Approximating answer sets of unitary Lifschitz-Woo
programs

Victor W. Marek, Inna Pivkind, and Mirostaw Truszczyhski

! Department of Computer Science, University of Kentucky
Lexington, KY 40506-0046, USA
2 Department of Computer Science, New Mexico State Universit
P.O. Box 30001, MSC CS, Las Cruces, NM 88003, USA

Abstract. We investigate several techniques for approximation ofvensets
for a subclass of general logic programs of Lifschitz and Widw class we con-
sider consists of programs that are unitary, i.e. allow fairgle literal in the
head (negation as failure is allowed in those literals). Wfapare three different
classes of approximations and obtain results on the raktiip between these
schemes. Since unitary general logic programs are equivéderevision pro-
grams we obtain results on approximations of justified fewis of databases by
revision programs.

1 Introduction

General logic programs were introduced by Lifschitz and ia®92]. Their syntax
follows closely that of disjunctive logic programs but thés one essential difference.
The operatonot, representing thdefault negations no longer confined to the bodies
of program rules but may appear in their heads, as well. hifsand Woo [LW92]
showed that the semantics of answer sets introduced famdisye logic programs in
[GL91] can be lifted to the class of general logic programs.

In this paper, we study the class of those general prograatsithnot contain dis-
junctions in the heads of their rules. We call such programitary. Unitary general
programs are of interest for two reasons. First, they go haybe class of normal
logic programs by allowing the default-negation operatathie rule heads. Second, in
a certain precise sense, unitary general programs areagepiivo the class of revision
programs [MT98,MPT02], which provide a formalism for debarg and enforcing
database revisions. Consequently, results for unitargmgéprograms extend to the
case of revision programs.

The problem we focus on in this paper is that of approximatingwer sets of
unitary general programs. The problem to decide whetheiitaryriogic program has
an answer set is NP-complét€onsequently, computing answer sets of unitary general
programs is hard and it is important to establish efficientsita approximate them. On
one hand, such approximations can be sufficient for somemé@agtasks. On the other

% Without the restriction to unitary programs (and assumivag the polynomial hierarchy does
not collapse) the problem is even harderS¥ -complete.



hand, they can be used by programs computing answer setarte fire search space
and can improve their performance significantly.

In the case of normal logic programs the well-founded mod&$88] provides an
effective approximation to all answer sétk can be computed in polynomial time and
is known to provide an effective pruning mechanism for pamgs computing stable
models [SNV95,SNS02]. An obvious approach to the problehaatl seems to be then
to extend the well-founded model and its properties to thscbf unitary programs.
However, despite similarities between normal and unitaogmms, no counterpart of
the well-founded model has been proposed for the lattes slagar, and whether it can
be done remains unresolved.

Thus, we approach the problem not by attempting to generttie well-founded
semantics but by exploiting this semantics in some othss, dérect ways. Namely, we
introduce three operators for unitary general programsusedthem to define the ap-
proximations. The first two operators are antimonotone aedlasely related to opera-
tors behind the well-founded semantics of normal logic paagg. Iterating them yields
alternatingsequences. We use the limits of these sequences to cormtinitst two
approximations to answer sets of unitary general progrdims.two approximations
we obtain in this way are not comparable (neither is strotiggm the other one). The
third operator is not antimonotone in general. Howeverhi ¢ase of unitary general
programs that have answer sets, iterating this operataltsés an alternating sequence
and the limit of this sequence yields yet another approXondb answer sets of unitary
general programs. We show that this third approximatiotramger than the other two.
We also show that all three approaches imply sufficient ¢ for thenon-existence
of answer sets of unitary programs.

As we noted, unitary programs are related to revision pmgrgMT98,MPT99].
Having introduced approximations to answer sets of unganeral programs, we show
that our results apply in a direct way to the case of revisimymmming.

All programs we consider in the paper digte. That assumption simplifies argu-
ments. However, all our results can be extended to the casérife programs.

2 Prdiminaries

Atoms and literals. In the paper we consider a fixed détof (propositional) atoms.
Expressions of the form andnot(a), wherea € U, areliterals (overU). We denote
the set of all literals ovel/ by Lit(U). A set of literalsL C Lit(U) is coherenif there
is noa € U such that bottlu € L andnot(a) € L. A set of literalsL. C Lit(U) is
completef for everya € U, a € L ornot(a) € L (it is possible that for some, both
a € L andnot(a) € L).

For a setM of atoms,M C U, we define

not(M) = {not(a): a € M} and M° = M Unot(U \ M).

The mappingVl — M¢ is a bijection between subsetsidfand coherent and complete
sets of literals contained ihit (U).

4 In the context of normal logic programming, answer sets aseernommonly known astable
models



Unitary general programs. A unitary general logic programor UG-programis a
collection of rules of the form:

a — ai,...,0m Q)
whereq, a1, ..., a., are literals fromLit(U) The literala is theheadof the rule. The
set of literals{a, . . ., a,, } is thebodyof the rule.

Let P be a UG-program. We writ&* (respectively,”~) to denote programs con-
sisting of all rules inP that have an atom (respectively, a negated atom) as the head.
Satisfaction and models. A set of atomsM C U satisfies(is a modelof) an atom
a € U (respectively, a literahot(a) € Lit(U)), if a € M (respectivelya ¢ M).
The concept of satisfaction (being a model of) extends iraad#rd way to rules and
programs. As usual, we write to denote the satisfaction relation.

Sets of literals closed under UG-programs. In addition to models, we also associate
with a UG-programP sets of literals that are closed under rule®inA setL of literals

is closedunder a UG-progran® if for every ruler = a < Body € P such that
Body C L, a € L. One can show that every UG-progrdfrhas a least set of literals
closed under its rulésWe denote it byP*. We observe that i? is a definite Horn
program,P* consists of atoms only and coincides with the least modél.of

Stable models of normal logic programs. Models are too weak for knowledge repre-
sentation applications. In the case of normal logic progsaire appropriate semantic
concept is that of a stable model. We recall that accordintp¢ooriginal definition
[GL88], a set of atom4/ is a stable model of a normal logic progrdprif

P = M, (2)

whereP™ is theGelfond-Lifschitzeduct of P with respect ta\/. The following char-
acterization of stable models is well known [BTK93} is a stable model of a normal
logic programpP if and only if

[P Unot(U\ M)]*NU = M. 3)

Answer sets of UG-programs. Lifschitz and Woo [LW92] extended the concept of a
stable model to the case of arbitrary general programs dledid¢he resulting semantic
object amanswer setRather than to give the original definition from [LW92], weall

a basic characterization of answer sets of UG-programsuilidie of use in the paper.
Its proof can be found in [MPT99].

Proposition 1. Let P be a UG-program. A set of atondg is an answer set t& if and
only if M is a stable model oP* and a model of” . In particular, if M is an answer
set toP thenM is a model ofP.

Alternating sequences. All approximations to answer sets of UG-programs we study
in this paper are defined in terms of alternating sequenaghair limits. A sequence
(X;) of sets of literals islternatingif

5 If we treat literalsnot (a) as new atomsP becomes a Horn program and its least model is the
least set of literals closed undex.



1. XpCX,CXsC...
2. X1 DX3DX5D ...
3. Xo; C X941, for every non-negative integér

If (X;) is an alternating sequence, we defiie= J;=, Xo; andX* = (2, Xait+1.
We call the pai X!, X*) thelimit of the alternating sequen¢&’;). It follows directly
from the definition that for every non-negative integeandj,

Xoi CX'C X" C Xojya

Alternating sequences are often defined by means of opsriduatr are antimono-
tone. An operatoty defined onLit(U) is antimonotonéf for every two setsX C Y C
Lit(U),v(Y) C v(X). Lety be antimonotone. We defing;, = § and X1 = v(X;).

It is well known (and easy to show) that the sequefiXg) is alternating. We callX;)
thealternatingsequence of.

We will consider in the paper the following two operators:

ypu(X) = [PUnot(U\ X)*NU and yp(X) = [P Unot(U \ X)]*.

Both operators are antimonotone and give rise to altergpatguences, sgyV;) and
(Y;). Let (W, W*) and(Y!,Y*) be the limits of these sequences, respectively. One
can verify that these limits forralternating pairs That is, we have

yru(W') =W and ypy(W") = W' (4)

and
wp(Y') =Y" andyp(Y") =Y. )

One can show that i’ is a normal logic program then the alternating sequence
of vp,u is precisely the alternating sequence defining the welhfleal semantics aP
[VRS88,Van93].

One can also show that the limit of the alternating sequeficg-0is the well-
founded model of the normal logic prograRi obtained fromP by replacing every
literal not(a) with anewatom, say’, and adding rules of the forad «+ not(a) (the
claim holds modulo the correspondence+ not(a)). The mappingP — P’ was
introduced and studied in [PT95] in the context of revisioograms.

Approximating sets of atoms. Let M be a set of atoms. Every pair of s¢fg S) that
approximatesV/, thatis, such thdi’ C M C S, implies a lower bound on the complete
representatio/ © of M:

TU{not(U\ S)} C M°“.

Conversely, every sel of literals such that. C M¢ determines arapproximation
(T,S) of M,whereT' =UnNLandS = {a € U: not(a) ¢ L}. Indeed,

UNLCMC{a€eU:not(a) ¢ L}.

In this way, we establish a bijection between approximatitona set of atoma/ and
subsets ofM/¢. It follows that approximations of answer sets can be represl as
subsets of their complete representations. We have treioly fact.



Proposition 2. Let P be a UG-program and Ief’ andS be two sets of atoms. For every
answer sef/ of P, if T C M C Sthen[PUT Unot(U \ S)]* C M*.

Proof: We havel’ C M C S. Thus,T U not(U \ S) C M*. Letr = a + Body be a
rule in P such thatBody C M¢. It follows that M satisfies the body of. SinceM is
an answer set aP, M satisfieso and soa € M°. Thus, T Unot(U \ S) C M° and
M< is closed undeP. Consequently,P U T Unot(U \ S)]* C M°. |

In the case of normal logic programs, the well-founded mottelt is, the limit
(W', W) of the alternating sequenc¢®;) of the operatoryp s, approximates every
stable model (if they exist) and, in some cases determiregiistence of a unique
stable model.

Theorem 1 ([VRS88,Lif96]). Let (W', W) be the well-founded model of a normal
logic programP.

1. For every stable modéll of P, W! Unot(U \ W*) C M¢
2. fW! =W, thenW! is a unique stable model fd?.

In the remainder of the paper, we will propose approximatittnanswer sets of
UG-programs generalizing Theorem 1.

3 Approximating answer setsusing operators~yp,y and vyp

Our first approach exploits the fact that every answer selifbgprogramp is a stable
model of P* (Proposition 1). Let? be a UG-program and l¢W', W*) be the limit
of the alternating sequence of the operatpr ;;. As we observed(W', W) is the
well-founded model of>*. We define

Appz,(P) = [P Unot(U \ W*)]*.

By (4), W! = [PUnot(U \ W¥]* N U. Hence W' C Appz,(P) and so,Appz,(P)
contains all literals that are true in the well-founded mddg’, w+).

Theorem 2. LetP be a UG-program. For every answer gegtof P, Appz, (P) C M°.
In addition, if Appz, (P) is incoherent ther® has no answer sets.

Proof: LetM be an answer set @. By Proposition 1M is a stable model oP*. Let

(W', W) be the well-founded model @P*. By Theorem 1not(U \ W*) C M°.

Moreover, sincel/ is an answer set aP, M is a model ofP (Proposition 1, again)

and so,M ¢ is closed undef. Since Appz,(P) is the least set of literals containing

not(U \ W*) and closed undeP, Appz,(P) C M¢, as claimed. The second part of

the assertion follows from the first one. m|
We will illustrate this approach with an example.



Example 1.Let us consider the following UG-prograft

a < not(b), not(c)
¢ < ¢,not(b)
b < not(d)
d < not(b)
not(b) «

All but the last rule belong t@*. The operatotyp+ ; determines the following alter-
nating sequencgV;) of sets:

0 {a,b,d} —0....

It follows that the well-founded model QP+ is (W', W*) = (0, {a,b,d}). Conse-
quently,
Appz, (P) = [P U {not()}]* = {a,d, not(b), not(c)}.

In this case, the well-founded model £f" alone provides a weak bound on answer
sets of P. The improved boundppz,(P), which closes the model undét, pro-
vides a much stronger approximation. In fact, only one Kets approximated by
{a,d,not(b), not(c)}. This set is{a,d} and it happens to be a unique answer set of
P.

Let Q = P U {not(a) + d}. SinceQ* = PT, it follows that Appz,(Q) =
[Q U {not(c)}]* = {a,d,not(a), not(b),not(c)}. SinceAppz,(Q) is incoherent()
has no answer sets, a fact that can be verified directly. O

The approximatiom ppz, (P), whereP is the first program from Example 1, is
complete and coherent, and we noted that the unique setroatppz, (P) approxi-
mates is a unique answer setflt is a general property extending Theorem 1(2).

Corollary 1. Let P be a UG-program. IfAppz,(P) is coherent and complete then
Appz,(P) N U is a unique answer set df.

Proof: Sincedppz, (P) is coherent and complete, Theorem 2 implies fhhfas at most
one answer set. To prove the assertion it is then enough totsled M = Appz, (P)N
U is an answer set dP.

Let(W!, W) be the well-founded model d**. SinceAppz, (P) = [PUnot (U \
W) *, [P Unot(U \ W*)]* is coherent and complete. Consequently,

M¢=[PUnot(U\ WH")]*.

It follows thatnot(U \ W*) C not(U \ M). Thus,Mc C [P Unot(U \ M)]*.
It also follows thatM© is closed under the rules iR. Sincenot(U \ M) C M¢,
[PUnot(U \ M)]* C M°. Thus,

M® = [P Unot(U \ M)]*.

It follows now thatM is a model of P~. Moreover, it also follows that/ = [(PT U
not(U \ M)]* and so,M is a stable model oP*. Thus,M is an answer set d?. O



We will now introduce another approximation to answer séts 0G-programpP.
This time, we will use the operatgp. LetY; be the alternating sequence of the operator
vp and let(Y'!, Y'*) be the limit of(Y;). We define

Appz,(P) =Y

Theorem 3. Let P be a UP-program. IfM is an answer-set foP then Appz,(P) C
Me. In addition, if Appz, is incoherent, the® has no answer sets.

Proof: Let M be an answer set d? and let(Y;) be the alternating sequence for the
operatoryp. We will show by induction that for every> 0, Yo, NU C M C Ya;41.

SinceYy =0, Yo nU C M. We will now assume that,; N U C M and show that
M C Ya;41. Our assumption implies thalot(U \ M) C not(U \ Y2;). Thus, since
M is a stable model of*, it follows from (3) that

M = [P Unot(U\ M)]*NU C [PUnot(U\ M)]* C [PUnot(U\ Ya:)]* = Yaii1.

Next, we assume thatf C Ys;,; and show thats;» N U C M. The assumption
implies thatnot(U \ Y2;+1) C not(U \ M). Thus,

Y2i+2 NnNU = [P @] IlOt(U \ Y2i+1)]* NnU g [P U not(U \ M)]* NnU
=[PtUnot(U\M)]*NnU = M.

The last but one equality follows from the fact thit is a model of P~ and the last
inequality follows from the fact that/ is a stable model oP+.
¢From the claim it follows that C Y. Thus,not(U \ Y*) C M*. SinceM is a
model of P, M€ is closed undeP. Thus,Y'! = [P Unot(U \ Y*)]* C M°. O
As before, if the approximation provided bippz,(P) is complete and coherent,
P has a unique answer set.

Corollary 2. Let P be a UG-program such that ppz, (P) is complete and coherent.
Then,Appz,(P) N U is a unique answer set &f.

Proof: LetM = Appz,(P)NU. By Theorem 3, it suffices to show thaf is an answer
set of P.

Let (Y;) be the alternating sequence g6 and let(Y'!, Y*) be its limit. Since
Appz,(P) = Y'is complete and cohererit;! = M<°. By (5), M° = Y! = [P U
not(U \ Y*)]*. Thus,M* is closed under rules i®. Consequently) is a model of
P and of P, in particular.

We also have C M¢ = Y! C Y. Thus,not(U \ Y*) C not(U \ M) and so,
M®=[PUnot(U\Y")]* C[PUnot(U\ M)]*.

As we already observed/°© is closed undef. Moreovernot(U \ M) C M¢c.
Thus,[P Unot(U \ M)]* C M°.

It follows that M < = [P U not(U \ M)]*, which implies thatV/ = [P Unot(U \
M)]* nU. Thus,M is a stable model oP*. We already proved thal/ is a model of
P~ and so,M is an answer set af. m|

The following example illustrates our second approach.



Example 2.Let P be a UG-program consisting of rules:

not(a) < not(b)
b < not(a)
a <

Iterating the operatoyp results in the following alternating sequence:
0 — {a,b,not(a),not(b)} — {a} = {a,b,not(a),not(b)} — ... .
Its limitis ({a}, {a, b, not(a), not(b)}) and so,Appz,(P) = {a}. |

We conclude this section by showing that the approximatibpgz, and Appz,
are, in general, not comparable.

The following example shows that there is a UG-prog@rauch thatdppz, (P)
and Appz,(P) are coherent and ppz,(P) is apropersubset ofdppz, (P).

Example 3.LetU = {a,b,c,d, e} and letP be a UG-program consisting of the rules:

Computing Appz, (P). The programP* consists of all rules oP except the last one.
The alternating sequencegf+ ;s starts as follows:

0 {a,bcde}—{et—{abrce}{ace}{ace}—.. ..
Thus, its limitis({a, ¢, e}, {a,c,e}) and
Appz,(P) = [P U{a,c, e} U {not(b),not(d)}]* = {a,c,e,not(b),not(d)}.
Computing Appz,(P). Iterating the operatoyp yields the following sequence:
0 Lit(U) — {e} = Lit(U) — ... .
Thus, the limitis({e}, Lit(U)) and so,Appz,(P) = {e}. O

The next example shows that for some programs the oppositeeiand the second
approximation is strictly more precise.



Example 4.LetU = {a,b, ¢} and letP be a UG-program consisting of the rules:

a < not(b)

b < not(a)

c+ a,b
not(a)

Computing Appz, (P). The alternating sequence of the operatpr (; is
0= {a,bc} =0 ... .

Thus,
Appz,(P) = P* = {not(a), b}.

Computing Appz,(P). Iteratingyp yields:
0 — Lit(U) — {not(a),b} — {not(a),b,not(c)} — {not(a),b,not(c)} — ... .

Thus,Appz,(P) = {not(a), b, not(c)}. |

4 Strong approximation

Let P be a UG-program and C Lit(U) a set of literals (not necessaridphereny. By
theweak reducbf P with respect taZ we mean the program? obtained fromP by:

1. removing all rules that contain in the body a literalt(a) such thatz € Z and
not(a) ¢ Z;
2. removing from the bodies of the remaining rules all litetsot (a) such that ¢ Z.

Let us note that it € Z andnot(a) € Z, not(a) will not be removed from the rules
that remain after Step 1.
Let Z be a set of literalsZ C Lit(U). We define

18(2) = [P

In general, the operatory is not antimonotone. Thus, the sequef£e) obtained by
iterating~p (starting with the empty set) in general is not alternating.

Example 5.Let P be a UG-program consisting of the rules:

a
not(a) < b
b < not(c)
cc
d <+ not(a).



By the definition,Z, = (. When computing®Z°, no rule is removed in Step 1 of the
definition and every literal of the formot(a) is removed form the bodies of rules in

P. Thus,
a

not(a) < b

P% — b« », andso,Z; = {a,b,d},
c<<cC
d <+ .

SinceZ; is coherent, the rulé < not(a) is removed in Step 1 when computiff’.

Thus,
a +—

not(a) < b
b«
cc

pP% = and so,Z, = {a,b,not(a)},

When computing?Z

w

2, the ruled « not(a) is notremoved in Step 1. Thus,

a <
not(a) < b
P% — b+ , andso,Zs = {a,b,d,not(a)}.
cec
d < not(a).

We note that neitheXs nor Z3 are subsets of;. Thus, for this progran®, the sequence
(Z;) is not alternating. |

In the remainder of this section we show that under some tiondithe sequence
(Z;) is alternating and may be used to approximate answer set&qfrdgrams.

Lemmal. Let P be a UG-program X and X' be sets of literals such tha C X',
Moreover, let at least one of the following conditions hold:

1. X' is coherent

2. X C [PX']* and[PX']* is coherent.
3. [PX]*CcXx

4. X C [PX]* and[PX]* is coherent.

Then[PX'}* C [PX]".

Proof: LetQ consist of those rules iRX" whose bodies are containedi®X']*. Then,
[PX']* = Q*. Letr = a + Body be a rule inQ such thatBody C [P.X]*. To prove
the assertion, it suffices to show thate [PX]*. Indeed, the fact that is arbitrary,
implies that{ P;X]* is closed under rules i and, consequently, that

[PXT = Q" c[PY]".

By the definition of the redud®X’, there is a rule’ = o « Body’ in P such that
Body C Body' and for every literaB € Body' \ Body, 3 = not(b), for someb ¢ X'.



Let not(a) € Body'. We will show that eithen ¢ X or not(a) € X. First, if
a ¢ X'thena ¢ X. Thus, let us assume thate X'. Then,not(a) € Body and so,
not(a) € X' (otherwise; would not belong taPX"). Sincenot(a) € Body, we also
have thanot (a) € [PX']* andnot(a) € [P.X]*.

Under the condition (1), sinceot(a) € X' and X' is coherenta ¢ X', a con-
tradiction. Under the condition (2), sinest(a) € [PX']*, the coherence giP.X']*
implies thata ¢ [PX']* and, consequently, that ¢ X. If the condition (3) holds,
not(a) € [PX]* implies thatnot(a) € X. Finally, if the condition (4) holds, since
not(a) € [PX]*, the coherence dPX]* implies thata ¢ [P.X]*. Thus,a ¢ X.

Let Body" be obtained fromBody' by removing all literals of the fornmot(a),
wherea ¢ X. By the observation we proved above, the riffe= o + Body" is
in PX. SinceX C X', Body" C Body. Thus,Body" C [PX]* and it follows that
a € [PX]*. O

Lemma 2. Let P be a UG-program and a coherent set of literalsX C Lit(U).

L [PY] =[Py

2. [P] = [(P*)5"7] Unot(X') = [(P*)*"Y]* Unot(X"),
whereX' is the set of atoms such thae X' if and only if there is a ruleot(a) «+
Body in P~ such thaf(P+)X"Y]* = Body.

Proof: (1) For every atom € U, a € X if and onlya € X N U. Moreover, sinceX
is coherent, ifa € X, thennot(a) ¢ X. Therefore,PX = PX"U and so[PX]* =
[PXOU]*.

(2) We observe thaPX = (P*+)Xu(P~)X. Moreover, sinceX is coherent, the bodies
of rules inPX consist of atoms only. Thus, it follows that

[Pa]" = [(PT)5"Y]" Unot(X').

The second equality in (2) follows from the observation teatce’ is a normal logic
program,(P*)X"U and the standard Gelfond-Lifschitz redgétt)* ¥ coincide. O
We have the following characterization of answer sets of ff@grams.

Lemma3. Let P be a UG-programM C U a set of atoms, an&V a set of atoms
consisting of all atomsa € U such thata ¢ M and there is a rulaot(a) < Body
in P such thatM = Body. ThenM is an answer set of if and only if[PM]* =
M Unot(N).

Proof: (=) By Proposition 1M is a stable model aP* and a model of’~. In partic-

ular,[(PT)M]* = M. Let X' be the set specified in Lemma 2(2), definedXor= M.

Since[(PT)M]* = M and M is a model ofP—, for everya € X', a ¢ M. Thus,
X' = N and the assertion follows from Lemma 2(2).

(«) It follows from Lemma 2(2) that = [(P*)M]*. Thus, M is stable model of
P+, Let us consider a rulaot(a) < Body from P~ such thatM satisfiesBody. Let

Body' consist of all atoms ifBody. It follows thatnot(a) « Body' is a rule inPM.

Since M satisfiesBody, Body' C M = [(PT)M]* = [(PT)M]* C [PM]*. Thus,
not(a) € [PM]* and, consequently, ¢ M. It follows thatM is a model of?~ and

S0, an answer set @f. m|



Lemma4. Leti be an integer such that> 1 and Zs; is coherent.

1§ Zsio C Zyiqy @andZy;_y C Zy;, thenZy; C Zyi 4
2. W Zy;_5 C Zy;, thenZyiyy C Zy; g

3. f Zy; C Zy; 1, thenZy; C Zyipg

4., If ZQi+1 C Zsi 1 and Z,; - ZQi+1, thenZs,; - Z2i+2.

Proof: (1) Let us note that,; = [Pf“’l]*. Thus, (1) follows from Lemma 1 applied
to X = Z5; 2 andX' = Z,; 1, which satisfy the assumption (2) of the lemma.
(2) Letus assume that; > C Z»;. SinceZs; is coherent, Lemma 1 applies (under the

condition (1)) and implies thd?2:]* C [Pf”’z]*. Consequently

w

Zoiv1 = [Pfgi]* - [Pfgifz]* = Z2i 1.

(3) SinceZy; = [PwZZ"”]*, X = Zy; and X' = Z,;_; satisfy the assumptions of
Lemma 1 (in particular, the assumption (3)). Thus,

Zyi = [PJ] C PP = Zoiga.

(4) One can check that the assumptions of Lemma 1 are satigtied = Z,;,; and
X' = Z5; 1 (again, the assumption (3)). O

Corollary 3. Leti be aninteger; > 0, such thatZ,; is coherent. Then

1. 70 C 7o C ... C Zo;
2. Z1 D232 ...2 Zziq1
3. Z3 C Zoit1.

Proof: We haveZ, = 0. Thus,Zy C Z; andZ, C Z,. Consequently, the assertion
follows by induction from Lemma 4. ]

Let us consider the sequencg ). If for everyi, Z,; is coherent, Corollary 3 implies
that the sequend€;) is alternating. Letz*, Z*) be the limit of(Z;). We define

Appz4(P) = Z' U {not(a): a € U\ Z"}.

Otherwise, there i$ such thatZ,; is incoherent. In this case, we say thgtpz,(P) is
undefined.

Theorem 4. Let P be a UG-program. IfM is an answer set aP then Appz4(P) is
defined anddppz4(P) C Me. If Appz4(P) is not defined, the® has no answer sets.

Proof: The second part of the assertion follows from the din&t. To prove the first part
of the assertion, we will show that for every> 0, Z5; C M€, andM C Zs;11.

We proceed by induction oh If 7 = 0, thenZ, = § C M*. We now assume that
Zsi C M€ and provethald C Zs; 4.

SinceZy; C M° and M€ is coherent/,; is coherent, too. By Lemma 1 (applied
to X = Z,; and X' = M¢, under the assumption (4))PM°]* C [PZ2]*. Thus,
[PM]* C Zo;y1. By Lemma 2(1)[PM]* C Zyi11. By Lemma 3,M C [PM]*.
Therefore M C Zs;y ;.



Next, we assume that/ C Z;; and prove that/,; ;> C M¢. Let us note that
Zaivs = [PZ+']* and that by Lemma 3PM]* C Me. Thus, it will suffice to show
that[PZ>+']* C [PM]*. To this end, we note that by LemmaZ®, C [PM]* and so
Lemma 1 applies (under the condition (4))X0= M and X' = Z,;,1, and implies
the required inclusion.

It follows that Z! C M¢ and thatM C Z“.If a ¢ Z“, thena ¢ M and so,
not(a) € M¢. Thus,Appz,(P) = Z' Unot(U \ Z*) C M°©. |

Example 6.Let P be a UG-program consisting of the rules:

not(a)
a < not(b)
b < not(a)
c+ a,b

not(d) «+ not(c)
d < not(e)
e < not(d)
f«de

Iterating the operatoy} results in the following sequence:

0 — {a,b,c,d,e, f,not(a),not(d)} — {not(a),b} — {b,d,e, f,not(a), not(d)}
— {b,e,not(a),not(d)} — {b,e,not(a),not(d)} — ... .

Thus, the sequende?;) is alternating. Its limit is Z!, Z*), whereZ! = Z* = {b, e,
not(a),not(d)}. Thus,

Appz4(P) = Z' Unot(U \ Z*) = {b, e, not(a), not(c), not(d), not(f)}.

Since Appz4(P) is coherent and complet®, has a unique answer s, e}. This
example also demonstrates ti#t can improve on the bound provided &Y itself. O

5 Propertiesof Appx,

In this section we will show that ilppz, is defined then it is stronger than the other
two approximations. We recall that #ppz4(P) is undefined, the® has no answer
sets, that isP is inconsistentlt follows that for allconsistenUG-programsAppz 5 is
stronger than the the other two approximations.

Theorem 5. LetP be a UG-program. [{Appz4(P) is defined then
Appz,(P) U Appzy(P) C Appas(P)

Proof: Let(W;) be the alternating sequence of the operator ; and let(Z;) be the
alternating sequence of the operaig. We observe that all sei¥’; consist of atoms.
Also, sinceAppz4(P) is defined, all setg,; are coherent.



We will show that for every > 0, Wy; C Zy; andZs; 1 NU C Waiy .
We proceed by induction. The basis is evidentgs = 7, = (. We will now
assume thaltVs; C Z,; and prove tha¥,;,; N U C Wy;,1. We have

(P2 = [(PF)Z U (P2

SinceZ,; is coherent, no rule inP*)Z2i contains a negated literal. Thus, there is a set
N C U such that
[P7#)x = [(P*)7#) Unot(N).

Itfollows thatZy; ;NU = [(PT)%2]*. SinceZ,; is coherent(P*)%2 = (P*)Z =
(P)Z, whereZ = U N Z,;. We haveWs,; C U andWs; C Z»;. Thus,W,; C Z and
(PT)Z C (P*)"=i, Putting all these facts together, we obtain

o NU = [(PH7) = (P C[(PH)V]* = Waipa.

Next, we assume thafy; .1 N U C Wa;yq and show thatVs,; o C Zs,40. Since
Z2iv1NU C Wa;y 1 and sincdVy;, 1 consists of atoms onlypP+)Wzi+1 C (Pﬂffi“.
Thus,(P*+)W2i+1 C PZ*+ and so,

Waisa = [(PH"5]" C [PE] = Zaio.

Let (W', W) and(Z!, Z*) be the limits of the sequencé®’;) and(Z;), respec-
tively. The claim we proved above implies that N U C W*. Thus,

not(U \ W*) C not(U \ Z") C Appzs(P).

Letr = a < Body be arule inP and let us assume th&ody C Appz4(P). Let
not(a) be a negated literal iBody. Thennot(a) € Appz,(P) and sonot(a) € Z! or
a ¢ Z*. SinceZ! C Z*,r is notremoved in Step 1 of the definition of the redi& .
Letr' = a «+ Body' be the rule obtained by removing from the bodyrddll literals
not(a) such thata ¢ Z“. Then,r’ € P?" andBody' C Z'. SinceZ! = [PZ"]*,
a € Z'and sop € Appz,(P).

Thus, Appz4(P) is closed under rules if* and containsot(U \ W*). It follows
that

Appa,(P) = [P Unot(U \ 5)]* C Appay(P).

Next, we will show thatdppz,(P) C Appz4(P). Let (Y;) be the alternating se-
quence ofyp. We will show that for every > 0, Ys; N U C Zs; andZs; 1 C Yai11.

We proceed by induction. The basis is evidentas= Z, = (). We now assume
thatYs; N U C Zy; and prove tha¥s; 11 C Ys;4;1. SinceZs,; is coherent, Lemmas 1
and 2 imply that

Toiga = [PZ)" = [PZ5NU) € [PV = [P)°.

Leta < Body be arule inP> such thatBody C [PUnot (U \ Ya;)]*. Then, there
is aruler’ = a < Body' in P such that for every literahot(a) in Body', a ¢ Ys; or
not(a) € Ys;, and removing all literalaot(a), wherea ¢ Ya;, from Body' results in



Body. It follows that Body' C [P Unot(U \ Y»;)]* and soq € [P Unot(U \ Y;)]*.
Thus,[P Unot(U \ Ys;)]* is closed under rules ifP}2]* and so,

[PJZZ']* g [PU IlOt(U \ Ygi)]* = Y2i+1.

ConsequentlyZs; 11 C Ys;41 follows.

Next, we assume thafy; 1 C Ys;,1 and prove thats;,o NU C Za;yo.

Let P’ be a program obtained frof by removing literals imot (U \ Y2;41) from
the bodies of rules i®. The progranP’ has the following property:

[P Unot(U \ Yai1)]* NU C [P

Letr = a < Body be a rule inP' such thatBody € [P2**']*. Since(Z;) is
alternating (we recall thad ppz, (P) is defined) Zsi+o C Zo;iy1. Thus,

BOdy g [Pf2i+l]* = ZQH»Z g Zzi+1.

Sincer € P', thereis arule’ = a < Body' in P such that after removing from
Body' all literals of the formnot(a), wherea ¢ Ys;,1, we obtainBody. Let not(a)
be a literal of Body'. If a € Zy;11, thena € Yz, and somnot(a) € Body. Thus,
not(a) € Z»;+1 and the rule’ is not removed in Step 1 of the construction/f>*" .

Let Body" be the result of removing fronBody’ all literals not(a), wherea ¢
Zois1. It follows thatr” = o « Body" is in Pa”*". Let 3 be a literal inBody". If 3
is an atom then, singg& € Body' and only negated atoms are removed filBoady’ when
constructing: from+', 8 € Body. If 8 = not(a), thena € Z5;,, and, by an argument
given abovenot(a) € Body. Thus, in either cas@ € Body and sof € [Pf”*‘]*, as
well. It follows thatBody" C [PZ*+']*. Consequentlyy € [PZ**']*. Thus [PZ2>+']*

is closed undeP’ and[P']* C [PZ**+']*. In this way, we get
Yaiyos NU = [PUnot(U \ Yai1)]* NU C [P']* C [PZ2+1]* = Zyiyo.
The claim we just proved implies th& N U C Z' nU andZ* C Y™ Thus,

Appz,(P) =Y' C Z'Unot(U \ Z*) = Appz,(P).

There are programs which show tHaipz, is strictly stronger.

Example 7.Let P be the UG-program from Example 4. We recall thlatpz, (P) =
{not(a),b}. Let us computedppz,(P). By iterating the operatoy’, we obtain the
following sequence:

Zo =0~ Z; = {a,b,¢c,not(a)} — Zs = {not(a),b} — Z3 = {not(a), b} ....

Hence Appz4(P) = {not(a), b, not(c)} andAppz, (P) is apropersubset ofd ppz 5 (P).
O



Example 8.Let P be the UG-program from Example 3. We recall thiatpz,(P) =
{e}. To computedppz,(P), we note that by iterating the operatgf we get the fol-
lowing sequence:

Zo =0+ Zy ={a,b,c,d,e,not(e)} = Zy = {e} —

Z3 ={a,b,c,e,not(e)} = Zy = {a,c,e} —» Zy = {a,c,e}....

Hence,Appz;(P) = {a,not(b),c,not(d),e} and Appz,(P) is a proper subset of
Appz4(P). m|

Finally, we show that ifAppz(P) is defined and complete thdn has a unique
answer set.

Corollary 4. Let P be a UG-program such thatppz,(P) is defined and complete.
ThenAppz,(P) N U is an answer set aP and P has no other answer sets.

Proof: LetM = Appz5(P)NU. By Theorem 4, it suffices to show thaf is an answer
set of P. To this end, we will show that/ is a stable model oP* and a model o~

We first observe that the definition efppz,(P) implies thatM = Z' N U. We
also note that sincg! is coherentz* = [PZ']* = [(P+)M]* U not(NN), for some set
N C U.ltfollowsthatM = Z' nU C Z*nU = [(P*)M]*. We will now show that
[(PH)M]* C [PZ"]".

Letr = a « Body be arule in(P*t)M, Let us assume thatody C [PZ"]*. Let
r" = a + Body' be a rule inP such that for every literakk € Body' \ Body, a =
not(a), for somea ¢ M. Letnot(a) be aliteral inBody' such that € Z“. Then,a ¢
Z!. Thus,not(a) € Z!' (by the completeness ¢f'). In particularnot(a) € Z* and
so,r’ is not removed in Step 1 of the constructionRff . Letr" = a + Body" be the
rule obtained from' by removing all literalsnot(a) such that ¢ Z*. It follows that
' € PZ" . For every atomu € Body", a € Body and sog € [PZ"]*. For every literal
not(a) € Body", a € Z* (otherwise, this literal would get removed). Thus, accogdi
to an earlier observatiomot(a) € Z' = [PZ"]*. It follows that Body" C [PZ"]*.
Thus,a € [PZ"]* and[PZ"]* is closed unde(P™)M. Thus,[(PT)™]* C [PZ"]*, as
required.

Thus,M = [(P*)M]*, thatis,M is a stable model oP*, andZ' NU = Z*“NU.
The latter identity implies??: C PZ" and s0,Z* = Z'. Letr = not(a) < Body
be a rule inP~ such thatM = Body. It follows thatr is not removed in Step 1
of the construction o?Z?" and thatP?" contains a rule’ = a < Body', where
Body' C Body. It follows thatM = Body'. Moreover, sinceBody' consists of atoms
(Z"is coherent)Body' C M = Z'NU C Z' = [P7"]*. Thus,not(a) € [PZ"]* and
so,not(a) € Z'. Consequently; ¢ M and it follows thatM is a model ofP~. Thus,
M is an answer set a?. m|

6 Corollariesfor the case of revision programs.

Revision programming [MT98] is a formalism for describingdeenforcing constraints
on databases. The main concepts in the formalism are idétabase, revision program,



and justified revisions. Expressions of the fommia) andout(a) (¢ € U) are called
revision literals. Intuitivelyjn(a) (resp.,out(a)) means that atom is in (resp., is not

in) a database. Revision program consists of rules of thedyp- a4, ..., a,, where

a, a;, ..., a, are revision literals. Given a revision progrdfrand an initial database

1, P-justified revisions ofl represent a set of revisions. Each revision satisfies the
constraints and differs minimally from the initial databas

As we mentioned earlier, unitary general programs are atgnv to revision pro-
grams [MPT99].

The first two approximationsdppz, and Appz,, directly correspond to two def-
initions of well-founded semantics for revision programduced by embeddings of
revision programs into logic programs proposed in [Pivlthjvas also shown that the
definitions were in general not comparable.

Formal descriptions ofippz,, Appz,, and Appz, for revision programs can be
found in [Piv05].

Theorem 5 implies thatippz is stronger thatdppz, and Appz, for revision
programming.

Theorem 4 implies that ifl ppz ; does not exist for a revision prografhand initial
databasd, then there are n®&-justified revisions of .

Corollary 4 implies that ifAppz is defined and complete for a revision program
P and a databasg, then there exists exactly on@-justified revision ofl and it is
determined by the approximation.
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