∈ S} and VS = {vi : ∃j ∈ S(vi occurs in sj}. Then P has a
solution.

Proof: For each i, let Sn = {0, 1, . . . , n− 1}. It is easy to see that the fact that finite
constraint problem PSn has a solution means that there will be a node (η1, . . . , ηn)
in the tree T constructed in Theorem 2.4. This means that T is a finitely branching
infinite tree and, hence, by König’s Lemma, T must have an infinite path. Thus as
S(P) = [T], it follows that P has a solution. �

In fact, the construction of Theorem 2.4 works for any infinite recursive constraint
satisfaction problem. The only problem with this construction is that the resulting
tree T may be infinitely branching even if P = (V,A,C) is bounded or recursively
bounded. Our next result will use a slightly different construction of the desired
tree T which will have the property that T will be finitely branching if (V,A,C) is
bounded and T will be highly recursive if T is recursively bounded.

Theorem 2.6. 1. Let P = (V,A,C) be an infinite recursive constraint satisfaction
problem where V = {vi : i ∈ ω} and C = {Ci = 〈si, ρi〉 : i ∈ ω}. Then there
exists a recursive tree T ⊆ ω<ω and an effective one-to-one degree preserving
correspondence between the set S(P) of solutions to the constraint satisfaction
P and the set [T] of all infinite paths through T .

7

2. If, in addition, P = (V,A,C) is bounded, then T is bounded.

3. If, in addition, P = (V,A,C) is recursively bounded, then T is highly recursive.

Proof: Let Ci = 〈si, ρi〉 where si = (vj1 , . . . , vjmi) and ρi ⊆ Ami . Let f be the partial
recursive function such that for each i ∈ ω, f(i) = [mi, ai, bi] where ai is a code of the
mi-tuple (j1, . . . , jmi) and bi is a recursive index of ρi. For each i ∈ ω, let max(si) be
the largest k such that vk occurs in the mi-tuple si. Let the domain of ρi, dom(ρi),
equal the set of all x ∈ A, such that there exists an mi-tuple ~a ∈ ρi such that x occurs
in ~a. Since the characteristic function of ρi is given by the recursive function φbi , it
is easy to see that there is a recursive function F such that WF (i) = dom(ρi) where
We = the domain of φe is the e-th r.e. set. Since we are assuming that for each i,
there is a j such that vi occurs in sj, then there is a recursive function G such that
G(i) is the least j such that vi occurs in sj. Hence, there is a recursive function H
such that WH(i) = dom(ρG(i)).

For any e, we let We,s denote the set of elements x ≤ s such that φe(x) converges in s
or fewer steps. By convention, we let We,−1 = ∅. For any sequence, η = (η1, . . . , η2n)
in ω<ω, we define the map ψη : {v0, . . . , vn−1} → A by ψη(vj) = η2(j+1) for j =
0, . . . , n− 1.

First we put the empty sequence ∅ into T . Next we will put a node η = (η1, . . . , η2n)
into T if and only if the following conditions hold:

1. η2j ∈ A for j = 1, . . . , n,

2. for j = 1, . . . , n, η2j−1 is the least s such that η2i ∈ WH(i−1),s.

3. for all i < n such that max(si) < n and si = (vj1 , . . . , vjmi), it is the case that
(ψη(vj1), . . . , ψη(vjmi)) ∈ ρi.

Thus we put a node η = (η1, . . . , η2n) into T if and only the map ψη gives a solution
to all constraints Ci such that i < n and the variables mentioned in Ci come from
{v0, . . . , vn−1}. Finally, we put a node η = (η1, . . . , η2n, η2n+1) into T if and only if

1. (η1, . . . , η2n) meets the conditions to be put into T and

2. WH(n),η2n+1 −WH(n),η2n+1−1 6= ∅.

It is easy to see that T is a recursive tree. Now suppose that π = (π1, π2, . . .) is an
infinite path through T . Let fπ be the function such that fπ(i) = π2i+2. Then for
any constraint Ci = 〈si, ρi〉 where si = (vj1 , . . . , vjmi) and ρi ⊆ Ami , let t = max(si).
Then since the node (η1, . . . , η2t+2) is T , it follows that (fπ(vj1), . . . , fπ(vjmi)) ∈ ρi
so that fπ ∈ S(P). Clearly fπ ≤T π. Thus each infinite path π through T gives

8

rise to a solution of (V,A,C). Vice versa, if f is a solution of (V,A,C), then for
each i it must be the case that f(i) ∈ dom(ρG(i)) so that we can effectively find the
unique ti such that f(i) ∈ WH(i),ti −WH(i),ti−1 from f(i). It then follows that πf =
(t0, f(0), t1, f(1), t2, f(2), . . .) is an infinite path through T and πf ≤T f . Moreover,
it is easy to see that fπf = f . Thus there is an effective one-to-one degree preserving
correspondence between S(P) and [T].

Now if P = (V,A,C) is bounded, then we claim that T is bounded. That is, if
(η1, . . . , ηk) ∈ T , then it must be the case that if 2n ≤ k, then η2n ∈ dom(ρG(n−1)) so
that there are only finitely many possible values for η2n. Similarly, if 2n+1 ≤ k, then
WH(n),η2n+1 −WH(n),η2n+1−1 6= ∅ so that again there are only finitely possible values of
η2n+1. Thus T is bounded if P is bounded. Moreover, if P is recursively bounded,
then it is easy to see that we can effectively find the possible values of η2n and η2n+1

in each case so that T will be highly recursive in that case. �

Next we want to reverse Theorem 2.6. That is, we want to show that given an
recursive tree T , we can construct recursive constraint satisfaction problem P such
that there is an effective one-to-one degree preserving correspondence between [T]
and S(P).

Theorem 2.7. If T is a recursive tree contained in ω<ω, then there is an infinite
recursive constraint satisfaction problem P = (V,A,C) such that there is an effective
one-to-one degree preserving correspondence between [T] and S(P). Moreover, if T is
finitely branching, then P is bounded and, if T is highly recursive, then P is recursively
bounded.

Proof: Given T , construct a new recursive tree T ∗ by putting the empty sequence into
T ∗, the sequence of length i (i, i, . . . , i) in T ∗ for all i ≥ 1, and putting in (0, η1, . . . , ηn)
into to T ∗ for all (η1, . . . , ηn) ∈ T . That is, T ∗ is constructed from T by adding a
copy of T above the node (0) and adding nodes with constant strings of length i,
(i, . . . , i) in T ∗ for all i ≥ 1. Clearly there is an effective one-to-one degree preserving
correspondence between [T] and [T ∗].

Let C = {Ci : i ∈ ω} where Ci = 〈si, ρi〉 and si = (v0, . . . , vi) and ρi be the i + 1-
relation such that ρi contains {(η0, . . . , ηi) ∈ T ∗ & η0 = 0} plus constant string of
length i+ 1, (i+ 1, . . . , i+ 1)

Now if π = (π0, π1, . . .) is in [T ∗], then it must be the case that π0 = 0, Hence if
fπ(vj) = πj for j ≥ 0, then for each i, (fπ(v0), . . . , fπ(vi)) ∈ ρi since (π0, . . . , πi) ∈
T ∗. Thus fπ ∈ S(P). Vice versa, if f ∈ S(P), then consider the path πf =
(f(v0), f(v1), . . .). Then since (f(v0), f(v1), . . . , f(vi)) ∈ ρi, it must be the case that
(f(v0), f(v1), . . . , f(vi)) ∈ T ∗. Hence πf ∈ [T]. Moreover it is easy to see that πfπ = π
so that there is an effective one-to-one correspondence between S(P) and [T].

Note that if T is bounded, then there are only finitely many nodes of length n in

9

T ∗ which extend (0) for each n and, hence, it easily follows that each ρi is finite.
Similarly, if T is recursively bounded, then we can effectively find the set of nodes
of length n for each n from which it follows that we can compute a g(n) such that
all nodes of length n in T ∗ lie in {0, . . . , g(n)}n. It then easily follows that P is
recursively bounded. �

We note that in the construction of Theorem 2.7, we used n-relations for every n ≥ 1
in the infinite recursive CSP problem P . It is natural to ask whether this is necessary.
Our next result will show that this not case. Namely, we could have used only unary
and binary relations.

Theorem 2.8. If T is a recursive tree contained in ω<ω, then there is an infinite
recursive constraint satisfaction problem P ∗ = (V ∗, A∗, C∗) such that there is an ef-
fective one-to-one degree preserving correspondence between [T] and S(P) and all
relations in the constraints of P are either unary relations or binary relations. More-
over, if T is finitely branching, then P is bounded and, if T is highly recursive, then
P is recursively bounded.

Proof: Let T ∗ be as in Theorem 2.7. Then we consider the following infinite recursive
constraint satisfaction problem P ∗ = (V ∗, A∗, C∗). First we let V ∗ = {vi : i ∈ ω}
and A∗ = ω. Then we will have two types of constraints. For each n ≥ 0, we let
C2n = 〈s2n, ρ2n〉 where s2n = (vn) and ρ2n = {c((η1, . . . , ηn+1)) : (η1, . . . , ηn+1) ∈ T ∗}.
That is, ρ2n is the set of codes of nodes of length n + 1 in T ∗. Then we let C2n+1 =
〈s2n+1, ρ2n+1〉 where s2n+1 = (vn, vn+1) and

ρ2n+1 = {[c((η1, . . . , ηn+1)), c((η1, . . . , ηn+2)] : (η1, . . . , ηn+2) ∈ T ∗}.

It is easy to see that for any solution f ∗ of P ∗, it must be the case f ∗(n) is the
code of a node (η∗1, . . . , η

∗
n+1) in T ∗. However, the fact that all the constraints of the

form C2n+1 are satisfied implies that f ∗(0) v f ∗(1) v · · · so that f must code an
infinite path through T ∗. Thus it is easy see that there is an effective one-to-one
degree preserving correspondence between S(P ∗) and T ∗. It also easy to see that if
T is bounded, then P ∗ is bounded and if T is highly recursive, then P ∗ is recursively
bounded. �

3 Index Set Results

In this section, we will exploit the uniformities in the proofs of Theorems 2.6 and 2.7
to develop some index set results. To this end, we shall consider general recursive
constraint satisfaction problems (V,A,C) where

1. V is a recursive subset of {vi : i ∈ ω},

10

2. A is a recursive subset of ω,

3. for each Ci = 〈si, ρi〉 ∈ C where si = (vj1 , . . . , vjmi) and ρi ⊆ Ami , ρi is recursive
relation, and

4. the set of codes of constraints in C is a recursive set.

Recall that if Ci = 〈si, ρi〉 where si = (vj1 , . . . , vjmi) and ρi ⊆ Ami , then the code of
Ci is a triple code(Ci) = [mi, ai, bi] where ai is a code of the mi-tuple (j1, . . . , jmi)
and bi is a recursive index of ρi. Then we will say that x is a code of a recursive
constraint satisfaction problem (V,A,C) if x = [e, f, g] where e is a recursive index
of the set {i : vi ∈ V }, f is a recursive index of A, and g is a recursive index of
{code(Ci) : Ci ∈ C}.

There are a number of reasons why a code [e, f, g] can fail to be a code of an infinite
recursive constraint satisfaction problem. We list them as (A)− (E) below.

(A) φe is not a total recursive function or the range of φe is not contained in {0, 1}.

(B) φf is not a total recursive function or the range of φf is not contained in {0, 1}.

(C) φg is not a total recursive function or the range of φg is not contained in {0, 1}.

(D) φg([mi, ai, bi]) = 1, but either ai is not the code of mi-tuple, φbi is not total or
the range of φbi is not contained in {0, 1}, or there is a z such that φbi(z) = 1,
but z is not the code of mi-tuple from Ami .

(E) There is a variable vi ∈ V such there there is no constraint Cj = 〈sj, ρj〉 ∈ C
such that vi occurs in C.

When we say that we have checked that [e, f, g] is a code of a recursive constraint
satisfaction problem up to stage n, we mean that

(i) we have computed φe(0), φf (0), φg(0), φe(1), φf (1), φg(2), . . . , φe(n), φf (n), φg(n)
and all these values are in {0, 1},

(ii) for each y ≤ n such that φbi(y) = 1 and y = [mi, ai, bi], ai is the code of an
mi-tuple from V and we have computed φbi(0), . . . , φbi(n), all these values are
in {0, 1}, and for each j ≤ n, if φbi(j) = 1, then j is the code of mi-tuple of
elements from A, and

(iii) for each i ≤ n such that φe(i) = 1, we have computed φg(0), φg(1), . . . until we
have found the least p such that φg(p) = 1, p = [mr, ar, br], ar is the code of an
mr-tuple from V which contains vi and we have computed φbr(0), . . . , φbr(p), all
these values are in {0, 1}, and for each j ≤ p, if φbr(j) = 1, then j is the code
of mr-tuple of elements from A.

11

Of course, it may be that some of these computations do not converge. For example,
if φe(1) is undefined, then we can never check [e, f, g] is a code of a recursive constraint
satisfaction problem up to stage 1. In fact, it is easy to see that if any of (A)− (B)
above hold, then there will be some n such that we can not check that [e, f, g] is a
code of a recursive constraint satisfaction problem up to stage n. However, if [e, f, g]
is a code of a recursive constraint satisfaction problem, then we will be able to check
that [e, f, g] is a code of a recursive constraint satisfaction problem for all stages n.

Recall that x is a code of a recursive tree T ⊆ ω<ω, if x is the recursive index of the
set of codes of the nodes of T . Again, there are several reasons why x could fail to
be the code of a recursive tree T .

(I) φx is not total or the range of φx is not contained in {0, 1}.

(II) φx is total, and the range of φx is contained in {0, 1}, but T is not closed under
initial segments. That is, there is are nodes α @ β such that if the code of α
equals a and the code of β equals b, then φx(a) = 0 and φx(b) = 1.

Now let a0 < a1 < · · · be an effective list of all the codes of nodes in ω<ω. Then we
say that we have checked x is a code of recursive tree up to stage n, if
(i) we have computed φx(i) for all i ≤ an and φx(i) = 0 for all i ∈ {0, . . . , an} \
{a0, a1, . . . , an} and
(ii) if i ∈ {a0, a1, . . . , an}, φx(ai) = 1, and ai is the code of node β, then, for all α @ β,
the value of φx on the code of α is also 1.

This given, we are now in a position to state the uniform versions of Theorems 2.6
and 2.7. That is, we have the following theorem .

Theorem 3.1. 1. There is a recursive one-to-one function q such that for all x,
(a) if x is the code of a recursive constraint satisfaction problem P = (V,A,C),
then q(x) is the code of a recursive tree T such that there is an effective degree
preserving one-to-one correspondence between S(P) and [T] and
(b) if x is not the code of a recursive constraint satisfaction problem, then q(x)
is not the code of a recursive tree contained in ω<ω.

2. There is a recursive one-to-one function p such that for all x,
(a) if x is the code of a recursive tree T , then p(x) is the code of a recursive
constraint satisfaction problem P = (V,A,C) such that there is an effective
degree preserving one-to-one correspondence between S(P) and [T] and
(b) if x is not the code of a recursive tree contained in ω<ω, then p(x) is not of
a recursive constraint satisfaction problem.

Proof: To prove (1), we will use the proof of Theorem 2.6. In Theorem 2.6, we
gave a construction of the desired tree T given that we started with an infinite re-
cursive constraint satisfaction problem P = (V,A,C) where V = {vi : i ∈ ω} and

12

C = {Ci : i ∈ ω}. However, even if x = [e, f, g] is the code of recursive constraint
satisfaction problem P = (V,A,C), it is not guaranteed that either V or C is infi-
nite. To this end, we will construct a new recursive constraint satisfaction problem
P ∗ = (V ∗, A∗, C∗) where V ∗ and C∗ are infinite and recursive and there is an effec-
tive degree preserving one-to-one correspondence between S(P) and S(P ∗). First let
2V = {v2i : vi ∈ V }, 2A = {2i : i ∈ A}, and 2C = {2Ci : Ci ∈ C}. Here for any
constraint Ci = 〈si, ρi〉 in C such si = (vj1 , . . . , vjmi) and ρi ⊆ Ami , 2Ci = 〈2si, 2ρi〉
where 2si = (v2j1 , . . . , v2jmi

) and 2ρi = {(2a1, . . . 2ami) : (a1, . . . , ami) ∈ ρi}. Then we
let P∗ = (V ∗, A∗, C∗) where
(i) V ∗ = 2V ∪ {v2i+1 :∈ ω},
(ii)A∗ = 2A ∪ {1}, and
(iii) C∗ = 2C ∪ {D2i+1 : i ∈ ω} where D2i+1 = 〈(v2i+1), {1}〉. That is, each D2i+1

has single variable v2i+1 and the corresponding constraint relation is unary relation
consisting the set {1}.

It is easy to see that given a solution φ of (V,A,C), the function φ∗ which maps
variable v2j to φ(vi) and maps all the variables v2i+1 to 1 is a solution to P ∗ and,
moreover, it the case that any solution to P ∗ is of the form φ∗ for some solution to φ
of P . Thus there is an effective degree preserving one-to-one correspondence between
S(P) and S(P ∗). Since the construction of P ∗ from P is uniform, it easily follows
that there is a recursive one-to-one function h such that h(x) is the code of P ∗ if x is
the code of P and h(x) is not the code of recursive constraint satisfaction problem if
x is not the code of recursive constraint satisfaction problem.

We can now apply the construction of Theorem 2.6 to P ∗ if we interpret the sequence
of variables v0, v1, . . . as an effective list of all variables that occur V ∗ and we interpret
the sequence of constraints C0, C1, . . . as an effective sequence of all constraints of C∗.
We also modify the construction of the tree T in this case so we do not put a node
of length n into T unless we have checked up to stage n that h(x) is the code of a
recursive constraint satisfaction problem. This way, if P ∗ is not a recursive constraint
satisfaction problem, then our construction will not give a total decision procedure to
decide which nodes are in T . It is then easy to see that our construction is uniform
so that the desired function q is nothing but the code of the set of instructions to
compute P ∗ and then T from x. This proves (1).

The proof of (2) is similar. That is, Theorem 2.7 gives a uniform construction given
a code x of a recursive tree T to produce a desired recursive constraint problem P .
The only thing that we have to modify in this construction is to insist that we do
not define Cn until we have checked that x is the code of tree T up to stage n. In
this way, if x is not the code of a recursive tree, then the characteristic function of
the set of codes in C will not be defined and so P will not be a recursive constraint
satisfaction problem. It is then easy to see that our construction is uniform so that
the desired function p is nothing but the code of the set of instructions to compute

13

P from x. �

Let us recall that a subset A of ω is said to be Σm
n -complete (respectively, Πm

n -
complete) if A is Σm

n (respectively, Πm
n) and any Σm

n (respectively, Πm
n) set B is

many-one reducible to A. Here we say B is many-one reducible to A if there is a
recursive function f such that, for any b, b ∈ B if and only if f(b) ∈ A. A subset A of
ω is said to be Dm

n if it is the difference of two Σm
n sets. A subset A of ω is said to be

Dm
n complete if it is Dm

n and any Dm
n set B is many-one reducible to A. Cenzer and

Remmel [CR98a, CR98b] proved a large number of results on the complexity of index
sets based on primitive recursive indices for trees. That is, suppose that π0, π1, . . . is
an effective enumeration of the primitive recursive functions from ω to {0, 1}. Let

Ue = {∅} ∪ {σ : (∀τ � σ)πe(〈τ〉) = 1}.

It is clear that each Ue is a primitive recursive tree. Observe also that if {σ : π(σ) = 1}
is a primitive recursive tree, then Ue will be that tree. Thus every primitive recursive
tree occurs in our enumeration Ue. Now it is well known that for any recursive tree
T , there is a primitive recursive tree T∗ such that [T] = [T ∗] and, moreover, there is
recursive function g such that if x is a recursive index for T , then g(x) is such that
g(x)-th primitive recursive function computes the characteristic function of T ∗. For
any property Q of trees, Cenzer and Remmel [CR98a] considered the index set IP (Q)
which is equal to set of all e such Ue has property Q. In our case, need to consider
index sets based on recursive indices. That is, we will want to consider the index set
IR(Q) equal to the set of all e such that e is a recursive index of a tree Te and Te
has property Q. It is easy to see by writing out the definition that the property of e
being the recursive index of a recursive tree is a Π0

2 property. The proofs of the level
of complexity that Cenzer and Remmel proved for index sets IP (Q) in the arithmetic
hierarchy also hold for the index sets IR(P) as long as the complexity is above Π0

2.
Thus for example, the following results follow from the results of Cenzer and Remmel
in [CR98a, CR98b].

Theorem 3.2. 1. Let Q1(e) be the property: ‘e is a recursive index of a recursive
finitely branching tree’. Then IR(Q1) is Π0

3 complete.

2. Let Q2(e) be the property: ‘e is a recursive index of a highly recursive tree’.
Then IR(Q2) is Σ0

3 complete.

3. Let Q3(e) be the property: ‘e is a recursive index of a recursive finitely branching
tree and [Te] is nonempty’. Then IR(Q3) is Π0

3 complete.

4. Let Q4(e) be the property: ‘e is a recursive index of a highly recursive tree and
[Te] is nonempty’. Then IR(Q4) is Σ0

3 complete.

5. Let Q5(e) be the property: ‘e is a recursive index of a recursive tree and [Te] is
nonempty’. Then IR(Q5) is Σ1

1 complete.

14

6. Let Q6(e) be the property: ‘e is a recursive index of a recursive tree and [Te] is
empty’. Then IR(Q6) is Π1

1 complete.

One can use these results to immediately prove index set results for recursive con-
straint satisfaction problems. That is, for any property Q of recursive CSPs, let IC(Q)
denote the set of e such e is a recursive index of a recursive CSP problem Pe and Pe
has property Q. Then we can use Theorem 3.1 to prove analogues of the index set
results in Theorem 3.2 for the corresponding sets IC(Qi) for i = 1, . . . 6. That is, we
have the following results.

Theorem 3.3. 1. Let Q1(e) be the property: ‘e is a recursive index of a bounded
infinite recursive CSP problem’. Then IC(Q1) is Π0

3 complete.

2. Let Q2(e) be property: ‘e is a recursive index of a recursively bounded infinite
recursive CSP problem’. Then IC(Q2) is Σ0

3 complete.

3. Let Q3(e) be the property: ‘e is a recursive index of a bounded infinite recursive
CSP problem and S(Pe) is nonempty’. Then IC(Q3) is Π0

3 complete.

4. Let Q4(e) be the property: ‘e is a recursive index of recursively bounded infinite
recursive CSP problem and S(Pe) is nonempty’. Then IC(Q4) is Σ0

3 complete.

5. Let Q5(e) be the property: ‘e is a recursive index of an infinite recursive CSP
problem and S(Pe) is nonempty’. Then IC(Q5) is Σ1

1 complete.

6. Let Q6(e) be the property: ‘e is a recursive index of an infinite recursive CSP
problem and S(Pe) is empty’. Then IC(Q6) is Π1

1 complete.

Proof: All of these results can be proved in the same way. First, one establishes the
upper bound in each case by simply writing our the formal definition and checking
it is has the appropriate form. Then to establish the completeness in each case, one
uses Theorem 3.1 and the corresponding completeness result from Theorem 3.2. �

Cenzer and Remmel [CR98a, CR98b] also proved a large number of index set results
about the cardinality of the set of infinite paths. For example, they proved the
following results.

Theorem 3.4. 1. Let c be a positive integer c and let Q=c
1 (e)be the following prop-

erty: ‘e is a recursive index of a recursive finitely branching tree and |[Te]| = c’.
Then IR(Q=c

1) is Π0
3 complete if c = 1 and is D0

3 complete if c > 1.

2. Let c be a positive integer and Q=c
2 (e) be the property: ‘e is a recursive index of

a highly recursive tree and |[Te]| = c’. Then IR(Q=c
2) is Σ0

3 complete.

3. Let c be a positive integer and Q=c
3 (e) be the property: ‘e is a recursive index of

a recursive tree and |[Te]| = c’. Then IR(Q=c
3) is Π1

1 complete.

15

4. Let Qfin
1 (e) be the property: ‘e is a recursive index of a recursive finitely branch-

ing tree and |[Te]| is finite’. Then IR(Qfin
1) is Σ0

4 complete.

5. Let Qfin
2 (e) be the property: ‘e is a recursive index of a highly recursive tree and

|[Te]| is finite’. Then IR(Qfin
2) is Σ0

3 complete.

6. Let Qfin
3 (e) be the property: ‘e is a recursive index of a recursive tree and |[Te]|

is finite’. Then IR(Qfin
3) is Π1

1 complete.

7. Let Qinfin
1 (e) be the property: ‘e is a recursive index of a recursive finitely branch-

ing and |[Te]| is infinite’. Then IR(Qinfin
1) is Π0

4 complete.

8. Let Qinfin
2 (e) be the property: ‘e is a recursive index of a highly recursive tree

and |[Te]| is infinite’. Then IR(Qinfin
2) is D0

3 complete.

9. Let Qinfin
3 (e) be the property: ‘e is a recursive index of a recursive tree and |[Te]|

is infinite’. Then IR(Qinfin
3 is Σ1

1 complete.

Once again all these results can be transfered to index set results for recursive CSPs.

Theorem 3.5. 1. Let c be a positive integer and let Q=c
1 (e) be the property: ‘e is

a recursive index of a bounded infinite recursive CSP problem and |S(Pe)| = c’.
Then IC(Q=c

1) is Π0
3 complete if c = 1 and is D0

3 complete if c > 1.

2. Let c be a positive integer c and let Q=c
2 (e) be the property: ‘e is a recursive

index of a recursively bounded infinite recursive CSP problem and |S(Pe)| = c’.
Then IC(Q=c

2) is Σ0
3 complete.

3. Let c be a positive integer c and let Q3= c(e) be the property: ‘e is a recursive
index of an infinite recursive CSP problem and |S(Pe)| = c’. Then IC(Q=c

3) is
Π1

1 complete.

4. Let Qfin
1 (e) be the property: ‘e is a recursive index of a bounded infinite recursive

CSP problem and |S(Pe)| is finite’. Then IC(Qfin
1) is Σ0

4 complete.

5. Let Qfin
2 (e) be the property: ‘e is a recursive index of a recursively bounded infi-

nite recursive CSP problem and |S(Pe)| is finite’. Then IC(Qfin
2) is Σ0

3 complete.

6. Let Qfin
3 (e) be the property: ‘e is a recursive index of an infinite recursive CSP

problem and |S(Pe)| is finite’. Then IC(Qfin
3) is Π1

1 complete.

7. Let Qinfin
1 (e) be the property: ‘e is a recursive index of a bounded infinite recur-

sive CSP problem and |S(Pe)| is infinite’. Then IC(Qinfin
1) is Π0

4 complete.

8. Let Qinfin
2 (e) be the property: ‘e is a recursive index of a recursively bounded

infinite recursive CSP problem and |S(Pe)| is infinite’. Then IC(Qinfin
2) is D0

3

complete.

16

9. Let Qinfin
3 (e) be the property: ‘e is a recursive index of an infinite recursive CSP

problem and |S(Pe)| is infinite’. Then IC(Qinfin
3) is Σ1

1 complete.

Similarly Cenzer and Remmel [CR98a] proved a large number of index set results for
the number of infinite recursive paths through recursive trees and all of those results
can be transfered to index sets for the number of recursive solutions to recursive CSP
problems. For example, Cenzer and Remmel [CR98a, CR98b] proved the following.

Theorem 3.6. 1. Let Q∃rec
1 (e) be the property: ‘e is a recursive index of a recursive

finitely branching tree and there is a recursive path through Te’. Then IR(Q∃rec
1)

is D0
3 complete.

2. Let Q∃rec
2 (e) be the property: ‘e is a recursive index of a highly recursive tree

and there is a recursive path through Te’. Then IR(Q∃rec
2) is Σ0

3 complete.

3. Let Q∃rec
3 (e) be the property: ‘e is a recursive index of a recursive tree and there

is a recursive path through Te’. Then IR(Q∃rec
3) is Σ0

3 complete.

4. Let Qnorec
4 (e) be the property: ‘e is a recursive index of a recursive finitely

branching tree, [Te] is nonempty, and there is no recursive path through Te’.
Then IR(Qnorec

4) is Π0
3 complete.

5. Let Qnorec
5 (e)be the property: ‘e is a recursive index of a highly recursive tree,

[Te] is nonempty, and there is no recursive path through Te’. Then IR(Qnorec
5)

is D0
3 complete.

6. Let Qnorec
6 (e) be the property: ‘e is a recursive index of a recursive tree, [Te] is

nonempty, and there is no recursive path through Te’. Then IR(Qnorec
6) is Σ1

1

complete.

Again we can transfer these results to get similar result for the corresponding index
sets for recursive solutions of recursive CSP problems.

4 The degrees of solutions to recursive CSP prob-

lems

One can also use Theorem 3.1 to transfer a large number or results concerning the
degrees of infinite paths through recursive trees to results about the degrees of solu-
tions to CSP problems. In this section, we shall give a sample of both positive and
negative results of this kind. References for all the results on recursive tree that lie
behind the results stated in this section can be found in the forthcoming book by
Cenzer and Remmel [CRta].

17

4.1 Positive results for recursive constraint problems

The results of sections 2 and 3 show that whenever we have a recursive constraint
satisfaction problem with the unique solution, we can produce a recursive tree with
a unique infinite path such that the Turing degrees of the solution and the branch
are the same. Conversely, given a tree with a unique infinite path, we can produce a
recursive constraint satisfaction problem with a unique solution such that the Turing
degrees of the infinite path and of the solution are the same.

The degrees of elements of Π0
1-classes have been extensively studied in recursion the-

ory. It follows from Theorems 2.6, 2.7, and 3.1 that we can immediately transfer
results about degrees of elements of Π0

1-classes to results about the degrees of solu-
tions of recursive constraint satisfaction problems. First we give a sample of so-called
basis theorems. That is, we state several theorems which state that one can always
find solutions in a certain class.

Corollary 4.1 (Positive results for recursive infinite constraint satisfaction
problems). Suppose P is a recursive infinite constraint satisfaction problem with a
solution. Then the following hold.

1. P has a solution which is recursive in a complete Σ1
1 set.

2. If P has only finitely many solution, then each solution is hyperarithmetic.

3. If P has countably many solutions, then P has a solution which is hyperarith-
metic.

Corollary 4.2 (Positive results for recursively bounded recursive infinite
constraint satisfaction problems). Suppose that P is a recursively bounded re-
cursive infinite constraint satisfaction problem with a solution. Then the following
hold.

1. P has a solution whose Turing jump is recursive in 0′.

2. If P has only finitely many solutions, then each of these solutions is recursive.

3. If P has countably many solutions, then P has a recursive solution.

4. There is a solution f of P in an r.e. degree.

5. There exist solutions f1 and f2 of P such that any function, recursive in both
f1 and f2, is recursive.

6. If P has no recursive solution, then there is a nonzero r.e. degree a such that
P has no solution recursive in a.

18

The next set of corollaries follow because a recursive finitely branching tree is auto-
matically highly recursive in 0′.

Corollary 4.3 (Positive results for bounded recursive constraint satisfaction
problems). Suppose P is bounded recursive infinite constraint satisfaction problem
which has a solution. Then the following hold.

1. There is a solution f of P whose Turing jump is recursive in 0′′, the Turing
jump of 0′.

2. If P has only finitely many solutions, then each of these solutions is recursive
in 0′.

3. If P has countably many solution, then P has a solution which is recursive in
0′.

4. There is a solution f which is in some r.e. degree in 0′.

5. There are solutions f1 and f2 such that any function, recursive in both f1 and
f2, is recursive in 0′.

6. If P has no solution which is recursive in 0′, then there is a nonzero degree
a >T 0′ such that a is r.e. 0′ and such that P has no solutions recursive in a.

4.2 Negative results for recursive infinite constraint prob-
lems

Next we state a selection of results that can be considered negative results in that
they show that there are recursive infinite constraint problems whose solution set is
very restricted.

Corollary 4.4 (Negative results for recursive infinite constraint problems).

1. There exists a infinite recursive constraint satisfaction problem P such that P
has a solution but P has no solution which is hyperarithmetic.

2. For any recursive ordinal α, there is a recursive infinite constraint satisfaction
problem P such that P has a unique solution f and f ≡T 0(α).

Using well-known recursion-theoretic facts about recursively bounded Π0
1 classes we

get:

19

Corollary 4.5 (Negative results for recursively bounded recursive infinite
constraint satisfaction problems).

1. There exists a recursively bounded recursive infinite constraint satisfaction prob-
lem P1 such that P1 has no recursive solutions (although P1 possesses 2ℵ0 solu-
tions).

2. There exists a recursively bounded recursive infinite constraint satisfaction prob-
lem P2 such that P2 possesses 2ℵ0 solutions and any two solutions f1 6= f2 of P2

are Turing incomparable.

3. If a is a Turing degree and 0 <T a <T 0′, then there exists a recursively
bounded recursive infinite constraint satisfaction problem P3 such that P3 has
2ℵ0 solutions, a solution of degree a but P3 has no recursive solution.

4. There exists a recursively bounded recursive infinite constraint satisfaction prob-
lem P4 such that if a is the degree of any solution of P4 and b is a r.e. degree
with a <T b, then b ≡T 0′.

5. If c is any r.e. degree, then there exists a recursively bounded recursive infinite
constraint satisfaction problem P5 such that the set of r.e. degrees which contain
solutions of P5 equals the sets of r.e. degrees ≥T c.

6. There exists a recursively bounded recursive infinite constraint satisfaction prob-
lem P6 such that if f is solution for P6 where f <T 0′, then there exists a
nonrecursive r.e. set A such A <T f .

We can relativize all the results in Corollary 4.2 to an 0′ oracle for bounded recursive
constraint satisfaction problems This is due to the following result of Jockusch, Lewis,
and Remmel.

Theorem 4.6 ([JLR91]). For any tree T which is highly recursive in 0′, there
is a recursive finitely branching tree S ⊆ ω<ω with an effective one-to-one degree
preserving correspondence between [T] and [S].

Encoding highly recursive in 0′ trees by binary trees gives us now results on bounded
recursive constraint satisfaction problems.

Corollary 4.7 (Negative results for bounded recursive infinite constraint
satisfaction problems).

1. There exists a bounded recursive infinite constraint satisfaction problem P1 such
that P1 has no solution which is recursive in 0′, although P possesses 2ℵ0 solu-
tions.

20

2. There exists a bounded recursive infinite constraint satisfaction problem P2 such
that P2 possesses 2ℵ0 solutions and any two solutions f1 6= f2 of P2 have the
property that f1

⊕
0′ 6≡T f2

⊕
0′.

3. If a is a Turing degree and 0′ <T a <T 0′′, then there exists a bounded recursive
infinite constraint satisfaction problem P3 such that P3 has 2ℵ0 solutions, a
solution of degree a but P3 has no solution which is recursive in 0′.

4. There exists a bounded recursive infinite constraint satisfaction problem P4 such
that P has 2ℵ0 solutions, and if a is the degree of any solution of P4 and b is a
degree which is r.e. in 0′ with a <T b, then b ≡T 0′′.

5. If c ≥T 0′ is any degree which is r.e. in 0′, then there exists a bounded recursive
infinite constraint satisfaction problems P5 such that the set of degrees which
are r.e. in 0′ and which contain solutions of P5 equals the sets of degrees ≥T c
which are r.e. in 0′.

6. There exists a bounded recursive infinite constraint satisfaction problems P6 such
that if f is solution for P6 where 0′ ≤T f <T 0′′, then there exists a set A such
0′ <T A <T f and A is r.e. in 0′.

5 Conclusions and further research

As happens often in recursive mathematics, the investigations from mathematics or
computer science inspire research on problems that generalize finite problems to the
recursive case. The research reported in this paper is of this kind, and is directly
inspired by the recent progress on constraint satisfaction. It is quite clear that even
more restrictive classes of constraint satisfaction problems can be considered, for
instance we could restrict ourselves to the case where the set of variables V , the un-
derlying domain A, and all the relations that appear in the constraints are recognized
by finite automaton. Such CSP can be considered automatic structures in the sense
of [KN95] and [KNRS07]. Such classes may be related to unbounded model checking
and other tasks grounded in electronic design automation practice. Similarly, one
could consider the class of infinite CSP’s where the set of variables V , the underlying
domain A, and all the relations that appear in the constraints are in some complexity
class such a polynomial time, polynomial space, etc.. It is then a natural questions
to ask for conditions on infinite CSP’s that ensure that there is a solution of which is
automatic, polynomial time, recursive, etc..

Yet another puzzling question related to recursive satisfaction problem is a possibility
of generalization of dichotomy theorems that lie on the crossroads of computational
universal algebra and computer science. The fundamental theorem of Schaefer [Sch78]

21

classifying (finite) Boolean constraint satisfaction problems according to the descrip-
tion of these constraints (but on a deeper level according to their invariants) and its
generalization by Bulatov [Bul02] to the case of 3-element domains raise a possibility
of the presence of dichotomies in the recursive case, as well. We hope that if such
generalizations are, indeed, possible, our paper is the first step in this direction.

Acknowledgements

This research of the first author was supported by the National Science Foundation
under Grant IIS-0325063. This research of the second author was supported by the
National Science Foundation under Grant DMS 0654060.

References

[Apt03] Apt, K.R., Principles of Constraint Programming, Cambridge Univer-
sity Press, 2003.

[Bul02] Bulatov, A.A. A Dichotomy Theorem for Constraints on Three-
Element Set. Proceedings of FOCS 2002, pages 649–658, 2002.

[CR98a] Cenzer, D. and Remmel, J.B. Π0
1 Classes in Mathematics, Handbook

of Recursive Mathematics, Vol 2., Studies in Logic and the Foundations
of Mathematics, Vol. 139, (eds. Y. Ershov, S. Goncharov, A. Nerode,
and J.B. Remmel), pages 632–822, Elsevier, 1998.

[CR98b] Cenzer, D. and Remmel, J.B. Index sets for Π0
1 classes, Annals of

Pure and Applied Logic 93:3–61, 1998.

[CRta] Cenzer, D. and Remmel, J.B. Effectively Closed Sets, ASL Lecture
Notes in Logic, to appear. Preliminary version available at http://www.
math.ufl.edu/~cenzer/.

[CCT87] Cook, W.J., Coullard, C. and Turan, G. On the complexity of
cutting-plane proofs. Discrete Applied Mathematics 18:25-38, 1987.

[Dec03] Dechter, R. Constraint Processing, Morgan Kaufmann, 2003.

[Hin78] Hinman, P. Recursion-theoretic Hierarchies, Springer-Verlag, 1978.

[Hoo00] Hooker, J.N Logic-Based Methods for Optimization, Wiley, 2000.

[JLR91] Jockusch, C.G., Lewis, A. and Remmel, J.B. Π0
1 Classes and

Rado’s Selection Principle. Journal of Symbolic Logic, 56:684–693, 1991.

22

[JS72a] Jockusch, C.G. and Soare, R.I. Π0
1 Classes and Degrees of Theories.

Transactions of American Mathematical Society, 173:33–56, 1972.

[JS72b] Jockusch, C.G. and Soare, R.I. Degrees of members of Π0
1 classes.

Pacific Journal of Mathematics, 40:605-616, 1972.

[KN95] Khoussainov, B. and Nerode, A. Automatic Presentations of Struc-
tures. In: Logical and Computational Complexity, Springer Lecture Notes
in Computer Science 960, pages 367–392. Springer Verlag, 1995.

[KNRS07] Khoussainov, B., Nies, A., Rubin S., and Stephan F., Auto-
matic structures: richness and limitations, Logical Methods of Computer
Science 3(2), 18 pp. (electronic), 2007.

[MT99] Marek, V.W., and Truszczyński, M. Stable Models and an Alterna-
tive Logic Programming Paradigm. The Logic Programming Paradigm,
pp. 375–398. Series Artificial Intelligence, Springer-Verlag, 1999.

[Nie99] Niemelä, I. Logic programs with stable model semantics as a con-
straint programming paradigm. Annals of Mathematics and Artificial
Intelligence 25, 3,4, 241–273, 1999.

[Rog87] Rogers, H. Theory of Recursive Functions and Effective Computability,
MIT Press, 1987.

[Sch78] Schaefer, T.J. The Complexity of Satisfiability Problems. Proceedings
of STOC 1978, pages 216–226, 1978.

[Sch98] Schrijver, A. Combinatorial Optimization, Springer-Verlag, 2003.

23

