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Abstract. We investigate several techniques for approximation of answer sets
for a subclass of general logic programs of Lifschitz and Woo. The class we con-
sider consists of programs that are unitary, i.e. allow for asingle literal in the
head (negation as failure is allowed in those literals). We compare three different
classes of approximations and obtain results on the relationship between these
schemes. Since unitary general logic programs are equivalent to revision pro-
grams we obtain results on approximations of justified revisions of databases by
revision programs.

1 Introduction

General logic programs were introduced by Lifschitz and Woo[LW92]. Their syntax
follows closely that of disjunctive logic programs but there is one essential difference.
The operatornot, representing thedefault negationis no longer confined to the bodies
of program rules but may appear in their heads, as well. Lifschitz and Woo [LW92]
showed that the semantics of answer sets introduced for disjunctive logic programs in
[GL91] can be lifted to the class of general logic programs.

In this paper, we study the class of those general programs that do not contain dis-
junctions in the heads of their rules. We call such programsunitary. Unitary general
programs are of interest for two reasons. First, they go beyond the class of normal
logic programs by allowing the default-negation operator in the rule heads. Second, in
a certain precise sense, unitary general programs are equivalent to the class of revision
programs [MT98,MPT02], which provide a formalism for describing and enforcing
database revisions. Consequently, results for unitary general programs extend to the
case of revision programs.

The problem we focus on in this paper is that of approximatinganswer sets of
unitary general programs. The problem to decide whether a unitary logic program has
an answer set is NP-complete3. Consequently, computing answer sets of unitary general
programs is hard and it is important to establish efficient ways to approximate them. On
one hand, such approximations can be sufficient for some reasoning tasks. On the other

3 Without the restriction to unitary programs (and assuming that the polynomial hierarchy does
not collapse) the problem is even harder —�P2 -complete.



hand, they can be used by programs computing answer sets to prune the search space
and can improve their performance significantly.

In the case of normal logic programs the well-founded model [VRS88] provides an
effective approximation to all answer sets4. It can be computed in polynomial time and
is known to provide an effective pruning mechanism for programs computing stable
models [SNV95,SNS02]. An obvious approach to the problem athand seems to be then
to extend the well-founded model and its properties to the class of unitary programs.
However, despite similarities between normal and unitary programs, no counterpart of
the well-founded model has been proposed for the latter class so far, and whether it can
be done remains unresolved.

Thus, we approach the problem not by attempting to generalize the well-founded
semantics but by exploiting this semantics in some other, less direct ways. Namely, we
introduce three operators for unitary general programs anduse them to define the ap-
proximations. The first two operators are antimonotone and are closely related to opera-
tors behind the well-founded semantics of normal logic programs. Iterating them yields
alternatingsequences. We use the limits of these sequences to constructour first two
approximations to answer sets of unitary general programs.The two approximations
we obtain in this way are not comparable (neither is strongerthan the other one). The
third operator is not antimonotone in general. However, in the case of unitary general
programs that have answer sets, iterating this operator results in an alternating sequence
and the limit of this sequence yields yet another approximation to answer sets of unitary
general programs. We show that this third approximation is stronger than the other two.
We also show that all three approaches imply sufficient conditions for thenon-existence
of answer sets of unitary programs.

As we noted, unitary programs are related to revision programs [MT98,MPT99].
Having introduced approximations to answer sets of unitarygeneral programs, we show
that our results apply in a direct way to the case of revision programming.

All programs we consider in the paper arefinite. That assumption simplifies argu-
ments. However, all our results can be extended to the case ofinfinite programs.

2 Preliminaries

Atoms and literals. In the paper we consider a fixed setU of (propositional) atoms.
Expressions of the forma andnot(a), wherea 2 U , areliterals (overU ). We denote
the set of all literals overU byLit(U). A set of literalsL � Lit(U) is coherentif there
is noa 2 U such that botha 2 L andnot(a) 2 L. A set of literalsL � Lit(U) is
completeif for everya 2 U , a 2 L or not(a) 2 L (it is possible that for somea, botha 2 L andnot(a) 2 L).

For a setM of atoms,M � U , we definenot(M) = fnot(a) : a 2Mg and M  = M [ not(U nM):
The mappingM 7!M is a bijection between subsets ofU and coherent and complete
sets of literals contained inLit(U).

4 In the context of normal logic programming, answer sets are more commonly known asstable
models.



Unitary general programs. A unitary general logic program, or UG-program is a
collection of rules of the form: �  �1; : : : ; �m (1)

where�, �1; : : : ; �m are literals fromLit(U) The literal� is theheadof the rule. The
set of literalsf�1; : : : ; �mg is thebodyof the rule.

Let P be a UG-program. We writeP+ (respectively,P�) to denote programs con-
sisting of all rules inP that have an atom (respectively, a negated atom) as the head.
Satisfaction and models. A set of atomsM � U satisfies(is a modelof) an atoma 2 U (respectively, a literalnot(a) 2 Lit(U)), if a 2 M (respectively,a =2 M ).
The concept of satisfaction (being a model of) extends in a standard way to rules and
programs. As usual, we writej= to denote the satisfaction relation.
Sets of literals closed under UG-programs. In addition to models, we also associate
with a UG-programP sets of literals that are closed under rules inP . A setL of literals
is closedunder a UG-programP if for every rule r = �  Body 2 P such thatBody � L, � 2 L. One can show that every UG-programP has a least set of literals
closed under its rules5. We denote it byP �. We observe that ifP is a definite Horn
program,P � consists of atoms only and coincides with the least model ofP .
Stable models of normal logic programs. Models are too weak for knowledge repre-
sentation applications. In the case of normal logic programs, the appropriate semantic
concept is that of a stable model. We recall that according tothe original definition
[GL88], a set of atomsM is a stable model of a normal logic programP if[PM ℄� = M; (2)

wherePM is theGelfond-Lifschitzreduct ofP with respect toM . The following char-
acterization of stable models is well known [BTK93]:M is a stable model of a normal
logic programP if and only if[P [ not(U nM)℄� \ U = M: (3)

Answer sets of UG-programs. Lifschitz and Woo [LW92] extended the concept of a
stable model to the case of arbitrary general programs and called the resulting semantic
object ananswer set. Rather than to give the original definition from [LW92], we recall
a basic characterization of answer sets of UG-programs thatwill be of use in the paper.
Its proof can be found in [MPT99].

Proposition 1. LetP be a UG-program. A set of atomsM is an answer set toP if and
only ifM is a stable model ofP+ and a model ofP�. In particular, ifM is an answer
set toP thenM is a model ofP .

Alternating sequences. All approximations to answer sets of UG-programs we study
in this paper are defined in terms of alternating sequences and their limits. A sequence(Xi) of sets of literals isalternatingif

5 If we treat literalsnot(a) as new atoms,P becomes a Horn program and its least model is the
least set of literals closed underP .



1. X0 � X2 � X4 � : : :
2. X1 � X3 � X5 � : : :
3. X2i � X2i+1, for every non-negative integeri.

If (Xi) is an alternating sequence, we defineX l = S1i=0X2i andXu = T1i=0X2i+1.
We call the pair(X l; Xu) the limit of the alternating sequence(Xi). It follows directly
from the definition that for every non-negative integersi andj,X2i � X l � Xu � X2j+1

Alternating sequences are often defined by means of operators that are antimono-
tone. An operator defined onLit(U) is antimonotoneif for every two setsX � Y �Lit(U), (Y ) � (X). Let be antimonotone. We defineX0 = ; andXi+1 = (Xi).
It is well known (and easy to show) that the sequence(Xi) is alternating. We call(Xi)
thealternatingsequence of.

We will consider in the paper the following two operators:P;U (X) = [P [ not(U nX)℄� \ U and P (X) = [P [ not(U nX)℄�:
Both operators are antimonotone and give rise to alternating sequences, say(Wi) and(Yi). Let (W l;W u) and(Y l; Y u) be the limits of these sequences, respectively. One
can verify that these limits formalternating pairs. That is, we haveP;U (W l) = W u and P;U (W u) = W l (4)

and P (Y l) = Y u and P (Y u) = Y l: (5)

One can show that ifP is a normal logic program then the alternating sequence
of P;U is precisely the alternating sequence defining the well-founded semantics ofP
[VRS88,Van93].

One can also show that the limit of the alternating sequence of P is the well-
founded model of the normal logic programP 0 obtained fromP by replacing every
literal not(a) with a newatom, saya0, and adding rules of the forma0  not(a) (the
claim holds modulo the correspondencea0 $ not(a)). The mappingP 7! P 0 was
introduced and studied in [PT95] in the context of revision programs.
Approximating sets of atoms. LetM be a set of atoms. Every pair of sets(T; S) that
approximatesM , that is, such thatT �M � S, implies a lower bound on the complete
representationM of M : T [ fnot(U n S)g �M :
Conversely, every setL of literals such thatL � M determines anapproximation(T; S) of M , whereT = U \ L andS = fa 2 U : not(a) =2 Lg. Indeed,U \ L �M � fa 2 U : not(a) =2 Lg:
In this way, we establish a bijection between approximations to a set of atomsM and
subsets ofM. It follows that approximations of answer sets can be represented as
subsets of their complete representations. We have the following fact.



Proposition 2. LetP be a UG-program and letT andS be two sets of atoms. For every
answer setM ofP , if T �M � S then[P [ T [ not(U n S)℄� �M .
Proof: We haveT � M � S. Thus,T [ not(U n S) � M . Let r = �  Body be a
rule inP such thatBody � M . It follows thatM satisfies the body ofr. SinceM is
an answer set ofP , M satisfies� and so,� 2 M . Thus,T [ not(U n S) � M andM is closed underP . Consequently,[P [ T [ not(U n S)℄� �M. 2

In the case of normal logic programs, the well-founded model, that is, the limit(W l;W u) of the alternating sequence(Wi) of the operatorP;U , approximates every
stable model (if they exist) and, in some cases determines the existence of a unique
stable model.

Theorem 1 ([VRS88,Lif96]). Let (W l;W u) be the well-founded model of a normal
logic programP .

1. For every stable modelM ofP , W l [ not(U nW u) �M
2. If W l = W u, thenW l is a unique stable model forP .

In the remainder of the paper, we will propose approximations to answer sets of
UG-programs generalizing Theorem 1.

3 Approximating answer sets using operators P;U and P
Our first approach exploits the fact that every answer set of aUG-programP is a stable
model ofP+ (Proposition 1). LetP be a UG-program and let(W l;W u) be the limit
of the alternating sequence of the operatorP+;U . As we observed,(W l;W u) is the
well-founded model ofP+. We defineAppx 1(P ) = [P [ not(U nW u)℄�:
By (4),W l = [P [ not(U nW u℄� \ U . Hence,W l � Appx 1(P ) and so,Appx 1(P )
contains all literals that are true in the well-founded model (W l;W u).
Theorem 2. LetP be a UG-program. For every answer setM ofP ,Appx 1(P ) �M.
In addition, ifAppx 1(P ) is incoherent thenP has no answer sets.

Proof: LetM be an answer set ofP . By Proposition 1,M is a stable model ofP+. Let(W l;W u) be the well-founded model ofP+. By Theorem 1,not(U nW u) � M.
Moreover, sinceM is an answer set ofP , M is a model ofP (Proposition 1, again)
and so,M is closed underP . SinceAppx 1(P ) is the least set of literals containingnot(U nW u) and closed underP , Appx 1(P ) � M , as claimed. The second part of
the assertion follows from the first one. 2

We will illustrate this approach with an example.



Example 1.Let us consider the following UG-programP :a not(b);not() ;not(b)b not(d)d not(b)not(b) 
All but the last rule belong toP+. The operatorP+;U determines the following alter-
nating sequence(Wi) of sets: ; 7! fa; b; dg 7! ; : : : :
It follows that the well-founded model ofP+ is (W l;W u) = (;; fa; b; dg). Conse-
quently, Appx 1(P ) = [P [ fnot()g℄� = fa; d;not(b);not()g:
In this case, the well-founded model ofP+ alone provides a weak bound on answer
sets ofP . The improved boundAppx 1(P ), which closes the model underP , pro-
vides a much stronger approximation. In fact, only one setM is approximated byfa; d;not(b);not()g. This set isfa; dg and it happens to be a unique answer set ofP .

Let Q = P [ fnot(a)  dg. SinceQ+ = P+, it follows thatAppx 1(Q) =[Q [ fnot()g℄� = fa; d;not(a);not(b);not()g. SinceAppx 1(Q) is incoherent,Q
has no answer sets, a fact that can be verified directly. 2

The approximationAppx 1(P ), whereP is the first program from Example 1, is
complete and coherent, and we noted that the unique set of atomsAppx 1(P ) approxi-
mates is a unique answer set ofP . It is a general property extending Theorem 1(2).

Corollary 1. Let P be a UG-program. IfAppx 1(P ) is coherent and complete thenAppx 1(P ) \ U is a unique answer set ofP .

Proof: SinceAppx 1(P ) is coherent and complete, Theorem 2 implies thatP has at most
one answer set. To prove the assertion it is then enough to show thatM = Appx 1(P )\U is an answer set ofP .

Let (W l;W u) be the well-founded model ofP+. SinceAppx 1(P ) = [P [not(U nW u)℄�, [P [ not(U nW u)℄� is coherent and complete. Consequently,M = [P [ not(U nW u)℄�:
It follows thatnot(U n W u) � not(U n M). Thus,M  � [P [ not(U n M)℄�.
It also follows thatM  is closed under the rules inP . Sincenot(U n M) � M,[P [ not(U nM)℄� �M. Thus,M = [P [ not(U nM)℄�:
It follows now thatM is a model ofP�. Moreover, it also follows thatM = [(P+ [not(U nM)℄� and so,M is a stable model ofP+. Thus,M is an answer set ofP . 2



We will now introduce another approximation to answer sets of a UG-programP .
This time, we will use the operatorP . LetYi be the alternating sequence of the operatorP and let(Y l; Y u) be the limit of(Yi). We defineAppx 2(P ) = Y l:
Theorem 3. LetP be a UP-program. IfM is an answer-set forP thenAppx 2(P ) �M. In addition, ifAppx 2 is incoherent, thenP has no answer sets.

Proof: LetM be an answer set ofP and let(Yi) be the alternating sequence for the
operatorP . We will show by induction that for everyi � 0, Y2i \ U �M � Y2i+1.

SinceY0 = ;, Y0 \ U �M . We will now assume thatY2i \U �M and show thatM � Y2i+1. Our assumption implies thatnot(U nM) � not(U n Y2i). Thus, sinceM is a stable model ofP+, it follows from (3) thatM = [P+[not(U nM)℄�\U � [P [not(U nM)℄� � [P [not(U nY2i)℄� = Y2i+1:
Next, we assume thatM � Y2i+1 and show thatY2i+2 \ U �M . The assumption

implies thatnot(U n Y2i+1) � not(U nM). Thus,Y2i+2 \ U = [P [ not(U n Y2i+1)℄� \ U � [P [ not(U nM)℄� \ U= [P+ [ not(U nM)℄� \ U = M:
The last but one equality follows from the fact thatM is a model ofP� and the last
inequality follows from the fact thatM is a stable model ofP+.

¿From the claim it follows thatM � Y u. Thus,not(U n Y u) �M. SinceM is a
model ofP , M is closed underP . Thus,Y l = [P [ not(U n Y u)℄� �M. 2

As before, if the approximation provided byAppx 2(P ) is complete and coherent,P has a unique answer set.

Corollary 2. LetP be a UG-program such thatAppx 2(P ) is complete and coherent.
Then,Appx 2(P ) \ U is a unique answer set ofP .

Proof: LetM = Appx 2(P )\U . By Theorem 3, it suffices to show thatM is an answer
set ofP .

Let (Yi) be the alternating sequence ofP and let (Y l; Y u) be its limit. SinceAppx 2(P ) = Y l is complete and coherent,Y l = M. By (5), M  = Y l = [P [not(U n Y u)℄�. Thus,M is closed under rules inP . Consequently,M is a model ofP and ofP�, in particular.
We also haveM � M  = Y l � Y u. Thus,not(U n Y u) � not(U nM) and so,M = [P [ not(U n Y u)℄� � [P [ not(U nM)℄�.
As we already observed,M is closed underP . Moreover,not(U nM) � M .

Thus,[P [ not(U nM)℄� �M .
It follows thatM  = [P [ not(U nM)℄�, which implies thatM = [P [ not(U nM)℄� \ U . Thus,M is a stable model ofP+. We already proved thatM is a model ofP� and so,M is an answer set ofP . 2
The following example illustrates our second approach.



Example 2.LetP be a UG-program consisting of rules:not(a) not(b)b not(a)a 
Iterating the operatorP results in the following alternating sequence:; 7! fa; b;not(a);not(b)g 7! fag 7! fa; b;not(a);not(b)g 7! : : : :
Its limit is (fag; fa; b;not(a);not(b)g) and so,Appx 2(P ) = fag. 2

We conclude this section by showing that the approximationsAppx 1 andAppx 2
are, in general, not comparable.

The following example shows that there is a UG-programP such thatAppx 1(P )
andAppx 2(P ) are coherent andAppx 2(P ) is apropersubset ofAppx 1(P ).
Example 3.LetU = fa; b; ; d; eg and letP be a UG-program consisting of the rules:a not(a)b not(a) not(d)d not();not(e)e a ; enot(e) a; b
Computing Appx 1(P ). The programP+ consists of all rules ofP except the last one.
The alternating sequence ofP+;U starts as follows:; 7! �a; b; ; d; e	 7! feg 7! �a; b; ; e	 7! �a; ; e	 7! �a; ; e	 7! : : : :
Thus, its limit is(fa; ; eg; fa; ; eg) andAppx 1(P ) = [P [ fa; ; eg [ fnot(b);not(d)g℄� = fa; ; e;not(b);not(d)g:
Computing Appx 2(P ). Iterating the operatorP yields the following sequence:; 7! Lit(U) 7! feg 7! Lit(U) 7! : : : :
Thus, the limit is(feg;Lit(U)) and so,Appx 2(P ) = feg. 2

The next example shows that for some programs the opposite istrue and the second
approximation is strictly more precise.



Example 4.LetU = fa; b; g and letP be a UG-program consisting of the rules:a not(b)b not(a) a; bnot(a) 
Computing Appx 1(P ). The alternating sequence of the operatorP+;U is; 7! fa; b; g 7! ; 7! : : : :
Thus, Appx 1(P ) = P � = fnot(a); bg:
Computing Appx 2(P ). IteratingP yields:; 7! Lit(U) 7! fnot(a); bg 7! fnot(a); b;not()g 7! fnot(a); b;not()g 7! : : : :
Thus,Appx 2(P ) = fnot(a); b;not()g. 2
4 Strong approximation

LetP be a UG-program andZ � Lit(U) a set of literals (not necessarilycoherent). By
theweak reductof P with respect toZ we mean the programPZw obtained fromP by:

1. removing all rules that contain in the body a literalnot(a) such thata 2 Z andnot(a) =2 Z;
2. removing from the bodies of the remaining rules all literalsnot(a) such thata =2 Z.

Let us note that ifa 2 Z andnot(a) 2 Z, not(a) will not be removed from the rules
that remain after Step 1.

LetZ be a set of literals,Z � Lit(U). We definewP (Z) = [PZw ℄�:
In general, the operatorwP is not antimonotone. Thus, the sequence(Zi) obtained by
iteratingwP (starting with the empty set) in general is not alternating.

Example 5.LetP be a UG-program consisting of the rules:a not(a) bb not() d not(a):



By the definition,Z0 = ;. When computingPZ0 , no rule is removed in Step 1 of the
definition and every literal of the formnot(a) is removed form the bodies of rules inP . Thus, PZ0w = 8>>>><>>>>: a not(a) bb  d : 9>>>>=>>>>; ; and so,Z1 = fa; b; dg;
SinceZ1 is coherent, the ruled not(a) is removed in Step 1 when computingPZ1w .
Thus, PZ1w =8>><>>: a not(a) bb  9>>=>>; ; and so,Z2 = fa; b;not(a)g;
When computingPZ2w , the ruled not(a) is not removed in Step 1. Thus,PZ2w =8>>>><>>>>: a not(a) bb  d not(a):9>>>>=>>>>; ; and so,Z3 = fa; b; d;not(a)g:
We note that neitherZ2 norZ3 are subsets ofZ1. Thus, for this programP , the sequence(Zi) is not alternating. 2

In the remainder of this section we show that under some conditions the sequence(Zi) is alternating and may be used to approximate answer sets of UG-programs.

Lemma 1. LetP be a UG-program,X andX 0 be sets of literals such thatX � X 0.
Moreover, let at least one of the following conditions hold:

1. X 0 is coherent
2. X � [PX0w ℄� and[PX0w ℄� is coherent.
3. [PX0w ℄� � X
4. X � [PXw ℄� and[PXw ℄� is coherent.

Then[PX0w ℄� � [PXw ℄�.
Proof: LetQ consist of those rules inPX0w whose bodies are contained in[PX0w ℄�. Then,[PX0w ℄� = Q�. Let r = �  Body be a rule inQ such thatBody � [PXw ℄�. To prove
the assertion, it suffices to show that� 2 [PXw ℄�. Indeed, the fact thatr is arbitrary,
implies that[PXw ℄� is closed under rules inQ and, consequently, that[PX0w ℄� = Q� � [PXw ℄�:

By the definition of the reductPX0w , there is a ruler0 = �  Body 0 in P such thatBody � Body 0 and for every literal� 2 Body 0 nBody , � = not(b), for someb =2 X 0.



Let not(a) 2 Body 0. We will show that eithera =2 X or not(a) 2 X . First, ifa =2 X 0 thena =2 X . Thus, let us assume thata 2 X 0. Then,not(a) 2 Body and so,not(a) 2 X 0 (otherwise,r would not belong toPX0w ). Sincenot(a) 2 Body , we also
have thatnot(a) 2 [PX0w ℄� andnot(a) 2 [PXw ℄�.

Under the condition (1), sincenot(a) 2 X 0 andX 0 is coherent,a =2 X 0, a con-
tradiction. Under the condition (2), sincenot(a) 2 [PX0w ℄�, the coherence of[PX0w ℄�
implies thata =2 [PX0w ℄� and, consequently, thata =2 X . If the condition (3) holds,not(a) 2 [PXw ℄� implies thatnot(a) 2 X . Finally, if the condition (4) holds, sincenot(a) 2 [PXw ℄�, the coherence of[PXw ℄� implies thata =2 [PXw ℄�. Thus,a =2 X .

Let Body 00 be obtained fromBody 0 by removing all literals of the formnot(a),
wherea =2 X . By the observation we proved above, the ruler00 = �  Body 00 is
in PXw . SinceX � X 0, Body 00 � Body . Thus,Body 00 � [PXw ℄� and it follows that� 2 [PXw ℄�. 2
Lemma 2. LetP be a UG-program andX a coherent set of literals,X � Lit(U).
1. [PXw ℄� = [PX\Uw ℄�.
2. [PXw ℄� = [(P+)X\Uw ℄� [ not(X 0) = [(P+)X\U ℄� [ not(X 0),

whereX 0 is the set of atoms such thata 2 X 0 if and only if there is a rulenot(a) Body in P� such that[(P+)X\Uw ℄� j= Body .

Proof: (1) For every atoma 2 U , a 2 X if and onlya 2 X \ U . Moreover, sinceX
is coherent, ifa 2 X , thennot(a) 62 X . Therefore,PXw = PX\Uw and so,[PXw ℄� =[PX\Uw ℄�.
(2) We observe thatPXw = (P+)Xw [(P�)Xw . Moreover, sinceX is coherent, the bodies
of rules inPXw consist of atoms only. Thus, it follows that[PXw ℄� = [(P+)X\Uw ℄� [ not(X 0):
The second equality in (2) follows from the observation that, sinceP+ is a normal logic
program,(P+)X\Uw and the standard Gelfond-Lifschitz reduct(P+)X\U coincide. 2

We have the following characterization of answer sets of UG-programs.

Lemma 3. Let P be a UG-program,M � U a set of atoms, andN a set of atoms
consisting of all atomsa 2 U such thata =2 M and there is a rulenot(a)  Body
in P such thatM j= Body . ThenM is an answer set ofP if and only if [PMw ℄� =M [ not(N).
Proof: ()) By Proposition 1,M is a stable model ofP+ and a model ofP�. In partic-
ular, [(P+)M ℄� = M . LetX 0 be the set specified in Lemma 2(2), defined forX = M .
Since[(P+)M ℄� = M andM is a model ofP�, for everya 2 X 0, a =2 M . Thus,X 0 = N and the assertion follows from Lemma 2(2).
(() It follows from Lemma 2(2) thatM = [(P+)M ℄�. Thus,M is stable model ofP+. Let us consider a rulenot(a)  Body from P� such thatM satisfiesBody . LetBody 0 consist of all atoms inBody . It follows thatnot(a)  Body 0 is a rule inPMw .
SinceM satisfiesBody , Body 0 � M = [(P+)M ℄� = [(P+)Mw ℄� � [PMw ℄�. Thus,not(a) 2 [PMw ℄� and, consequently,a =2 M . It follows thatM is a model ofP� and
so, an answer set ofP . 2



Lemma 4. Let i be an integer such thati � 1 andZ2i is coherent.

1. If Z2i�2 � Z2i�1 andZ2i�2 � Z2i, thenZ2i � Z2i�1
2. If Z2i�2 � Z2i, thenZ2i+1 � Z2i�1
3. If Z2i � Z2i�1, thenZ2i � Z2i+1
4. If Z2i+1 � Z2i�1 andZ2i � Z2i+1, thenZ2i � Z2i+2.

Proof: (1) Let us note thatZ2i = [PZ2i�1w ℄�. Thus, (1) follows from Lemma 1 applied
toX = Z2i�2 andX 0 = Z2i�1, which satisfy the assumption (2) of the lemma.
(2) Let us assume thatZ2i�2 � Z2i. SinceZ2i is coherent, Lemma 1 applies (under the
condition (1)) and implies that[PZ2iw ℄� � [PZ2i�2w ℄�. ConsequentlyZ2i+1 = [PZ2iw ℄� � [PZ2i�2w ℄� = Z2i�1:
(3) SinceZ2i = [PZ2i�1w ℄�, X = Z2i andX 0 = Z2i�1 satisfy the assumptions of
Lemma 1 (in particular, the assumption (3)). Thus,Z2i = [PZ2i�1w ℄� � [PZ2iw ℄� = Z2i+1:
(4) One can check that the assumptions of Lemma 1 are satisfiedwith X = Z2i+1 andX 0 = Z2i�1 (again, the assumption (3)). 2
Corollary 3. Let i be an integer,i � 0, such thatZ2i is coherent. Then

1. Z0 � Z2 � : : : � Z2i
2. Z1 � Z3 � : : : � Z2i+1
3. Z2i � Z2i+1.

Proof: We haveZ0 = ;. Thus,Z0 � Z1 andZ0 � Z2. Consequently, the assertion
follows by induction from Lemma 4. 2

Let us consider the sequence(Zi). If for everyi,Z2i is coherent, Corollary 3 implies
that the sequence(Zi) is alternating. Let(Zl; Zu) be the limit of(Zi). We defineAppx 3(P ) = Zl [ fnot(a) : a 2 U n Zug:
Otherwise, there isi such thatZ2i is incoherent. In this case, we say thatAppx 3(P ) is
undefined.

Theorem 4. Let P be a UG-program. IfM is an answer set ofP thenAppx 3(P ) is
defined andAppx 3(P ) �M . If Appx 3(P ) is not defined, thenP has no answer sets.

Proof: The second part of the assertion follows from the firstone. To prove the first part
of the assertion, we will show that for everyi � 0, Z2i �M , andM � Z2i+1.

We proceed by induction oni. If i = 0, thenZ0 = ; � M. We now assume thatZ2i �M and prove thatM � Z2i+1.
SinceZ2i � M andM is coherent,Z2i is coherent, too. By Lemma 1 (applied

to X = Z2i andX 0 = M, under the assumption (4)),[PMw ℄� � [PZ2iw ℄�. Thus,[PMw ℄� � Z2i+1. By Lemma 2(1),[PMw ℄� � Z2i+1. By Lemma 3,M � [PMw ℄�.
Therefore,M � Z2i+1.



Next, we assume thatM � Z2i+1 and prove thatZ2i+2 � M. Let us note thatZ2i+2 = [PZ2i+1w ℄� and that by Lemma 3,[PMw ℄� � M. Thus, it will suffice to show
that [PZ2i+1w ℄� � [PMw ℄�. To this end, we note that by Lemma 3,M � [PMw ℄� and so
Lemma 1 applies (under the condition (4)) toX = M andX 0 = Z2i+1, and implies
the required inclusion.

It follows thatZl � M and thatM � Zu. If a =2 Zu, thena =2 M and so,not(a) 2M. Thus,Appx 3(P ) = Zl [ not(U nZu) �M . 2
Example 6.LetP be a UG-program consisting of the rules:not(a) a not(b)b not(a) a; bnot(d) not()d not(e)e not(d)f  d; e
Iterating the operatorwP results in the following sequence:; 7! fa; b; ; d; e; f;not(a);not(d)g 7! fnot(a); bg 7! fb; d; e; f;not(a);not(d)g7! fb; e;not(a);not(d)g 7! fb; e;not(a);not(d)g 7! : : : :
Thus, the sequence(Zi) is alternating. Its limit is(Zl; Zu), whereZl = Zu = fb; e;not(a);not(d)g. Thus,Appx 3(P ) = Zl [ not(U n Zu) = fb; e;not(a);not();not(d);not(f)g:
SinceAppx 3(P ) is coherent and complete,P has a unique answer set,fb; eg. This
example also demonstrates thatZu can improve on the bound provided byZl itself. 2
5 Properties of Appx 3
In this section we will show that ifAppx 3 is defined then it is stronger than the other
two approximations. We recall that ifAppx 3(P ) is undefined, thenP has no answer
sets, that is,P is inconsistent. It follows that for allconsistentUG-programs,Appx 3 is
stronger than the the other two approximations.

Theorem 5. LetP be a UG-program. IfAppx 3(P ) is defined thenAppx 1(P ) [ Appx 2(P ) � Appx 3(P )
Proof: Let(Wi) be the alternating sequence of the operatorP+;U and let(Zi) be the
alternating sequence of the operatorwP . We observe that all setsWi consist of atoms.
Also, sinceAppx 3(P ) is defined, all setsZ2i are coherent.



We will show that for everyi � 0, W2i � Z2i andZ2i+1 \ U �W2i+1.
We proceed by induction. The basis is evident asW0 = Z0 = ;. We will now

assume thatW2i � Z2i and prove thatZ2i+1 \ U �W2i+1. We have[PZ2iw ℄� = [(P+)Z2iw [ (P�)Z2iw ℄�:
SinceZ2i is coherent, no rule in(P+)Z2iw contains a negated literal. Thus, there is a setN � U such that [PZ2iw ℄� = [(P+)Z2iw ℄� [ not(N):

It follows thatZ2i+1\U = [(P+)Z2iw ℄�. SinceZ2i is coherent,(P+)Z2iw = (P+)Zw =(P+)Z , whereZ = U \ Z2i. We haveW2i � U andW2i � Z2i. Thus,W2i � Z and(P+)Z � (P+)W2i . Putting all these facts together, we obtainZ2i+1 \ U = [(P+)Z2iw ℄� = [(P+)Z ℄� � [(P+)W2i ℄� = W2i+1:
Next, we assume thatZ2i+1 \ U � W2i+1 and show thatW2i+2 � Z2i+2. SinceZ2i+1\U �W2i+1 and sinceW2i+1 consists of atoms only,(P+)W2i+1 � (P+)Z2i+1w .

Thus,(P+)W2i+1 � PZ2i+1w and so,W2i+2 = [(P+)W2i+1 ℄� � [PZ2i+1w ℄� = Z2i+2:
Let (W l;W u) and(Zl; Zu) be the limits of the sequences(Wi) and(Zi), respec-

tively. The claim we proved above implies thatZu \ U �W u. Thus,not(U nW u) � not(U n Zu) � Appx 3(P ):
Let r = �  Body be a rule inP and let us assume thatBody � Appx 3(P ). Letnot(a) be a negated literal inBody . Thennot(a) 2 Appx 3(P ) and so,not(a) 2 Zl ora =2 Zu. SinceZl � Zu, r is not removed in Step 1 of the definition of the reductPZuw .

Let r0 = �  Body 0 be the rule obtained by removing from the body ofr all literalsnot(a) such thata =2 Zu. Then,r0 2 PZuw andBody 0 � Zl. SinceZl = [PZuw ℄�,� 2 Zl and so,� 2 Appx 3(P ).
Thus,Appx 3(P ) is closed under rules inP and containsnot(U nW u). It follows

that Appx 1(P ) = [P [ not(U n S)℄� � Appx 3(P ):
Next, we will show thatAppx 2(P ) � Appx 3(P ). Let (Yi) be the alternating se-

quence ofP . We will show that for everyi � 0, Y2i \ U � Z2i andZ2i+1 � Y2i+1.
We proceed by induction. The basis is evident asY0 = Z0 = ;. We now assume

thatY2i \ U � Z2i and prove thatZ2i+1 � Y2i+1. SinceZ2i is coherent, Lemmas 1
and 2 imply thatZ2i+1 = [PZ2iw ℄� = [PZ2i\Uw ℄� � [P Y2i\Uw ℄� = [P Y2iw ℄�:

Let� Body be a rule inP Y2iw such thatBody � [P [not(U nY2i)℄�. Then, there
is a ruler0 = �  Body 0 in P such that for every literalnot(a) in Body 0, a =2 Y2i ornot(a) 2 Y2i, and removing all literalsnot(a), wherea =2 Y2i, fromBody 0 results in



Body . It follows thatBody 0 � [P [ not(U n Y2i)℄� and so,� 2 [P [ not(U n Y2i)℄�.
Thus,[P [ not(U n Y2i)℄� is closed under rules in[P Y2iw ℄� and so,[P Y2iw ℄� � [P [ not(U n Y2i)℄� = Y2i+1:
Consequently,Z2i+1 � Y2i+1 follows.

Next, we assume thatZ2i+1 � Y2i+1 and prove thatY2i+2 \ U � Z2i+2.
LetP 0 be a program obtained fromP by removing literals innot(U n Y2i+1) from

the bodies of rules inP . The programP 0 has the following property:[P [ not(U n Y2i+1)℄� \ U � [P 0℄�:
Let r = �  Body be a rule inP 0 such thatBody 2 [PZ2i+1w ℄�. Since(Zi) is

alternating (we recall thatAppx 3(P ) is defined),Z2i+2 � Z2i+1. Thus,Body � [PZ2i+1w ℄� = Z2i+2 � Z2i+1:
Sincer 2 P 0, there is a ruler0 = �  Body 0 in P such that after removing fromBody 0 all literals of the formnot(a), wherea =2 Y2i+1, we obtainBody . Let not(a)

be a literal ofBody 0. If a 2 Z2i+1, thena 2 Y2i+1 and so,not(a) 2 Body . Thus,not(a) 2 Z2i+1 and the ruler0 is not removed in Step 1 of the construction ofPZ2i+1w .
Let Body 00 be the result of removing fromBody 0 all literalsnot(a), wherea =2Z2i+1. It follows thatr00 = �  Body 00 is in P YZi+1w . Let� be a literal inBody 00. If �

is an atom then, since� 2 Body 0 and only negated atoms are removed fromBody 0 when
constructingr from r0, � 2 Body . If � = not(a), thena 2 Z2i+1 and, by an argument
given above,not(a) 2 Body . Thus, in either case� 2 Body and so,� 2 [PZ2i+1w ℄�, as
well. It follows thatBody 00 � [PZ2i+1w ℄�. Consequently,� 2 [PZ2i+1w ℄�. Thus,[PZ2i+1w ℄�
is closed underP 0 and[P 0℄� � [PZ2i+1w ℄�. In this way, we getY2i+2 \ U = [P [ not(U n Y2i+1)℄� \ U � [P 0℄� � [PZ2i+1w ℄� = Z2i+2:

The claim we just proved implies thatY l \ U � Zl \ U andZu � Y u. Thus,Appx 2(P ) = Y l � Zl [ not(U n Zu) = Appx 3(P ): 2
There are programs which show thatAppx 3 is strictly stronger.

Example 7.Let P be the UG-program from Example 4. We recall thatAppx 1(P ) =fnot(a); bg. Let us computeAppx 3(P ). By iterating the operatorPw , we obtain the
following sequence:Z0 = ; 7! Z1 = fa; b; ;not(a)g 7! Z2 = fnot(a); bg 7! Z3 = fnot(a); bg : : : :
Hence,Appx 3(P ) = fnot(a); b;not()g andAppx 1(P ) is apropersubset ofAppx 3(P ).2



Example 8.Let P be the UG-program from Example 3. We recall thatAppx 2(P ) =feg. To computeAppx 3(P ), we note that by iterating the operatorPw we get the fol-
lowing sequence:Z0 = ; 7! Z1 = fa; b; ; d; e;not(e)g 7! Z2 = feg 7!Z3 = fa; b; ; e;not(e)g 7! Z4 = fa; ; eg 7! Z5 = fa; ; eg : : : :
Hence,Appx 3(P ) = fa;not(b); ;not(d); eg andAppx 2(P ) is a proper subset ofAppx 3(P ). 2

Finally, we show that ifAppx 3(P ) is defined and complete thenP has a unique
answer set.

Corollary 4. Let P be a UG-program such thatAppx 3(P ) is defined and complete.
ThenAppx 3(P ) \ U is an answer set ofP andP has no other answer sets.

Proof: LetM = Appx 3(P )\U . By Theorem 4, it suffices to show thatM is an answer
set ofP . To this end, we will show thatM is a stable model ofP+ and a model ofP�.

We first observe that the definition ofAppx 3(P ) implies thatM = Zl \ U . We
also note that sinceZl is coherent,Zu = [PZlw ℄� = [(P+)M ℄� [ not(N), for some setN � U . It follows thatM = Zl \ U � Zu \ U = [(P+)M ℄�. We will now show that[(P+)M ℄� � [PZuw ℄�.

Let r = a  Body be a rule in(P+)M . Let us assume thatBody � [PZuw ℄�. Letr0 = a  Body 0 be a rule inP such that for every literal� 2 Body 0 n Body , � =not(a), for somea =2M . Letnot(a) be a literal inBody 0 such thata 2 Zu. Then,a =2Zl. Thus,not(a) 2 Zl (by the completeness ofZl). In particular,not(a) 2 Zu and
so,r0 is not removed in Step 1 of the construction ofPZuw . Let r00 = a Body 00 be the
rule obtained fromr0 by removing all literalsnot(a) such thata =2 Zu. It follows thatr00 2 PZuw . For every atoma 2 Body 00, a 2 Body and so,a 2 [PZuw ℄�. For every literalnot(a) 2 Body 00, a 2 Zu (otherwise, this literal would get removed). Thus, according
to an earlier observation,not(a) 2 Zl = [PZuw ℄�. It follows thatBody 00 � [PZuw ℄�.
Thus,a 2 [PZuw ℄� and[PZuw ℄� is closed under(P+)M . Thus,[(P+)M ℄� � [PZuw ℄�, as
required.

Thus,M = [(P+)M ℄�, that is,M is a stable model ofP+, andZl \ U = Zu \ U .
The latter identity impliesPZlw � PZuw and so,Zu = Zl. Let r = not(a)  Body
be a rule inP� such thatM j= Body . It follows that r is not removed in Step 1
of the construction ofPZuw and thatPZuw contains a ruler0 = a  Body 0, whereBody 0 � Body . It follows thatM j= Body 0. Moreover, sinceBody 0 consists of atoms
(Zu is coherent),Body 0 �M = Zl \ U � Zl = [PZuw ℄�. Thus,not(a) 2 [PZuw ℄� and
so,not(a) 2 Zl. Consequently,a =2M and it follows thatM is a model ofP�. Thus,M is an answer set ofP . 2
6 Corollaries for the case of revision programs.

Revision programming [MT98] is a formalism for describing and enforcing constraints
on databases. The main concepts in the formalism are initialdatabase, revision program,



and justified revisions. Expressions of the formin(a) andout(a) (a 2 U ) are called
revision literals. Intuitively,in(a) (resp.,out(a)) means that atoma is in (resp., is not
in) a database. Revision program consists of rules of the type�  �1; : : : ; �n, where�, �i; : : : ; �n are revision literals. Given a revision programP and an initial databaseI , P -justified revisions ofI represent a set of revisions. Each revision satisfies the
constraints and differs minimally from the initial database.

As we mentioned earlier, unitary general programs are equivalent to revision pro-
grams [MPT99].

The first two approximations,Appx 1 andAppx 2, directly correspond to two def-
initions of well-founded semantics for revision programs induced by embeddings of
revision programs into logic programs proposed in [Piv01].It was also shown that the
definitions were in general not comparable.

Formal descriptions ofAppx 1, Appx 2, andAppx 3 for revision programs can be
found in [Piv05].

Theorem 5 implies thatAppx 3 is stronger thanAppx 1 andAppx 2 for revision
programming.

Theorem 4 implies that ifAppx 3 does not exist for a revision programP and initial
databaseI , then there are noP -justified revisions ofI .

Corollary 4 implies that ifAppx 3 is defined and complete for a revision programP and a databaseI , then there exists exactly oneP -justified revision ofI and it is
determined by the approximation.
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