
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. maybe later; 00:1–25 Prepared using speauth.cls [Version: 2002/09/23 v2.2]

Constraint Lingo: Towards

high-level constraint

programming

Raphael Finkel∗, Victor W. Marek and Miros law
Truszczyński

Department of Computer Science, University of Kentucky, Lexington, KY 40506-0046, USA,
{raphael,marek,mirek}@cs.uky.edu

SUMMARY

Logic programming requires that the programmer convert a problem into a set of
constraints based on predicates. Choosing the predicates and introducing appropriate
constraints can be intricate and error-prone. If the problem domain is structured enough,
we can let the programmer express the problem in terms of more abstract, higher-
level constraints. A compiler can then convert the higher-level program into a logic-
programming formalism. The compiler writer can experiment with alternative low-
level representations of the higher-level constraints in order to achieve a high-quality
translation. The programmer can then take advantage of both a reduction in complexity
and an improvement in runtime speed for all problems within the domain.

We apply this analysis to the domain of tabular constraint-satisfaction problems.
Examples of such problems include logic puzzles solvable on a hatch grid and
combinatorial problems such as graph coloring and independent sets. The proper
abstractions for these problems are rows, columns, entries, and their interactions.

We present a higher-level language, Constraint Lingo, dedicated to problems in this
domain. We also describe how we translate programs from Constraint Lingo into lower-
level logic formalisms such as the logic of propositional schemata. These translations
require that we choose among competing lower-level representations in order to produce
efficient results.

The overall effectiveness of our approach depends on the appropriateness of
Constraint Lingo, our ability to translate Constraint Lingo programs into high-quality
representations in logic formalisms, and the efficiency with which logic engines can
compute answer sets.

We comment on our computational experience with these tools in solving both graph
problems and logic puzzles.

key words: logic puzzles, logic programming, constraint satisfaction, tabular constraint satisfaction

Contract/grant sponsor: National Science Foundation; contract/grant number: 9619233, 9874764, 0097278

Received February 2003
Copyright c© maybe later John Wiley & Sons, Ltd.

2 R. A. FINKEL

1. Introduction

Logic programming was introduced in the mid 1970s as a way to facilitate computational
problem solving and software development [1]. The idea was to regard logic theories as
programs and formulas as representations of computational tasks, and to apply automated
reasoning techniques, most notably, resolution with unification, as the computational
mechanism. Researchers expected that logic programming would quickly become a dominant
programming paradigm because of its declarative nature: it allows programmers to focus on
modeling problem specifications in a declarative way as theories and frees them from the
need to describe control. These expectations were reinforced by the emergence of Prolog [2].
However, despite the initial excitement generated by logic programming and its prominent
role in the fifth-generation computing initiative in Japan, logic programming has been slow in
winning broad acceptance and has yet to live up to early expectations.

This paper presents our attempt to address this problem. Logic programming requires the
programmer to cast a problem into the language of predicates and their interrelations, a
task that is often intricate and error-prone. It is more productive to program with domain-
appropriate abstractions that are automatically compiled into efficient and correct low-level
logic programs.

We demonstrate this thesis in the restricted domain of constraint-satisfaction problems
whose solutions have the structure of a table. In this paper, we describe the Constraint
Lingo language for expressing these tabular constraint-satisfaction problems. We show how
to translate programs in this language into a variety of lower-level logic programs that can be
run on standard logic engines.

Low-level approaches to constraint-satisfaction problems have been investigated for several
years. First, constraint-logic programming [3] has been used with great success. Solvers such
as ECLiPSe [4] can be used to represent and solve such problems. Second, recent research
has modeled constraint-satisfaction problems as DATALOG¬ programs for which stable
models represent solutions [5, 6]. Programs such as smodels [7] compute stable models [8]
of such programs. Third, constraint-satisfaction problems can be modeled as disjunctive logic
programs; dlv [9] can compute answer sets of those programs. Fourth, the logic of propositional
schemata forms an answer-set programming formalism that can be used for solving constraint-
satisfaction problems [10]. Fifth, optimization programming solvers such as OPL [11] deal
primarily with techniques such as linear and integer programming, but also incorporate
constraint programming and scheduling. Together, we call programs that compute solutions
to logic programs in any of these formalisms “logic engines”, even though solvers in the fifth
class can be based on C++ or Java, and do not present a predicate-logic view to programmers.

While these logic-based formalisms for specifying constraints are expressive, they all suffer
from the fact that they are awkward even for experienced programmers and logicians to use.
The problem is that the connectives offered by logic do not correspond well to high-level
constraints occurring in actual problems, even when connectives include the extended syntax
implemented by smodels or by ECLiPSe.

Solving a constraint-satisfaction problem should be a three-step process. (1) Represent a
statement of the problem (often given informally as free text) in some high-level modeling
language. We refer to this step as modeling or programming. (2) Translate this representation

Copyright c© maybe later John Wiley & Sons, Ltd. Softw. Pract. Exper. maybe later; 00:1–25
Prepared using speauth.cls

CONSTRAINT LINGO 3

into a target formalism for which good automated reasoning techniques are available. We refer
to this step as compilation; it is usually fully automated. (3) Apply automated reasoning
techniques to the compiled representation in order to construct solutions to the original
problem if they exist. We refer to this step as computation.

The following figure summarizes the flow of solving constraint-satisfaction problems and
introduces some of our notation. A programmer represents problem Π as program P . An
automatic translator converts P into Tr(P). A logic engine computes the solution set
Sol(Tr(P)) for Tr(P). Each model M ∈ Sol(Tr(P)) represents a solution to the Constraint
Lingo program and hence to the original problem.

?

?
-

-

-

6

6

Sol(Π)

Tr(P)

Sol(P)

Π

P

Specification Solution set

Tabular constraint-satisfaction problem

Constraint-Lingo program

Answer-set programming formalismSol(Tr(P))

1

2

3

This three-step approach is not unique to constraint satisfaction; it is quite common in all
computational areas. (1) Using programming languages to solve problems follows the same
general pattern of programming, compiling, and computing. (2) To retrieve information from
a database, we first write a query in some query language (programming). This query is then
analyzed, optimized, and transformed into a computational plan, such as an expression in
relational algebra. Finally, this plan is executed and the answer is computed. (3) A concrete
example of the use of this approach in AI is propositional satisfiability planning [12]. In the
BlackBox approach [13], to solve a planning problem we first build its formal representation
in a high-level planning language such as STRIPS [14, 15] or PDDL [16], then compile it into
a propositional CNF theory, and finally solve the original planning problem by using these
propositional satisfiability programs to find models of the compiled theory.

From this perspective, due to its limited repertoire of means to express constraints, logic
formalisms should rather be viewed as low-level constraint-modeling languages. In order to use
them for solving constraint problems, one needs a high-level modeling formalism tailored to
the actual problems, coupled with techniques to translate theories in this high-level formalism
into logic programs. An expressive language for representing constraints should facilitate
programming, and good compilation techniques should result in code amenable to efficient
processing by any logic engine.

In this paper we present a new constraint-modeling language, Constraint Lingo, well suited
for modeling tabular constraint-satisfaction problems. To demonstrate its utility, we show
(1) how to encode logic puzzles and several graph problems in Constraint Lingo, (2) how to

Copyright c© maybe later John Wiley & Sons, Ltd. Softw. Pract. Exper. maybe later; 00:1–25
Prepared using speauth.cls

4 R. A. FINKEL

compile Constraint Lingo programs into several logic formalisms, and (3) how well logic engines
compute answer sets for the compiled programs.

Our experience with Constraint Lingo (the current implementation, problem suite, and
documentation is available [17]) supports our thesis. Although we find it hard to program
constraint-satisfaction problems directly in logic formalism, we find that (1) it is quite easy
(and even fun) to program these problems in Constraint Lingo, (2) compilation is completely
automated, and (3) the resulting programs are efficient to run.

This paper makes three contributions:

1. It proposes a technique for using logic formalisms as computational tools. We
contend that logic formalisms should preferably be used as computational back-ends
accompanying a more user-friendly high-level programming language. Programming
ought to be done in this higher-level language; programs need to be compiled to low-level
representations and then processed.

2. We illustrate our proposal by developing a specific language for modeling constraint
problems. We also illustrate compilers into several computational logic-based back-ends
and demonstrate the viability of our approach.

3. Our approach opens interesting research directions for constraint-satisfaction
programming:

• design of high-level languages for logic-programming application areas,
• design of compilers and their optimizations,
• design of software-development tools.

This paper is organized as follows. We present tabular constraint-satisfaction problems and
a particular logic puzzle in Section 2. We introduce the syntax of Constraint Lingo and its
semantics in Section 3, applying it to a specific logic puzzle. We apply Constraint Lingo to
graph problems in Section 4. We show how Constraint Lingo is translated into smodels in
Section 5 and show some compiler optimizations for that translation in Section 6. We show
how compiled code differs from smodels for other logic engines, in particular, dlv in Section 7.1
and ECLiPSe in Section 7.2. We present results of timing studies in Section 8 and final remarks
in Section 9.

2. Tabular constraint-satisfaction problems

The Constraint Lingo language is tuned to tabular constraint-satisfaction problems (tCSPs),
in which it is convenient to think about solutions as having a 2-dimensional array structure.
Such problems specify columns in the tables by assigning them names and by indicating the
domain of each column, that is, the set of elements that can appear in the column. They
also specify the number of rows. Further constraints typically relate entries in a single row or
column, but more complex constraints are also possible.

An attribute means a pair (a,Da), where a is the name of the attribute and Da is its
domain, a nonempty set of elements. For our purposes, all attribute domains are finite. We
commonly refer to an attribute by its name. A table schema is a sequence of attributes with
distinct names.

Copyright c© maybe later John Wiley & Sons, Ltd. Softw. Pract. Exper. maybe later; 00:1–25
Prepared using speauth.cls

CONSTRAINT LINGO 5

Let S = 〈a1, . . . , an〉 be a table schema. We call any subset T ⊆ Da1
× . . .×Dan

a table in
schema S. We use the term table rather than relation, the standard term for a subset of a
Cartesian product, to emphasize intuitions arising in the context of tCSPs. In particular, we
regard a table as a two-dimensional structure consisting of all its tuples written sequentially
as rows. Likewise, a column is the sequence of elements from the domain of an attribute
appearing in the appropriate position in all rows of the table. We denote the set of all tables
in S by Tab(S).

A constraint on tables in S is any subset of Tab(S)∗. We say a table satisfies a constraint if
it is a member of the subset. A tabular constraint satisfaction problem (tCSP) consists
of a table schema S and a collection C of constraints on tables in Tab(S). Given a tCSP Π,
the set of solutions to Π consists of all those tables in Tab(S) that satisfy all the constraints
in C. We denote this set as Sol(Π) =

⋂
c∈C c.

The most common table constraints are all-different and all-used. A table T ∈ Tab(S)
satisfies the all-different property with respect to the attribute a ∈ S if no element of Da

appears more than once in the column a of T . A table T ∈ Tab(S) satisfies the all-used
property with respect to the attribute a ∈ S if each element of Da appears at least once in
the column a of T . We say that an attribute a ∈ S is a key for a table T in S if T satisfies
both the all-different and all-used constraints† with respect to a.

We are only interested in tCSPs with at least one key attribute. Without loss of generality,
we assume that the first attribute in the schema, say a1, is so distinguished. This requirement
implies that the number of rows in solution tables is the cardinality of Da1

.

This assumption is motivated by the following considerations. First, it is often satisfied by
problems appearing in practice, in particular, by the puzzle and graph problems discussed in
this paper. Second, general constraint-satisfaction problems assume a fixed set of variables. In
tCSPs, variables whose values need to be established correspond to individual table entries.
The schema determines the number of columns. In order to fix the number of variables of
a tCSP, we have to fix the number of rows. Designating an attribute as a key is one way
of doing so. Third, a class of tables satisfying our assumption can be uniquely decomposed
into collections of 2-column projections on pairs of attributes. This property has implications
for translations of Constraint Lingo programs into low-level logic formalisms. We discuss this
matter in more detail in Section 5.

Scheduling problems are examples of tCSPs, with each row in a solution table representing
a single item of the schedule (such as time, location, resources needed). Graph problems can
also often be cast as tCSPs. For instance, a solution to a graph-coloring problem is a table
consisting of two columns, one for vertices and the other for colors. The rows in the table
specify the assignment of colors to vertices.

∗Usually such a constraint is not given explicitly as a set of relations but rather as a formula in some language.
†We differ here from database terminology, in which only the all-different constraint is required for an attribute
to be a key.

Copyright c© maybe later John Wiley & Sons, Ltd. Softw. Pract. Exper. maybe later; 00:1–25
Prepared using speauth.cls

6 R. A. FINKEL

Logic puzzles are good examples of tCSPs. Throughout this paper, we use the “French
Phrases, Italian Soda” puzzle (or French puzzle, for short)‡ as a running example to illustrate
the syntax and the semantics of Constraint Lingo:

Claude looks forward to every Wednesday night, for this is the night he can speak in his
native language to the other members of the informal French club. Last week, Claude
and five other people (three women named Jeanne, Kate, and Liana, and two men named
Martin and Robert) shared a circular table at their regular meeting place, the Café du
Monde. Claude found this past meeting to be particularly interesting, as each of the six
people described an upcoming trip that he or she is planning to take to a different French-
speaking part of the world. During the discussion, each person sipped a different flavor of
Italian soda, a specialty at the café. Using [. . .] the following clues, can you match each
person with his or her seat (numbered one through six [circularly]) and determine the
flavor of soda that each drank, as well as the place that each plans to visit?

1. The person who is planning a trip to Quebec, who drank either blueberry or lemon
soda, didn’t sit in seat number one.

2. Robert, who didn’t sit next to Kate, sat directly across from the person who drank
peach soda.

3. The three men are the person who is going to Haiti, the one in seat number three,
and Claude’s brother.

4. The three people who sat in even-numbered seats are Kate, Claude, and a person who
didn’t drink lemon soda, in some order.

This puzzle can be viewed as a tCSP with the schema consisting of five attributes: name,
gender, position, soda and country (each with its associated domain). The space of possible
solutions to this puzzle is given by the set of tables whose rows describe people and whose
columns describe relevant attributes. The attributes name, position, soda and country are
implicitly required to be key, but gender is not (it does not satisfy the all-different property).
There is only one solution satisfying all nine clues of the French puzzle:

name gender position soda country

claude man 6 tangelo haiti
jeanne woman 1 grapefruit ivory
kate woman 4 kiwi tahiti
liana woman 5 peach belgium
martin man 3 lemon quebec
robert man 2 blueberry martinique

3. Syntax and Semantics of Constraint Lingo

The syntax of Constraint Lingo is line-oriented. Every non-empty line of Constraint Lingo
constitutes a declaration or a constraint. For better readability, declarations usually precede
constraints, but Constraint Lingo only requires that every atom be declared before use.
Comments are prefixed with the # character.

‡Copyright 1999, Dell Magazines; quoted by permission. We present only four of the nine clues.

Copyright c© maybe later John Wiley & Sons, Ltd. Softw. Pract. Exper. maybe later; 00:1–25
Prepared using speauth.cls

CONSTRAINT LINGO 7

The goal of a Constraint Lingo program P is to specify a tCSP Π. Declarations of the
program P describe the schema of the problem Π and impose all-different and all-used
constraints. Constraints of the program P describe all other constraints of the problem Π.
By specifying a tCSP, a Constraint Lingo program P can be regarded as a representation of
all tables in Sol(Π).

To describe the set of tables that are solutions to a Constraint Lingo program P we proceed
as follows. We first specify the set of tables that is determined by B, the declaration part of
P . We then describe, for each constraint C in the rest of P , which of the tables specified by
the B satisfy it. Those tables that satisfy all constraints constitute solutions to P .

3.1. Declarations

Two different types of attributes (columns) can be declared in Constraint Lingo.

• CLASS classname: member1 member2 . . . memberk

This syntax declares a class attribute (column) with the name classname and the domain
consisting of elements member1, member2, . . . , memberk. Classes are columns in which every
element is different.

For the French puzzle, for example, we have

CLASS name: claude jeanne kate liana martin robert
CLASS soda: blueberry lemon peach tangelo kiwi grapefruit
CLASS visits: quebec tahiti haiti martinique belgium ivory

If the domain elements are all integers (our parser only allows nonnegative integers) in a range
from first to last , we may specify the class by writing:

CLASS classname: first .. last [circular]

In the French puzzle, we write

CLASS position: 1 .. 6 circular

The optional circular keyword indicates that the range is intended to be treated with
modular arithmetic so that last + 1 = first . We refer to classes all of whose members are
numeric as numeric classes; the others are list classes.

• PARTITION partitionname: member1 member2 . . . memberk

This syntax declares a partition attribute (column) with the name partitionname and
the domain consisting of elements member1,member2, . . . ,memberk. Members of a partition
attribute may occur any number of times (even 0) in their column.

In the French puzzle, we write

PARTITION gender: men women

Copyright c© maybe later John Wiley & Sons, Ltd. Softw. Pract. Exper. maybe later; 00:1–25
Prepared using speauth.cls

8 R. A. FINKEL

We require that all class and partition names be distinct. We also require at least one list class
(so we can be sure how many rows there are) and that the domains of all list-class attributes be
of the same cardinality. This requirement corresponds to the restriction we impose on tCSPs
that at least one attribute must be key. However, we often find it useful to let numeric classes
include values that turn out not to appear in the solution. We therefore let numeric classes
have more values than other classes.

Each attribute constitutes a disjoint domain of elements. If we need the same element (such
as a number) in two attribute domains, we disambiguate the domains in the constraint part
of the program by qualifying the element: attributename.element.

Let B be the declarations of a Constraint Lingo program P . These declarations define a table
schema, say SB , which consists of all class and partition attributes. In addition, B imposes
all-different and all-used constraints by designating some attributes as list- and numeric-class
attributes. Specifically, B restricts the space of tables in Tab(SB) to those that satisfy the
all-different constraint with respect to class attributes and also the all-used constraint with
respect to list-class attributes. Neither restriction applies to partition attributes. We denote
this set of tables, which constitute the solution space, as SS(B). We regard each table in this
set as a model of declarations in B and view the set SS(B) as providing the semantics for B.

3.2. Constraints

The schema defined by declarations B introduces identifiers (such as class names and domain
members) that are then used in the constraints found in the rest of the Constraint Lingo
program. We discuss this syntax now. For each constraint we introduce, we define its semantics
in the terms of tables in the set SS(B).

3.2.1. Rownames

Constraints often concern properties of table columns and rows. To refer to columns we use
their class or partition names. To refer to a row we use a rowname. A rowname may be
any element of a class domain, which uniquely refers to one row because of the all-different
constraint and the disjoint nature of domain elements (ensured if necessary by qualifying
them). In addition, we may introduce a variable as a rowname:

• VAR variablename

Variables must be distinct from each other and from all domain elements to avoid ambiguity.

We now give the syntax and semantics of the constraints in Constraint Lingo given the set
of declarations B. When describing the semantics we assume for now that constraints do not
involve variables. We later lift this assumption.

3.2.2. REQUIRED and CONFLICT

• REQUIRED rowname1 rowname2 . . .

Copyright c© maybe later John Wiley & Sons, Ltd. Softw. Pract. Exper. maybe later; 00:1–25
Prepared using speauth.cls

CONSTRAINT LINGO 9

A table from SS(B) satisfies a REQUIRED constraint if the given rownames specify the same
row, that is, if they appear in the same row of the table.

We would encode a clue “The person traveling to Quebec drank blueberry soda” as

REQUIRED quebec blueberry

• REQUIRED rowname1 rowname2 [OR | XOR | IFF] rowname3 rowname4

This embellished REQUIRED constraint is satisfied only by those tables from SS(B) in which
rowname1 and rowname2 specify the same row {or, xor, iff} rowname3 and rowname4

specify the same row, depending on the connector used. This constraint gives the Constraint
Lingo programmer a limited amount of propositional logic. The effect of the AND connective is
achieved by writing separate constraints, so we do not include it in Constraint Lingo.

For the French puzzle, we encode part of the first clue as

REQUIRED quebec blueberry OR quebec lemon

• CONFLICT rowname1 . . . [partitionelement1 . . .]

The CONFLICT constraint excludes those tables in SS(B) in which any two of the given
rownames specify the same row. If partitionelements are specified, the constraint also disallows
tables in which those partitionelements are found in any rows specified by the given rownames.

We partially encode the first French puzzle clue as:

CONFLICT quebec 1

We could use a partition element, for example, to stipulate that neither the person drinking
kiwi soda nor the person going to Belgium is a man:

CONFLICT kiwi belgium men

We find that we use REQUIRED and CONFLICT most heavily. We now turn to less-frequently
used constraint types.

3.2.3. Other constraint types

• AGREE partitionelement: rowname1 . . .

The AGREE constraint is satisfied by those tables in SS(B) in which the rows specified
by the given rownames have the given partitionelement in the column associated with
partitionelement.

We use AGREE to indicate the genders of the six people:

AGREE men: claude martin robert
AGREE women: jeanne kate liana

We also use AGREE along with VAR and CONFLICT for clue 3:

Copyright c© maybe later John Wiley & Sons, Ltd. Softw. Pract. Exper. maybe later; 00:1–25
Prepared using speauth.cls

10 R. A. FINKEL

VAR brother
CONFLICT brother claude
AGREE men: haiti 3 brother
CONFLICT haiti 3 brother

• DIFFER partitionname: rowname1 rowname2 . . .

This constraint allows only those tables in SS(B) in which the rows specified by the given
rownames have different elements in the column associated with partitionname.

For example, we could have a clue stating that the person visiting the Ivory Coast and the
one drinking blueberry soda are of different genders; we would encode that clue as:

DIFFER gender: ivory blueberry

• SAME partitionname: rowname1 rowname2 . . .

This constraint allows only those tables in SS(B) in which the rows specified by the given
rownames have the same elements in the column associated with partitionname.

To represent, for instance, that the person visiting the Ivory Coast has the same gender as the
one drinking kiwi soda, we would write:

SAME gender: ivory kiwi

• USED element

This constraint disallows all those tables in SS(B) in which the given element does not appear
in its associated column. We employ this constraint to force a particular partition element or
numeric-class element to be used in a solution.

The French puzzle tells us who are the men and who are the women, but if it only told us that
there is at least one man, we would encode that clue as:

USED men

• USED n <= partitionelement <= m

In this constraint, n and m must be nonnegative integers. Either the n <= or the <= m or both
may be absent. The default value for n is 1, and the default value of m is ∞. This constraint
allows only those tables in SS(B) where the partitionelement appears (in its associated column)
a number of times k such that n ≤ k ≤ m.

To encode a clue telling us there are at least 2 but not more than 3 women, we would write:

USED 2 <= women <= 3

• MATCH rowname1 . . . rownamek , rowname′1 . . . rowname′k

This constraint allows only those tables in SS(B) in which: (1) all the rows specified by the
first set of rownames are distinct, (2) all the rows specified by the second set of rownames are
distinct, (3) those two sets of rows are identical.

We encode the fourth clue by a combination of MATCH and VAR:

Copyright c© maybe later John Wiley & Sons, Ltd. Softw. Pract. Exper. maybe later; 00:1–25
Prepared using speauth.cls

CONSTRAINT LINGO 11

VAR unlemon
MATCH 2 4 6, kate claude unlemon
CONFLICT unlemon lemon

• BEFORE classname: rowname1 rowname2

The given classname must be a non-circular numeric class. Let v1 and v2 be the elements in
the column specified by classname and in the rows specified by rowname1 and rowname2,
respectively. The constraint allows only those tables in SS(B) in which v1 < v2.

We cannot use BEFORE in the French puzzle, because a circular numeric class has no order.
Ignoring circularity, we could indicate that Jeanne is sitting in an earlier-numbered position
than the person going to Haiti by saying:

BEFORE position: jeanne haiti

• OFFSET [+ | * | +- | > | ! | !+-] n classname: rowname1 rowname2

The given classname must again be a non-circular numeric class. Let v1 and v2 be the
elements in the column specified by classname and in the rows specified by rowname1 and
rowname2, respectively. The six variants of this constraint allow only such tables in SS(B)
where v1 +n = v2, v1∗n = v2, v1±n = v2, v1 +n > v2, v1 +n 6= v2, or v1±n 6= v2, respectively.

Again, OFFSET makes no sense in the French puzzle because position is a circular numeric
class, but ignoring circularity, we could say that Kate is sitting in a position twice as large as
Robert’s by saying:

OFFSET *2 position: robert kate

3.2.4. Variables

We have used variables intuitively in some of our examples above; we now extend the
description of Constraint Lingo semantics when variables appear in constraints. Let P be
a Constraint Lingo program with variables x1, . . . , xk. We say that a table T , of the type
specified by the declarations of P , satisfies P if there is a list class C and elements v1, . . . , vk

(not necessarily distinct) from the domain of this class such that the table T satisfies the
Constraint Lingo program obtained by removing all variable declaration statements from P

and by instantiating in P every occurrence of xi with vi. In other words, we can associate
each variable with some row, represented by a value in a list class. In the French puzzle, the
variables unlemon and brother used in the examples above both turn out to be associated
with Robert; we could call that row robert, blueberry, or martinique, depending what list
class we wish to use as our class C.

3.2.5. French puzzle

A complete translation of the French puzzle clues is as follows.

Copyright c© maybe later John Wiley & Sons, Ltd. Softw. Pract. Exper. maybe later; 00:1–25
Prepared using speauth.cls

12 R. A. FINKEL

#1
REQUIRED quebec blueberry OR quebec lemon
CONFLICT quebec 1

$2
OFFSET !+-1 position: robert kate
OFFSET 3 position: peach

#3
VAR brother
AGREE men: haiti 3 brother
CONFLICT brother claude

#4
VAR unlemon
MATCH 2 4 6, kate claude unlemon
CONFLICT unlemon lemon

3.2.6. Solutions

Let P be a Constraint Lingo program and let B denote all declarations in P . A table T ∈ SS(B)
is a solution to P if it satisfies all constraints in P . We denote the set of all solution tables
for a Constraint Lingo program P by Sol(P). A Constraint Lingo program encodes a tCSP
problem Π if Sol(P) = Sol(Π).

Let P be a finite Constraint Lingo program with the declaration component B. One can
show, based on our discussion above, that given a table T ∈ SS(B), checking whether T

satisfies all constraints in P can be accomplished in time polynomial in the size of P and T .
However, the tables in the set SS(B) have dimensions that are polynomial in the size of B (and
so, in the size of P). It follows that deciding whether a finite Constraint Lingo program has
solutions is in the class NP. In the next section, we show a polynomial reduction of the graph
3-colorability problem to that of deciding whether a Constraint Lingo program has solutions.
The problem to decide whether a finite Constraint Lingo program has solutions is therefore
NP-complete.

4. Applying Constraint Lingo to graph problems

Despite a restricted repertoire of operators aimed initially at solving logic problems, Constraint
Lingo is sufficient to model such important combinatorial problems as independent sets, graph
coloring, and finding Hamiltonian cycles.

An independent set in a graph is a set of v vertices no two of which share an edge. The
independent-set problem is to find an independent set with at least k vertices. We represent
the problem in the following Constraint Lingo program, setting, for concreteness, v = 100 and
k = 30, with edges (2,5) and (54,97). There are two attributes: a class vertex, to represent
vertices of the graph (line 1 below) and a partition status, to indicate the membership of
each vertex in an independent set (line 2). We employ USED to constrain the independent set
to have at least k elements (line 3). The REQUIRED constraints in lines 4 and 5 enforce the
independent-set constraint.

1 CLASS vertex: 1..100 # v = 100

Copyright c© maybe later John Wiley & Sons, Ltd. Softw. Pract. Exper. maybe later; 00:1–25
Prepared using speauth.cls

CONSTRAINT LINGO 13

2 PARTITION status: in out
3 USED 30 <= in # k = 30
4 REQUIRED 2 out OR 5 out # edge (2,5): at least one vertex is out
5 REQUIRED 54 out OR 97 out # edge (54,97): at least one vertex is out

The k-graph-coloring problem is to find an assignment of k colors to vertices such that
vertices sharing an edge are assigned different colors. We use two attributes, vertex and
color, to define the set of vertices and the colors to use. The following Constraint Lingo
program encodes the 3-coloring problem for the same graph as before. We enforce the coloring
condition by means of DIFFER constraints (lines 3 and 4). We use qualified notation in lines 3
and 4 to disambiguate vertex.2 from color.2. The other numbers in the program are already
unambiguous, but qualified notation improves clarity.

1 CLASS vertex: 1..100
2 PARTITION color: 1..3 # looking for 3-coloring
3 DIFFER color: vertex.2 vertex.5 # edge (2,5)
4 DIFFER color: vertex.54 vertex.97 # edge (54,97)

The Hamiltonian-cycle problem is to enumerate, without repetition, all the vertices of an
undirected graph in an order such that adjacent vertices in the list share an edge, as do the
first and last vertices in the list. We use two numeric attributes: vertex and index. We enforce
the Hamiltonicity condition using the construct OFFSET: For every edge not in the graph, the
positions of its end vertices in the enumeration must not be consecutive integers (with the last
and the first vertices also regarded as consecutive). For a specific example, let us consider a
graph missing only two edges: (2,5) and (54,97). The corresponding Constraint Lingo program
follows.

1 CLASS vertex: 1..100
2 CLASS index: 1..100 circular
3 OFFSET !+-1 index: vertex.2 vertex.5 # no edge (2,5)
4 OFFSET !+-1 index: vertex.54 vertex.97 # no edge (54,97)

Other combinatorial problems can often be posed in a similar fashion in Constraint Lingo.

5. Translation of Constraint Lingo into smodels

We demonstrate compiling Constraint Lingo programs into the formalism of smodels [7], that
is, we construct an smodels program Tr(P). All our code for translating Constraint Lingo,
along with over 150 Constraint Lingo programs, is available to the interested reader [17].

Smodels is an extension of logic programming with negation with the semantics of stable
models. We assume that the reader is familiar both with the syntax of smodels and with its
semantics.

Following our earlier discussion, solutions to a Constraint Lingo program P are tables in
the schema defined by P . The set of all tables determined by the declaration part B of P is
denoted by SS(B). To capture the semantics of P , we need to represent tables from SS(P).

Copyright c© maybe later John Wiley & Sons, Ltd. Softw. Pract. Exper. maybe later; 00:1–25
Prepared using speauth.cls

14 R. A. FINKEL

Tables with n columns correspond naturally to n-ary predicates, so a straightforward
approach is to use an n-ary predicate symbol, say sol , and to design Tr(P) so that extensions
of sol in stable models of Tr(P) correspond precisely to tables in SS(P).

Although straightforward, this approach has a disadvantage. The arity of sol is the number
of attributes of Π, which can be very high. Smodels programs involving predicates of high
arity lead to ground programs whose size makes processing impractical. Happily, n-ary tables
can be represented by collections of their two-column subtables if the tables have at least
one key attribute. Tables specified by Constraint Lingo programs fall into this category. We
take advantage of this representation to design the translation Tr(P). We now describe this
translation; for reasons of space, we omit formal statements of its key properties and outlines
of correctness proofs.

Let P be a Constraint Lingo program with declarations B. We assume that B specifies
a schema S = (a1, . . . , an) where, for some 1 ≤ ℓ ≤ k ≤ n, a1, . . . , aℓ are list-class
attributes, aℓ+1, . . . , ak are numeric-class attributes, and the remaining ak+1, . . . , an are
partition attributes. In particular, a1 is a list-class attribute.

We now specify the translation Tr(P). The language of Tr(P) is given by (1) the constants
forming the domains of attributes of the schema S, (2) the predicate symbols domai

, 1 ≤ i ≤ n,
and (3) the predicate symbols crossai,aj

, 1 ≤ i ≤ k and i < j ≤ n. The predicate symbols
domai

represent attribute domains in Tr(P), and the predicate symbols crossai,aj
represent

two-column subtables of the solution table (which together determine the solution table). In
the case of the French puzzle, for example, the domain predicates include name(·) and soda(·);
the cross-class predicates include name soda(·,·) and visits position(·,·).

(1) For every class and partition attribute a ∈ P we introduce the corresponding predicate
doma and include in Tr(P) facts doma(v) for every element v from the domain of a as described
by P . For example, we include the fact name(claude).

(2) For every two list-class attributes ai, aj , 1 ≤ i < j ≤ ℓ, we include in the program Tr(P)
the following rules:

1{crossai,aj
(Vi, Vj) : domaj

(Vj)}1 :– domai
(Vi).

1{crossai,aj
(Vi, Vj) : domai

(Vi)}1 :– domaj
(Vj).

Informally, the first of these two rules states that for every element vi of the domain of ai there
is exactly one element vj from the domain of aj such that crossai,aj

(vi, vj) holds (belongs to
a stable model). The second rule states the symmetric constraint.

For instance, we have

1 {visits_position(Visits,X):visits(Visits)} 1 :- position(X) .

This rule means that given a position (such as 2), there is at least and at most 1 location (it
turns out to be Martinique) such that the person in that position (it turns out to be Robert)
plans to visit that location.

(3) For every list-class attribute ai, 1 ≤ i ≤ ℓ, and numeric-class attribute aj , ℓ + 1 ≤ j ≤ k,
we include in the program Tr(P) the following rules:

Copyright c© maybe later John Wiley & Sons, Ltd. Softw. Pract. Exper. maybe later; 00:1–25
Prepared using speauth.cls

CONSTRAINT LINGO 15

1{crossai,aj
(Vi, Vj) : domaj

(Vj)}1 :– domai
(Vi).

0{crossai,aj
(Vi, Vj) : domai

(Vi)}1 :– domaj
(Vj).

The first of these two rules states that for every element vi of the domain of ai there is exactly
one element vj from the domain of aj such that crossai,aj

(vi, vj) holds (belongs to a stable
model). The second rule states that for every element vj of the domain of aj there is at most
one element vi from the domain of ai such that crossai,aj

(vi, vj) holds (belongs to a stable
model). This requirement is weaker then the previous one, a result of the fact that aj is a
numeric-class attribute. We do not require that every element of a numeric-class domain have
a match in the domain of ai in crossai,aj

, but we still need to require that no element has
more than one match.

(4) For every two numeric-class attributes ai, aj , ℓ+1 ≤ i < j ≤ k we include in the program
Tr(P) the following rules:

0{crossai,aj
(Vi, Vj) : domaj

(Vj)}1 :– domai
(Vi).

0{crossai,aj
(Vi, Vj) : domai

(Vi)}1 :– domaj
(Vj).

Informally, these clauses enforce the all-different constraint for ai and aj in the two-column
table represented by crossai,aj

(the only constraint required of numeric-class attributes).

(5) For every list-class attribute a and every partition attribute p, we need to guarantee that
atoms of the form crossa,p(va, vp) define a function (not necessarily a bijection) that maps
elements of the domain of a to elements from the domain of p. The following rule embodies
this guarantee.

1{crossa,p(A,P) : domp(P)}1 :– doma(A).

(6) For every numeric-class attribute a and every partition attribute p, the atoms
crossa,p(va, vp) need only define a partial function. We include in Tr(P) the clause:

0{crossa,p(A,P) : domp(P)}1 :– doma(A).

(7) Not every collection of two-column tables can be consistently combined into a single
table. In order to achieve consistency, we enforce a transitivity property. For every three class
attributes ah, ai and aj , 1 ≤ h < i < j ≤ k, we include in Tr(P) the rules:

crossah,ai
(Vh, Vi) :– crossah,aj

(Vh, Vj), crossai,aj
(Vi, Vj),

domah
(Vh), domaj

(Vj), domaj
(Vj).

crossah,aj
(Vj , Vj) :– crossah,ai

(Vh, Vi), crossai,aj
(Vi, Vj),

domah
(Vh), domaj

(Vj), domaj
(Vj).

crossai,aj
(Vh, Vj) :– crossah,ai

(Vh, Vi), crossah,aj
(Vh, Vj),

domah
(Vh), domaj

(Vj), domaj
(Vj).

For instance, we include the rule

Copyright c© maybe later John Wiley & Sons, Ltd. Softw. Pract. Exper. maybe later; 00:1–25
Prepared using speauth.cls

16 R. A. FINKEL

name_visits(Name,Visits) :-
name(Name), visits(Visits), position(Position),
name_position(Name,Position) ,
position_visits(Position,Visits) .

This rule says that if a person (like Robert) is in some position (like 2), and that position is
associated with some planned destination to visit (like Martinique), then that person plans to
visit that destination.

Partitions require a more permissive version of the transitivity property. For every two
classes ai, ai, and every partition attribute p, we include in Tr(P) only two rules:

crossai,p(Vi, Vp) :– crossai,aj
(Vi, Vj), crossaj ,p(Vj , Vp),

domai
(Vi), domaj

(Vj), domp(Vp).
crossaj ,p(Vj , Vp) :– crossai,aj

(Vi, Vj), crossai,p(Vi, Vp),
domai

(Vi), domaj
(Vj), domp(Vp).

Given these definitions and constraints, the attribute and cross-class predicates appearing
in a stable model of Tr(P) uniquely determine a table that satisfies the requirements of the
declarations given by the Constraint Lingo program P . Conversely, each such table determines
a stable model of the program Tr(P).

The remaining part of the Constraint Lingo program consists of constraints specified by
keywords such as REQUIRED and CONFLICT. To continue the description of the translation, we
specify how these individual constraints are represented in the syntax of smodels.

(8) CONFLICT ma mb, where ma mb are elements of the domains of classes a and b,
respectively. The role of this constraint in Constraint Lingo is to eliminate tables that contain
rows with elements ma and mb in their corresponding columns. For each such constraint, we
add the following rule to Tr(P).

:– crossa,b(ma,mb).

In our case, we have

:- position_visits(1,quebec) .

This rule means that no solution (the left-hand side is empty) may place 1 and quebec in the
same row.

We extend this translation when the list of conflicting elements is longer than 2 elements;
each pair of elements on the list gives rise to a constraint on the relevant cross-class predicate.

(9) REQUIRED ma mb. For each such constraint, we add the following rule to Tr(P).

crossa,b(ma,mb).

For instance, REQUIRED quebec blueberry would be translated as:

soda_visits(blueberry,quebec) .

Copyright c© maybe later John Wiley & Sons, Ltd. Softw. Pract. Exper. maybe later; 00:1–25
Prepared using speauth.cls

CONSTRAINT LINGO 17

This fact indicates that any solution must place blueberry and quebec in the same row.
Again, we extend this translation when more than two members are listed.

(10) VAR x. One list class, say a, is selected arbitrarily. The variable x is meant to represent
exactly one (unspecified as yet) element of that class. We introduce a new predicate variablex

that holds just for that one element and build a rule that enforces that constraint:

1{variablex(X) : doma(X)}1.

We represent the unlemon variable by using name as the arbitrarily chosen class and translating
to:

1 {variable_unlemon(X):name(X)} 1 .

(11) USED n <= partitionelement <= m. One list class, say a, is selected arbitrarily.
There must be between n and m elements ma in the domain of class a for which
crossa,p(ma, partitionelement) holds, where p is the partition to which partitionelement

belongs. We build the following rule to enforce this constraint:

n{crossa,p(A, partitionelement) : doma(A)}m.

For instance, we would translate USED 2 <= women <= 3 as:

2 {gender_visits(women,Visits) : visits(Visits)} 3 .

(12) Similar translations are easy to design for all the remaining constructs of Constraint
Lingo. For the sake of brevity, we do not discuss them here. The interested reader may acquire
our compiler [17] and inspect its output.

We believe our translation is correct: Let P be a Constraint Lingo program. For every table
T ∈ Sol(P), there is a stable model M of Tr(P) such that M represents T . Conversely, for
every stable model of Tr(P) there is a table T ∈ Sol(P) such that M represents T .

6. Optimizing the smodels translation

As compiler writers have known for years, there are many different correct translations for
a given code fragment. High-quality compilers attempt to generate code that is especially
efficient (in space and/or in time). Code optimization is also possible for Constraint Lingo. As
we developed our compiler, we tried various alternative translations, settling on ones that give
the fastest execution under smodels. In addition to minor adjustments to the translated code,
we have also experimented with two fundamentally different approaches to Tr(P).

We call the first new approach the prime-class representation. We arbitrarily choose the
first list class as “prime”. We generate cross-class predicates in Tr(P) only for pairs one
of whose members is the prime class. We no longer need rules for transitivity, reducing the
number of rules in the theory. However, constraints between elements of non-prime (“oblique”)
attributes generate more complex rules, because they must be related via the prime class.

In the French puzzle, if name is prime, we translate CONFLICT quebec 1 to

Copyright c© maybe later John Wiley & Sons, Ltd. Softw. Pract. Exper. maybe later; 00:1–25
Prepared using speauth.cls

18 R. A. FINKEL

:- position_name(1, N), visits_name(quebec, N), name(N) .

In other words, instead of using the atom position visits(1,quebec) (which is
no longer available) we represent this constraint by joining position name(1, N) and
visits name(quebec, N). We can directly specify constraints involving members of the prime
class and members of oblique classes. Our compiler uses a 3×3 case statement to cover all cases
where the two members participating in a constraint belong to the prime class, an oblique class,
or are variables.

Instead of choosing the prime class arbitrarily, we have implemented a variant called the
special-handle translation in which the prime class is chosen after a first pass through the
Constraint Lingo program to derive a weighted value for each class based on how often it is
referenced and in what ways. This translation often generates the fastest code. We have tried
other representations as well, but they don’t behave as well as the ones we have introduced.

We present some comparisons of these optimizations with our original code in Section 8.

7. Other logic engines

We have described the smodels translation in some detail. Constraint Lingo is not specific,
however, to smodels; we also have translators that convert programs into other logic formalisms.
Each logic formalism requires that the translator writer study its syntax and semantics in order
to generate a quality translation. This effort is often quite extensive. We claim that the person
trying to solve a tCSP should not be required to expend this effort; it is all done once and is
embedded in the translators.

We now touch on two of the logic engines beside smodels that we have used: disjunctive-
logic programming and constraint-logic programming. In interests of space, we do not discuss
a third logic engine: the logic of propositional schemata and its solver aspps [10].

7.1. Translation for disjunctive logic programming

The dlv logic engine [18] accepts much the same syntax as smodels, so our translation into dlv

looks similar for most of Constraint Lingo. However, dlv does not have cardinality constraints,
so the rules that guarantee uniqueness of cross-class predicate solutions are more complex than
the one shown in Section 5 for smodels. For instance, we would translate USED 3 <= men in
the French puzzle as:

counter(0) .
counter(1) .
counter(2) .
counter(3) .
counter(4) .
counter(5) .
atleastmen(none, 0) .
atleastmen(claude, N) :- atleastmen(none, N), N < 1, counter(N) .
atleastmen(claude, M) :- atleastmen(none, N), M = N+1,

gender_person(men,claude), N < 1, counter(N) .

Copyright c© maybe later John Wiley & Sons, Ltd. Softw. Pract. Exper. maybe later; 00:1–25
Prepared using speauth.cls

CONSTRAINT LINGO 19

atleastmen(jeanne, N) :- atleastmen(claude, N), N < 2, counter(N) .
atleastmen(jeanne, M) :- atleastmen(claude, N), M = N+1,

gender_person(men,jeanne), N < 2, counter(N) .
atleastmen(kate, N) :- atleastmen(jeanne, N), N < 3, counter(N) .
atleastmen(kate, M) :- atleastmen(jeanne, N), M = N+1,

gender_person(men,kate), N < 3, counter(N) .
atleastmen(liana, N) :- atleastmen(kate, N), N < 4, counter(N) .
atleastmen(liana, M) :- atleastmen(kate, N), M = N+1,

gender_person(men,liana), N < 4, counter(N) .
atleastmen(martin, N) :- atleastmen(liana, N), N < 5, counter(N) .
atleastmen(martin, M) :- atleastmen(liana, N), M = N+1,

gender_person(men,martin), N < 5, counter(N) .
atleastmen(robert, N) :- atleastmen(martin, N), N < 6, counter(N) .
atleastmen(robert, M) :- atleastmen(martin, N), M = N+1,

gender_person(men,robert), N < 6, counter(N) .
:- not atleastmen(robert, 3) .

We have sorted the people; Robert turns out to be the last one. So the predicate
atleastmen(robert,N) indicates that at least N of the people were men. The last rule then
constrains this count.

Existence is assured by disjunctive rules, such as

position_visits(1, quebec) v position_visits(1, tahiti) v
position_visits(1, haiti) v position_visits(1, martinique) v
position_visits(1, belgium) v position_visits(1, ivory).

Disjunctions also assist in generating good code for the MATCH constraint.
The prime-class and special-handle compile-time optimizations of Section 6 also apply

to disjunctive logic programming. Further details of the translation can be found in our
compiler [17].

7.2. Translation for constraint-logic programming

Our approach to solving tabular CSP problems is different from the classical approach in the
logic community, which is to directly represent such problems as constraints in constraint-
programming languages. The logic puzzles solved by Doug Edmunds [19], for example, are
all hand-coded. Our experience, however, is that it is far easier to program such problems
in Constraint Lingo and then translate them into whatever form is appropriate for the
computational engine. In keeping with that approach, we have built a translator from
Constraint Lingo to ECLiPSe. Complete details can be found in our compiler [17].

The resulting ECLiPSe program is a single rule with many clauses on its right-hand side.
We represent each row of the result table by an integer index ranging from 1 to the number of
rows. In the French puzzle, the classes name, visits, and position are represented as multiple
clauses of a single rule, as follows:

Name = [Claude, Jeanne, Kate, Liana, Martin, Robert],
Name :: 1..6,
alldifferent(Name),
Visits = [Quebec, Tahiti, Haiti, Martinique, Belgium, Ivory],

Copyright c© maybe later John Wiley & Sons, Ltd. Softw. Pract. Exper. maybe later; 00:1–25
Prepared using speauth.cls

20 R. A. FINKEL

Visits :: 1..6,
alldifferent(Visits),
Position = [Position1, Position2, Position3, Position4, Position5,

Position6],
Position :: 1..6,
alldifferent(Position),

If there is no numeric class, we break symmetry by selecting one class (such as name) as
prime and assigning each member to a particular row:

Claude = 1, Jeanne = 2, Kate = 3, Liana = 4, Martin = 5, Robert = 6,

If one is available, we select a numeric class as prime and use its elements as row numbers.
(A numeric class is only available if all its elements are used.) In the case of the French puzzle,
position, which is numeric, is a better prime class than name, which is not. Order constraints
involving a numeric class are much more efficient to represent if that class is prime.

Complex Constraint Lingo constraints such as

REQUIRED quebec blueberry OR quebec lemon

are represented simply as

Quebec #= Blueberry #\/ Quebec #= Lemon

Because position is the prime class,

CONFLICT quebec 1

is represented as

1 #\= Quebec

If we select name as the prime class instead, then this constraint becomes

Position1 #\= Quebec

Ordering relations involving a numeric prime class are quite easy. For instance,

OFFSET !+-1 position: robert kate

becomes

Robert + 1 #\= Kate #/\ Robert - 1 #\= Kate #/\
Robert + 1 - 6 #\= Kate #/\ Robert - 1 + 6 #\= Kate

If the ordering relation is with respect to an oblique class, the code is clumsier and lengthier,
including parts like this:

(Robert #= Position1 #/\ Kate #= Position1) #\/
(Robert #= Position1 #/\ Kate #= Position3) #\/
(Robert #= Position1 #/\ Kate #= Position4) #\/
(Robert #= Position1 #/\ Kate #= Position5) #\/
(Robert #= Position2 #/\ Kate #= Position2) #\/
(Robert #= Position2 #/\ Kate #= Position4) #\/
(Robert #= Position2 #/\ Kate #= Position5) #\/
(Robert #= Position2 #/\ Kate #= Position6) #\/ ...

Copyright c© maybe later John Wiley & Sons, Ltd. Softw. Pract. Exper. maybe later; 00:1–25
Prepared using speauth.cls

CONSTRAINT LINGO 21

Partitions are clumsy to represent. For gender, we introduce the following:

Gender = [Gender1, Gender2, Gender3, Gender4, Gender5, Gender6],
Gender :: [’Men’, ’Women’]

Then we translate constraints such as

AGREE men: claude

into

(Claude #= 1 #/\ Gender1 #= ’Men’ #\/
Claude #= 2 #/\ Gender2 #= ’Men’ #\/
Claude #= 3 #/\ Gender3 #= ’Men’ #\/
Claude #= 4 #/\ Gender4 #= ’Men’ #\/
Claude #= 5 #/\ Gender5 #= ’Men’ #\/
Claude #= 6 #/\ Gender6 #= ’Men’)

The efficiency of ECLiPSe is quite sensitive to the heuristics explicitly indicated in the
translated program; we have found that the best all-around choice is to use the fd global

library and to specify the “occurrence/indomain/complete” heuristic combination. It is likely
that hand-tuning the programs would make them faster.

8. Efficiency tests

We have experimented with the following logic engines and representations: smodels§ (cross-
class, prime-class, special-handle), dlv¶ (cross-class, special-handle), ECLiPSe‖, and aspps

(cross-class, special-handle). Our tests include (1) about 150 puzzles from Dell Logic Puzzles
and Randall L. Whipkey [20] encoded in Constraint Lingo, (2) the independent-set graph
problem on random graphs with 52 vertices and 100 edges, looking for 25 independent vertices,
and (3) the 3-coloring problem on large random graphs.

All our tests ignore the time to compile Constraint Lingo programs (the compiler takes
negligible time) and the grounding time for the logic engine (usually also negligible).

Our first conclusion is that the special-handle translation is usually far better than the
cross-class translation. The following shows a few extreme examples of this trend; times are in
seconds:

puzzle logic engine cross-class special-handle

comedian aspps 33 0.1
foodcourt dlv 117 0.4
employee smodels 38 0.4

§lparse version 1.0.11; smodels version 2.27
¶version BEN/Apr 18 2002. This version of dlv does not include cardinality constraints, unlike smodels and
aspps.
‖version 5.4, build 41

Copyright c© maybe later John Wiley & Sons, Ltd. Softw. Pract. Exper. maybe later; 00:1–25
Prepared using speauth.cls

22 R. A. FINKEL

Choosing the right translation is a matter of optimization. Even an expert logic programmer
might create cross-class programs, because they often lead to shorter rules. Automatically
performing this optimization leads to far more efficient code. We continue to find new
optimizations.

Our second conclusion is that no one logic engine consistently outperforms the others,
although aspps tends to be slightly faster than the others, and ECLiPSe tends to be slightly
slower, failing to finish in a reasonable amount of time on a few puzzles. The following table
compares the logic engines on our hardest puzzles; in all cases we show times for the special-
handle translation, except for ECLiPSe, where the translation is completely different. We mark
the “winner” in each case with a box; differences in time less than 0.05 seconds are most likely
insignificant. We make no claim that our translations are optimal. These tests are not meant
to demonstrate superiority of one logic engine over another, only to show the feasibility of our
approach.

puzzle aspps smodels dlv ECLiPSe

card 0.00 0.01 0.01 0.02

comedian 0.05 0.12 2.29 0.78

employee 0.24 0.44 3.12 —

flight 0.01 0.00 0.01 0.04

foodcourt 0.17 0.54 0.41 3.13

french 0.00 0.03 0.08 0.13

jazz 0.00 0.04 0.03 0.02

molly 0.03 0.04 0.15 0.33

post 0.00 0.02 0.04 0.51

ridge 11.56 8.14 0.76 —

sevendates 0.03 0.05 0.05 0.04

The independent-set problem is represented, as shown in Section 4, by a REQUIRED constraint
for each edge and a single USED constraint. Both aspps and smodels provide a notation that
allows us to translate USED in P into a single cardinality constraint in Tr(P). These logic
engines enforce cardinality constraints during the search process, which leads to very efficient
search. In contrast, neither dlv nor ECLiPSe provides cardinality constraints, so we program
USED by explicitly counting how many times the desired member is used and then constraining
that total. We can count directly in ECLiPSe and indirectly by extra rules in dlv. In both
cases, this generate-and-check strategy (as opposed to a built-in construct) leads to slower
searches.

The following table shows the number of seconds for several logic engines to compute the
first model of a theory representing the independent-set problem looking for I independent
vertices on a random graph with a V vertices and E edges. Again, we ignore compilation and
grounding time.

V E I aspps smodels dlv ECLiPSe

100 200 40 0.01 1.08 1.61 60
100 200 44 18.99 25.19 148.6 394

Copyright c© maybe later John Wiley & Sons, Ltd. Softw. Pract. Exper. maybe later; 00:1–25
Prepared using speauth.cls

CONSTRAINT LINGO 23

We continue to search for translations that perform better than our current ones. Our
experience reinforces our belief that efficient solution of constraint-satisfaction problems
depends on a carefully designed compilation; even experienced logic programmers are unlikely
to achieve efficient programs without enormous effort.

9. Discussion and conclusions

Logic programming was introduced with a promise of dramatically changing the way we
program. Logic programming is declarative. The programmer can solve a problem by encoding
its specifications in some logic formalism and then invoking automated reasoning techniques for
that logic to produce a solution. Control details are no longer the programmer’s responsibility.

However, despite attractive features stemming from its declarative nature, logic
programming has not yet gained a widespread acceptance in the programming world. This
disappointing result seems to hold both for logic-programming implementations based on
proof-finding techniques (Prolog and its extensions that handle constraint programming, such
as ECLiPSe) and to newly emerging approaches based on satisfiability testing and model
computation (answer-set programming [6, 5]).

This state of affairs is due to the fact that logic-programming formalisms are too low-
level to be used without great effort and require that programmers have a significant logic
background. In order to be successful, a declarative programming language should be aligned
with language constructs often used when problems are described in free text. We suggest
that programs in such a high-level language should be automatically compiled to programs in
low-level languages such as current implementations of logic programming (Prolog, ECLiPSe,
smodels, and so forth) and then solved by the corresponding solvers.

Our main contribution is a high-level declarative language, Constraint Lingo, designed
to capture tabular constraint-satisfaction problems. Constraint Lingo is simple. It uses two
constructs, CLASS and PARTITION, to define the framework in which a given problem is
described, and 10 constructs to describe constraints, all of them well attuned to free-text
descriptions of constraint problems.

We don’t claim that Constraint Lingo is the best possible language for this purpose. Its
line-oriented commands, each starting with a capitalized keyword, may appear a throwback to
languages like Basic. Constraint Lingo has a limited repertoire of connectives and arithmetic
operations; it has no general-purpose arithmetic or Boolean expressions.

Despite these limitations, Constraint Lingo is an expressive language in which one can
describe a diverse collection of tabular constraint-satisfaction problems. We have used it to
represent over 150 logic puzzles ranging in difficulty from one to five stars and involving a
large variety of constraints, as well as several graph problems over randomly-generated graphs
of various sizes. Thanks to its simplicity and affinity to free-text constraint specifications,
programming in Constraint Lingo is easy and frees the programmer from many tedious and
error-prone tasks.

Constraint Lingo provides a computational as well as a descriptive facility. We compile
Constraint Lingo programs into executable code in a variety of low-level logic programming
languages.

Copyright c© maybe later John Wiley & Sons, Ltd. Softw. Pract. Exper. maybe later; 00:1–25
Prepared using speauth.cls

24 R. A. FINKEL

Evidence shows that our approach is practical. Programs we obtain by automatically
compiling Constraint Lingo programs closely resemble those that programmers have written
directly. Our computational results are encouraging and show that programs produced by
compiling Constraint Lingo programs perform well when processed by various computational
engines.

We continue to evolve Constraint Lingo and its associated tools. Recent developments
include the following, all available in the most recent release of the software [17].

• Other constraints. New syntax allows mappings between rows; these mappings can
be declared to be nonreflexive, symmetric, asymmetric, and/or onto. This facility lets us
represent some complex constraints, such as “Everyone has a hero in the room; Jeanne’s
hero is Kate, but Kate’s hero is not Jeanne.” Two maps can be declared to differ on
every row, so we can indicate constraints such as “Nobody’s hero is his or her tennis
partner.” We also have introduced syntax to indicate that the values of two partitions
taken together act as a key, so we can indicate constraints such as “although a every floor
has several rooms and every wing has several rooms, each room has a unique combination
of floor and wing.”

• Problem-construction tools. We have built a Tcl/Tk [21] front end to our Constraint
Lingo package that allows us to build problems by (1) constructing the desired solution,
(2) introducing constraints, (3) ensuring that the constraints so far are not contradictory
(leading to no solutions) and are consistent with the desired solution, (4) identifying
undesired solution components, (5) identifying superfluous constraints. We have used
these tools to build extremely difficult puzzles, perhaps beyond human ability to solve.

• Explanations. We have instrumented the grounder and solver of aspps to generate a log
file that we then convert into a set of steps that a human can follow to solve the problem.
We have introduced new Constraint Lingo syntax that allows the programmer to specify
how cross-class predicates are to be expressed in English. An explanation of the French
puzzle includes deriving a conflict between martinique and 6, and the English expression
is, “to be consistent [explaining how this result follows from the previous results], the
person sitting in seat 6 doesn’t plan to visit Martinique [an English clause].”

We are considering other enhancements as well. The current support for variables is limited
and might be extended to support universal quantification. Our implementation does not
support data-input operations. It provides only restricted support for logical and arithmetic
operations. We need better support for arithmetic if Constraint Lingo is to be applicable
in modeling and solving real-life operations-research problems. However, as we contemplate
extensions to Constraint Lingo, we want to be careful to preserve its simplicity, which, we
believe, is its main strength.

A similar approach, finding helpful higher-level abstractions, might well be helpful in other
structured domains, such as planning and scheduling. We have begun to look at both.

ACKNOWLEDGEMENT

We thank Hemantha Ponnuru and Vijay Chintalapati for their programming and testing support.

Copyright c© maybe later John Wiley & Sons, Ltd. Softw. Pract. Exper. maybe later; 00:1–25
Prepared using speauth.cls

CONSTRAINT LINGO 25

REFERENCES

1. R. Kowalski. Predicate logic as a programming language. In Proceedings of the Congress of the
International Federation for Information Processing (IFIP-1974), pages 569–574, Amsterdam, 1974. North
Holland.

2. A. Colmerauer, H. Kanoui, R. Pasero, and P. Roussel. Un systeme de communication homme-machine en
francais. Technical report, University of Marseille, 1973.

3. K. Marriott and P.J. Stuckey. Programming with Constraints: An Introduction. MIT Press, Cambridge,
MA, 1998.

4. M. Wallace, S. Novello, and J. Schimpf. Eclipse: A platform for constraint logic programming, 1997.
http://www.icparc.ic.ac.uk/eclipse/reports/eclipse.ps.gz.

5. I. Niemelä. Logic programming with stable model semantics as a constraint programming paradigm.
Annals of Mathematics and Artificial Intelligence, 25(3-4):241–273, 1999.

6. V.W. Marek and M. Truszczyński. Stable models and an alternative logic programming paradigm. In
K.R. Apt, W. Marek, M. Truszczyński, and D.S. Warren, editors, The Logic Programming Paradigm: a
25-Year Perspective, pages 375–398. Springer, Berlin, 1999.

7. I. Niemelä and P. Simons. Extending the smodels system with cardinality and weight constraints. In
J. Minker, editor, Logic-Based Artificial Intelligence, pages 491–521. Kluwer Academic Publishers, 2000.

8. M. Gelfond and V. Lifschitz. The stable semantics for logic programs. In Proceedings of the 5th
International Conference on Logic Programming, pages 1070–1080. MIT Press, 1988.

9. T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. A KR system dlv: Progress report, comparisons
and benchmarks. In Proceeding of the 6th International Conference on Knowledge Representation and
Reasoning (KR-1998), pages 406–417. Morgan Kaufmann, 1998.

10. D. East and M. Truszczyński. Propositional satisfiability in answer-set programming. In Proceedings
of Joint German/Austrian Conference on Artificial Intelligence (KI-2001), volume 2174 of LNAI, pages
138–153. Springer, 2001.

11. Christiane Bracchi, Christophe Gefflot, and Frederic Paulin. Combining propagation information and
search tree visualization using ILOG OPL studio. November 16 2001. In A. Kusalik (ed), Proceedings
of the Eleventh International Workshop on Logic Programming Environments (WLPE’01), December 1,
2001, Paphos, Cyprus, cs.PL/0111042.

12. B. Selman and H. A. Kautz. Planning as satisfiability. In Proceedings of the 10th European Conference
on Artificial Intelligence, Vienna, Austria, 1992.

13. H.A. Kautz and B. Selman. Unifying sat-based and graph-based planning. In Proceedings of IJCAI-99,
San Mateo, CA, 1999. Morgan Kaufmann.

14. R.E. Fikes and N. J. Nilsson. STRIPS: a new approach to the application of theorem proving to problem
solving. Artificial Intelligence Journal, 2:189–208, 1971.

15. N.J. Nilsson. Artificial Intelligence: a New Synthesis. Morgan Kaufmann, San Francisco, 1998.
16. M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A. Ram, M. Veloso, D. Weld, and D. Wilkins. Pddl

– the planning domain definition language. Technical report, Yale Center for Computational Vision and
Control, October 1998. Available at http://www.cs.yale.edu/pub/mcdermott/software/pddl.tar.gz.

17. R. Finkel. Constraint lingo package, 2003. ftp://ftp.cs.uky.edu/cs/software/cl.tar.gz.
18. T. Eiter, W. Faber, N. Leone, and G. Pfeifer. Declarative problem-solving in DLV. In Jack Minker, editor,

Logic-Based Artificial Intelligence, pages 79–103. Kluwer Academic Publishers, Dordrecht, 2000.
19. D. Edmunds. Learning constraint logic programming — Finite domains with logic puzzles, 2000.

http://brownbuffalo.sourceforge.net.
20. R. L. Whipkey. Various logic puzzles, 2001. http://www.allstarpuzzles.com/logic and

http://crpuzzles.com/logic.
21. John K. Ousterhout. Tcl and the Tk Toolkit. Professional Computing Series. Addison-Wesley, 1994.

ISBN 0-201-63337-X.

Copyright c© maybe later John Wiley & Sons, Ltd. Softw. Pract. Exper. maybe later; 00:1–25
Prepared using speauth.cls

http://www.icparc.ic.ac.uk/eclipse/reports/eclipse.ps.gz
http://www.cs.yale.edu/pub/mcdermott/software/pddl.tar.gz
ftp://ftp.cs.uky.edu/cs/software/cl.tar.gz
http://brownbuffalo.sourceforge.net
http://www.allstarpuzzles.com/logic
http://crpuzzles.com/logic

	1 Introduction
	2 Tabular constraint-satisfaction problems
	3 Syntax and Semantics of Constraint Lingo
	3.1 Declarations
	3.2 Constraints
	3.2.1 Rownames
	3.2.2 REQUIRED and CONFLICT
	3.2.3 Other constraint types
	3.2.4 Variables
	3.2.5 French puzzle
	3.2.6 Solutions

	4 Applying Constraint Lingo to graph problems
	5 Translation of Constraint Lingo into smodels
	6 Optimizing the smodels translation
	7 Other logic engines
	7.1 Translation for disjunctive logic programming
	7.2 Translation for constraint-logic programming

	8 Efficiency tests
	9 Discussion and conclusions

