
Logic programs with monotone cardinality atoms

Victor W. Marek1, Ilkka Niemelä2, and Miros law Truszczyński1

1 Department of Computer Science, University of Kentucky,
Lexington, KY 40506-0046, USA

2 Department of Computer Science and Engineering
Helsinki University of Technology,

P.O.Box 5400, FIN-02015 HUT, Finland

Abstract. We investigate mca-programs, that is, logic programs with
clauses built of monotone cardinality atoms of the form kX, where k is
a non-negative integer and X is a finite set of propositional atoms. We
develop a theory of mca-programs. We demonstrate that the operational
concept of the one-step provability operator generalizes to mca-programs,
but the generalization involves nondeterminism. Our main results show
that the formalism of mca-programs is a common generalization of (1)
normal logic programming with its semantics of models, supported mod-
els and stable models, (2) logic programming with cardinality atoms and
with the semantics of stable models, as defined by Niemelä, Simons and
Soininen, and (3) of disjunctive logic programming with the possible-
model semantics of Sakama and Inoue.

1 Introduction

We introduce and study logic programs whose clauses are built of monotone
cardinality atoms (mc-atoms), that is, expressions of the form kX, where k is a
non-negative integer and X is a finite set of propositional atoms. Intuitively, kX

is true in an interpretation M if at least k atoms in X are true in M . Thus, the
intended role for mc-atoms is to represent constraints on lower bounds of cardi-
nalities of sets. We refer to programs with mc-atoms as mca-programs. We are
motivated in this work by the recent emergence and demonstrated effectiveness
of logic programming extended with means to model cardinality constraints [12,
11, 15], and by the need to develop sound theoretical basis for such formalisms.

In the paper, we develop a theory of mca-programs. In that we closely follow
the development of normal logic programming and lift all its major concepts,
techniques and results to the setting of mca-programs. There is, however, a ba-
sic difference. Mc-atoms have, by their very nature, a built-in nondeterminism.
They can be viewed as shorthands for certain disjunctions and, in general, there
are many ways to make an mc-atom kX true. This nondeterminism has a key
consequence. The one-step provability operator is no longer deterministic, as in
normal logic programming, where it maps interpretations to interpretations. In
the case of mca-programs, the one-step provability operator is nondeterminis-
tic. It assigns to an interpretation M a set of interpretations, each regarded as
possible and equally likely outcomes of applying the operator to M .

Modulo this difference, our theory of mca-programs parallels that of normal
logic programs. First, we introduce models and supported models of an mca-
program and describe them in terms of the one-step provability operator in much
the same way it is done in normal logic programming. To define stable models we
first define the class of Horn mca-programs by disallowing the negation operator
in the bodies of clauses. We show that the nondeterministic one-step provability
operator associates with Horn mca-programs a notion of a (nondeterministic)
computation (the counterpart to the bottom-up computation with normal Horn
programs) and a class of derivable models (counterparts to the least model of a
normal Horn program). We then lift the notion of the Gelfond-Lifschitz reduct
[8] to the case of mca-programs and define a stable model of an mca-program as
a set of atoms that is a derivable model of the reduct. A striking aspect of our
construction is that all its steps are literal extensions of the corresponding steps
in the original approach. We show that stable models behave as expected. They
are supported and, in case of Horn mca-programs, derivable.

An intended meaning of an mc-atom 1{a} is that a be true. More formally,
1{a} is true in an interpretation if and only if a is true in that interpretation.
That connection implies a natural representation of normal logic programs as
mca-programs. We show that this representation preserves all semantics we dis-
cuss in the paper. It follows that the formalism of mca-programs can be viewed
as a direct generalization of normal logic programming.

As we noted, an extension of logic programming with direct ways to model
cardinality constraints was first proposed in [12]. That work defined a syntax of
logic programs with cardinality constraints (in fact, with more general weight
constraints) and introduced the notion of a stable model. We will refer to pro-
grams in that formalism as NSS-programs. One of the results in [12] showed that
NSS-programs generalized normal logic programming with the stable-model se-
mantics of Gelfond and Lifschitz [8]. However, the notion of the reduct underly-
ing the definition of a stable model given in [12] is different from that proposed
by Gelfond and Lifschitz [8] and the precise nature of the relationship between
normal logic programs and NSS-programs was not clear.

Mca-programs explicate this relationship. We show that the formalism of
mca-programs parallels normal logic programming. In particular, major con-
cepts, results and techniques in normal logic programming have counterparts in
the setting of mca-programs. We also prove that under some simple transforma-
tions, NSS-programs are equivalent to mca-programs. Through this connection,
the theory of normal logic programming can be lifted to the setting of NSS-
programs leading to new characterizations of stable models of NSS-programs.

Finally, we show that mca-programs not only provide an overarching frame-
work for both normal logic programs and NSS-programs. They are also useful
in investigating disjunctive logic programs. In the paper, we show that logic
programming with mc-atoms generalize disjunctive logic programming with the
possible-model semantics introduced in [14].

2 Logic programs with monotone cardinality atoms

Let At be a set of (propositional) atoms. An mc-atom over At (short for a
monotone cardinality atom over At) is any expression of the form kX, where k

is a non-negative integer and X ⊆ At is a finite set such that k ≤ |X|. We call
X the atom set of an mc-atom A = kX and denote it by aset(A). An intuitive
reading of an mc-atom kX is: at least k atoms in X are true. The intended
meaning of kX explains the requirement that k ≤ |X|. Clearly, if k > |X|, it is
impossible to have in X at least k true atoms and the expression kX is equivalent
to a contradiction.

An mc-literal is an expression of the form A or not(A), where A is an mc-
atom. An mca-clause (short for a monotone-cardinality-atom clause) is an ex-
pression r of the form

H ← L1, . . . , Lm, (1)

where H is an mc-atom and Li, 1 ≤ i ≤ m, are mc-literals. We call the mc-atom
H the head of r and denote it by hd(r). We call the set {L1, . . . , Lm} the body
of r and denote it by bd(r). An mca-clause is Horn if its body does not contain
literals of the form not(A). Finally, for an mca-clause r, we define the head set
of r, hset(r), by setting hset(r) = aset(h(r)).

Mca-clauses form mca-programs. We define the head set of an mca-program
P , hset(P), by hset(P) =

⋃
{hset(r) : r ∈ P} (if P = ∅, hset(P) = ∅, as well). If

all clauses in an mca-program P are Horn, P is a Horn mca-program.
One can give a declarative interpretation to mca-programs in terms of a

natural extension of the semantics of propositional logic. We say that a set M

of atoms satisfies an mc-atom kX if |M ∩X| ≥ k, and M satisfies an mc-literal
not(kX) if it does not satisfy kX (that is, if |M ∩X| < k). A set of atoms M

satisfies an mca-clause (1) if M satisfies H whenever M satisfies all literals Li,
1 ≤ i ≤ m. Finally, a set of atoms M satisfies an mca-program P if it satisfies
all clauses in P . We often say “is a model of” instead of “satisfies”. We use the
symbol |= to denote the satisfaction relation.

The following straightforward property of mc-atoms explains the use of the
term “monotone” in their name.

Proposition 1. Let A be an mc-atom over a set of atoms At. For every sets
M,M ′ ⊆ At, if M ⊆M ′ and M |= A then M ′ |= A.

Mca-clauses also have a procedural interpretation in which they are viewed
as derivation rules. Intuitively, if an mca-clause r has its body satisfied by some
set of atoms M , then r provides support for deriving from M any set of atoms
M ′ such that

1. M ′ consists of atoms mentioned in the head of r (r provides no grounds for
deriving atoms that do not appear in its head)

2. M ′ satisfies the head of r (since r “fires”, the constraint imposed by its head
must hold).

Clearly, the process of deriving M ′ from M by means of r is nondeterministic in
the sense that, in general, there are several sets that are supported by r and M .

This notion of nondeterministic derivability extends to programs and leads to
the concept of the nondeterministic one-step provability operator. Let P be an
mca-program and let M ⊆ At be a set of atoms. We set P (M) = {r ∈ P : M |=
bd(r)}. We call mca-clauses in P (M), M -applicable.

Definition 1. Let P be an mca-program and let M ⊆ At. A set M ′ is nonde-
terministically one-step provable from M by means of P , if M ′ ⊆ hset(P (M))
and M ′ |= hd(r), for every mca-clause r in P (M).

The nondeterministic one-step provability operator T nd

P , is a function from
P(At) to P(P(At)) and such that for every M ⊆ At, T nd

P (M) consists all sets
M ′ that are nondeterministically one-step provable from M by means of P .

As we indicate next, for every M ⊆ At , T nd

P (M) is nonempty. It follows that
T nd

P can be viewed as a formal representation of a nondeterministic operator on
P(At), which assigns to every subset M of At a subset of At arbitrarily selected
from the collection T nd

P (M) of possible outcomes. Since T nd

P (M) is nonempty,
this nondeterministic operator is well defined.

Proposition 2. Let P be an mca-program and let M ⊆ At. Then, hset(P (M)) ∈
T nd

P (M). In particular, T nd

P (M) 6= ∅.

The operator T nd

P plays a fundamental role in our research. It allows us to for-
malize procedural interpretations of mca-clauses and identify for them matching
classes of models that provide the corresponding declarative account.

Our first result characterizes models of mca-programs. This characterization
is a generalization of the familiar description of models of normal logic programs
as prefixpoints of TP .

Theorem 1. Let P be an mca-program and let M ⊆ At. The set M is a model
of P if and only if there is M ′ ∈ T nd

P (M) such that M ′ ⊆M .

A straightforward corollary states that every mca-program has a model.

Corollary 1. Let P be an mca-program. Then, hset(P) is a model of P .

Models of mca-programs may contain elements that have no support in a
program and the model itself. For instance, let us consider an mca-program P

consisting of the clause: 1{p, q} ← not(1{q}), where p and q are two different
atoms. Let M1 = {q}. Clearly, M1 is a model of P . However, M1 has no support
in P and itself. Indeed, T nd

P (M1) = {∅} and so, P and M1 do not provide support
for any atom. Similarly, another model of P , the set M2 = {p, r}, where r ∈ At
is an atom different from p and q, has no support in P and itself. We have
T nd

P (M2) = {{p}, {q}, {p, q}} and so, p has support in P and M2, but r does
not. Finally, the set M3 = {p}, which is also a model of P , has support in P

and itself. Indeed, T nd

P (M3) = {{p}, {q}, {p, q}} and there is a way to derive M3

from P and M3. We formalize now this discussion in the following definition.

Definition 2. Let P be an mca-program. A set of atoms M is a supported
model of P if M ∈ T nd

P (M).

The use of the term “model” is justified. By Theorem 1, supported models
of P are indeed models of P , as stated in the following result.

Corollary 2. Every supported model of an mca-program P is a model of P .

Finally, we have the following characterization of supported models.

Proposition 3. Let P be an mca-program. A set M ⊆ At is a supported model
of P if and only if M is a model of P and M ⊆ hset(P (M)).

3 Horn mca-programs

To introduce stable models of mca-programs, we need first to study Horn mca-
programs. With each Horn mca-program P one can associate the concept of a
P -computation. Namely, a P -computation is a sequence (Xn)n=0,1,... such that
X0 = ∅ and, for every non-negative integer n,

1. Xn ⊆ Xn+1, and
2. Xn+1 ∈ T nd

P (Xn).

Given a computation t = (Xn)n=0,1,..., we call
⋃∞

n=0 Xn the result of the com-
putation t and denote it by Rt.

Proposition 4. Let P be a Horn mca-program and let t be a P -computation.
Then Rt ⊆ hset(P (Rt)).

If P is a Horn mca-program then P -computations exist. Let M be a model of
P . We define the sequence tP,M = (XP,M

n)n=0,1,... as follows. We set X
P,M
0 = ∅

and, for every n ≥ 0, X
P,M
n+1 = hset(P (XP,M

n)) ∩M .

Theorem 2. Let P be a Horn mca-program and let M ⊆ At be its model. The
sequence tP,M is a P -computation.

We call the P -computation tP,M the canonical P -computation for M . Since
every mca-program P has models, we obtain the following corollary.

Corollary 3. Every Horn mca-program has at least one computation.

The results of computations are supported models (and, thus, also models)
of Horn mca-programs.

Proposition 5. Let P be a Horn mca-program and let t be a P -computation.
Then, the result of t, Rt, is a supported model of P .

We use the concept of a computation to identify a certain class of models of
Horn mca-programs.

Definition 3. Let P be a Horn mca-program. We say that a set of atoms M is
a derivable model of P if there exists a P -computation t such that M = Rt.

Derivable models can be obtained as results of their own canonical compu-
tations.

Proposition 6. Let M be a derivable model of a Horn mca-program P . Then
M = RtP,M .

Proposition 5 and Theorem 2 entail several properties of Horn mca-programs,
their computations and models. We gather them in the following corollary.

Corollary 4. Let P be a Horn mca-program. Then:

1. P has at least one derivable model.

2. P has a largest derivable model.

3. Every derivable model of P is a supported model of P .

4. For every model M of P there is a derivable model M ′ of P such that M ′ ⊆
M .

5. Every minimal model of P is derivable.

4 Stable models of mca-programs

We will now use the results of the two previous sections to introduce and study
the class of stable models of mca-programs.

Definition 4. Let P be an mca-program and let M ⊆ At. The reduct of P with
respect to M , PM in symbols, is a Horn mca-program obtained from P by (1)
removing from P every clause containing in the body a literal not(A) such that
M |= A, and (2) removing all literals of the form not(A) from all remaining
clauses in P . A set of atoms M is a stable model of P if M is a derivable model
of the reduct PM .

Stable models of an mca-program P are indeed models of P . Thus, the use
of the term “model” in their name is justified. In fact, a stronger property holds:
stable models of mca-programs are supported.

Proposition 7. Let P be an mca-program. If M ⊆ At is a stable model of P

then M is a supported model of P .

With the notion of a stable model in hand, we can strengthen Proposition 5.

Proposition 8. Let P be a Horn mca-program. A set of atoms M ⊆ At is a
derivable model of P if and only if M is a stable model of P .

We will now describe a procedural characterization of stable models of mca-
programs, relying on a notion of a computation related to but different from the
one we discussed in Section 3 in the context of Horn programs. A difference is
that now at each stage in a computation we must make sure that once a clause
is applied, it remains applicable at any stage of the process. It is not a priori
guaranteed due to the presence of negation in the bodies of general mca-clauses.

A formal definition is as follows. Let P be an mca-program. A sequence ε =
(Xn)n=0,1,2,... is a quasi P -computation, if X0 = ∅ and if for every n = 0, 1, . . .

there is a clause rn ∈ P such that

1. Xn |= bd(rn)
2. there is X ⊆ hset(rn) such that X |= hd(rn) and Xn+1 = Xn ∪X (this X is

what is “computed” by applying rn)
3. for every i = 0, 1 . . . , n and for every mc-atom kX occurring negated in

bd(ri), Xn+1 6|= kX

We call the set
⋃

1≤k<ω Xk the result of the quasi P -computation ε.

Theorem 3. A set of atoms M is a stable model of P if and only if M is a
model of P and for some quasi P -computation ε, M is the result of ε.

Theorem 3 states that if we apply clauses carefully, making sure that at
no stage we satisfy an mc-atom appearing negated in clauses applied so far
(including the one selected to apply at the present stage) and we ever compute
a model in this way, then this model is a stable model of P . Conversely, every
stable model can be obtained as a result of such a careful computation.

5 Extension of mca-programs by constraint mca-clauses

We can extend the language of mca-programs by allowing clauses with the empty
head. Namely, we define a constraint mca-clause to be an expression r of the form

← L1, . . . , Lm, (2)

where Li, 1 ≤ i ≤ m, are mc-literals.
The notion of satisfiability that we introduced for mca-clauses extends to

the case of mca-constraints. A set of atoms M satisfies a constraint r if there
is a literal L ∈ bd(r) such that M 6|= L. We can now extend the definitions of
supported and stable models to the more general class of mca-programs with
constraint mca-clauses as follows.

Definition 5. Let P be an mca-program with constraint mca-clauses. A set of
atoms M is a supported (stable) model of P if M is a supported (stable) model
of P ′, where P ′ consists of all non-constraint mca-clauses in P , and if M is a
model of all constraint mca-clauses in P .

Let us observe that several of our earlier results such as Proposition 7 and
Theorem 3 lift verbatim to the case of programs with constraints.

6 Mca-programs and normal logic programming

An mc-atom 1{a} is true in a model M if and only if a is true in M . Thus,
intuitively, 1{a} and a are equivalent. That suggests a way to interpret normal
clauses and programs as mca-clauses and mca-programs. Let

r = c← a1, . . . , am,not(b1), . . . ,not(bn).

By mca(r) we mean the mc-clause

1{c} ← 1{a1}, . . . , 1{am},not(1{b1}), . . . ,not(1{bn}).

(If all ai and all bi are distinct, which we can assume without loss of generality, a
simpler translation, 1{c} ← m{a1, . . . , am},not(1{b1, . . . , bn}), could be used.)
Moreover, given a normal program P , we set mca(P) = {mc(r) : r ∈ P}.

This encoding interprets normal logic programs as mca-programs so that
basic properties and concepts of normal logic programming can be viewed as
special cases of properties and concepts in mca-programming. In the following
theorem, we gather several results establishing appropriate correspondences.

Theorem 4. Let P be a normal logic program and let M be a set of atoms.

1. P is a Horn program if and only if mca(P) is a Horn mca-program
2. If P is a Horn program then the least model of P is the only derivable model

of mca(P)
3. {TP (M)} = T nd

mca(P)(M)

4. mca(PM) = mca(P)M

5. M is a model (supported model, stable model) of P if and only if M is a
model (supported model, stable model) of mca(P).

Finally, we identify a class of mca-programs, which offers a most direct gen-
eralization of normal logic programming.

Definition 6. An mca-clause r is deterministic if hd(r) = 1{a}, for some atom
a. An mca-program is deterministic if every clause in P is deterministic.

The intuition behind the term is clear. If the head of an mca-clause is of the
form 1{a}, then there is only one possible effect of applying the clause: a has to
be concluded. Thus, the nondeterminism that arises in the context of arbitrary
mc-atoms disappears. Formally, we capture this property in the following result.

Proposition 9. Let P be a deterministic mca-program. Then, for every set of
atoms M , T nd

P (M) = {M ′}, for some set of atoms M ′.

Thus, for a deterministic mca-program P , the operator T nd

P is deterministic
and, so, can be regarded as an operator with both the domain and codomain
P(At). We will write T d

P , to denote it. Models, supported models and stable
models of a deterministic mca-program can be introduced in terms of the opera-
tor T d

P in exactly the same way the corresponding concepts are defined in normal

logic programming. In particular, the algebraic treatment of logic programming
developed in [7, 13, 2] applies literally to deterministic mca-programs and results
in a natural and direct extension of normal logic programming. We will explicitly
mention just one result here that will be of importance later in the paper.

Proposition 10. Let P be a deterministic Horn program. Then P has exactly
one derivable model and this model is the least model of P .

7 Mca-programs and NSS-programs

We will first briefly review the concept of an NSS-program [12], the semantics
of stable models of such programs, as introduced in [12], and then relate this
formalism to that of mca-programs.

A cardinality atom (c-atom, for short) is an expression of the form kXl, where
X ⊆ At , and l and k are integers such that 0 ≤ k ≤ l ≤ |X|. We call X an atom
set of a c-atom A = kXl and, as before, we denote it by aset(A)3.

We say that a set of atoms M satisfies a c-atom kXl if k ≤ |M ∩ X| ≤ l

(M |= kXl, in symbols). It is clear that when k = 0 or l = |X|, the corresponding
inequality is trivially true. Thus, we omit from the notation k, if equal to 0, and
l, if equal to |X|.

A cardinality-atom clause (ca-clause, for short) is an expression r of the form

A← B1, . . . , Bn,

where A and Bi, 1 ≤ i ≤ n, are c-atoms. We call A the head of r and {B1, . . . , Bn}
the body of r. We denote them by hd(r) and bd(r), respectively. A ca-program is
a collection of ca-clauses.

We say that a set M ⊆ At satisfies a ca-clause r if M satisfies hd(r) whenever
it satisfies each c-atom in the body of r. We say that M satisfies a ca-program P

if M satisfies each ca-clause in P . We write M |= r and M |= P in these cases,
respectively.

We will now recall the concept of a stable model of a ca-program [12]. Let
P be an NSS-program and let M ⊆ At . By the NSS-reduct of P with respect to
M we mean the NSS-program obtained by:

1. eliminating from P every clause r such that M 6|= B, for at least one c-atom
B ∈ bd(r)

2. replacing each remaining ca-clause r = kXl ← k1Y1l1, . . . knYnln with all
clauses of the form 1{a} ← k1Y1, . . . , knYn, where a ∈ X ∩M .

With some abuse of notation, we denote the resulting program by PM (the type
of the program determines which reduct we have in mind). It is clear that PM

is a deterministic Horn mca-program. Thus, it has a least model, lm(PM).

3 To be precise, [12] allows also for negated atoms to appear as elements of X. One
can eliminate occurrences of negative literals by introducing new atoms. Thus, for
this work, we decided to restrict the syntax of NSS-programs.

Definition 7. Let P be a ca-program. A set M ⊆ At is a stable model of P if
M = lm(PM) and M |= P .

We will now show that the formalisms of mca-programs and ca-programs
with their corresponding stable-model semantics are equivalent. We start by
describing an encoding of ca-clauses and ca-programs by mca-clauses and mca-
programs. To simplify the description of the encoding and make it uniform,
we assume that all bounds are present (we recall that whenever any of the
bounds are missing from the notation, they can be introduced back). Let r be the
following ca-clause: kXl← k1X1l1, . . . , kmXmlm. We represent this ca-clause by
a pair of mca-clauses, e1

mca(r) and e2
mca(r) that we define as the following two

mca-clauses, respectively:

kX ← k1X1, . . . , kmXm,not((l1 + 1)X1), . . . ,not((lm + 1)Xm),

and

← (l + 1)X, k1X1, . . . , kmXm,not((l1 + 1)X1), . . . ,not((lm + 1)Xm).

Given a ca-program P , we translate it into an mca-program

emca(P) =
⋃

r∈P

{e1
mca

(r), e2
mca

(r)}.

Theorem 5. Let P be a ca-program. A set of atoms M is a stable model of P ,
as defined for ca-programs, if and only if M is a stable model of emca(P), as
defined for mca-programs.

This theorem shows that the formalism of mca-programs is at least as ex-
pressive as that of ca-programs. The converse is true as well: ca-programs are at
least as expressive as mca-programs. Let r be the following mca-clause:

kX ← k1X1, . . . , kmXm,not(l1Y1), . . . ,not(lnXn).

We define eca(r) as follows. If there is i, 1 ≤ i ≤ n, such that li = 0, we set
eca(r) = kX ← kX (in fact any tautology would do). Otherwise, we set

eca(r) = kX ← k1X1, . . . , kmXm, Y1(l1 − 1), . . . , Yn(ln − 1).

Given an mca-program P , we define eca(P) = {eca(r) : r ∈ P}.

Theorem 6. Let P be an mca-program. A set of atoms M is a stable model of
P , as defined for mca-programs, if and only if M is a stable model of eca(P), as
defined for ca-programs.

Theorems 5 and 6 establish the equivalence of ca-programs and mca-programs
with respect to the stable model semantics. The same translations also preserve
the concept of a model. Finally, Theorem 5 suggests a way to introduce the
notion of a supported model for a ca-program: a set of atoms M is defined to

be a supported model of a ca-program P if it is a supported model of the mca-
program emca(P). With this definition, the two translations emca and eca also
preserve the concept of a supported model.

We also note that this equivalence demonstrates that ca-programs with the
semantics of stable models as defined in [12] can be viewed as a generalization of
normal logic programming. It follows from Theorems 4 and 6 that the encoding
of normal logic programs as ca-programs, defined as the composition of the
translations mca and eca , preserves the semantics of models, supported models
and stable models (an alternative proof of this fact, restricted to the case of
stable models only was first given in [12] and served as a motivation for the class
of ca-programs and its stable-model semantics). This result is important, as it is
not at all evident that the NSS-reduct and Definition 7 generalize the semantics
of stable models as defined in [8].

Given that the formalisms of ca-atoms and mca-atoms are equivalent, it is
important to stress what differs them. The advantage of the formalism of ca-
programs is that it does not require the negation operator in the language.
The strength of the formalism of mca-programs lies in the fact that its syntax so
closely resembles that of normal logic programs, and that the development of the
theory of mca-programs so closely follows that of the normal logic programming.

8 Mca-programs and disjunctive logic programs

The formalism of mca-programs also extends an approach to disjunctive logic
programming, proposed in [14]. In that paper, the authors introduced and in-
vestigated a semantics of possible models for disjunctive logic programs. We will
now show that disjunctive programming with the semantics of possible models
is a special case of the logic mca-programs with the semantics of stable models.

Let r be a disjunctive logic program clause of the form:

c1 ∨ . . . ∨ ck ← a1, . . . , am,not(b1), . . . ,not(bn),

where all ai, bi and ci are atoms. We define an mca-clause

mcad(r) = 1{c1, . . . , ck} ← 1{a1}, . . . , 1{am},not(1{b1}), . . . ,not(1{bn}).

For a disjunctive logic program P , we define mcad(P) = {mcad(r) : r ∈ P}. We
have the following theorem.

Theorem 7. Let P be a disjunctive logic program. A set of atoms M is a possible
model of P if and only if M is a stable model of the mca-program mcad(P).

We also note that there are strong analogies between the approach we propose
here and some of the techniques discussed in [14]. In particular, [14] presents
a computational procedure for disjunctive programs without negation that is
equivalent to our notion of a P -computation. We stress however, that the class
of mca-programs is more general and that our approach, consistently exploiting
properties of an operator T nd

P , is better aligned with a standard development of
normal logic programming.

9 Discussion

Results of our paper point to a central position of mca-programs among other
logic programming formalisms. First, mca-programs form a natural general-
ization of normal logic programs, with most concepts and techniques closely
patterned after their counterparts in normal logic programming. Second, mca-
programs with the stable-model semantics generalize disjunctive logic program-
ming with the possible-model semantics of [14]. Third, mca-programs provide
direct means to model cardinality constraints, a feature that has become broadly
recognized as essential to computational knowledge representation formalisms.
Moreover, it turns out that mca-programs are, in a certain sense that we made
precise in the paper, equivalent, to logic programs with cardinality atoms pro-
posed and studied in [12]. Thus, mca-programs provide a natural link between
normal logic programs and the formalism of [12], and help explain the nature of
this relationship, hidden by the original definitions in [12].

In this paper, we outlined only the rudiments of the theory of mca-programs.
There are several questions that follow from our work and that deserve more
attention. First, our theory can be extended to the case of programs built of
monotone-weight atoms, that is, expressions of the form a{p1 : w1, . . . , pk : wk},
where a, w1, . . . wk are non-negative reals and p1, . . . , pk are propositional atoms.
Intuitively, such an atom is satisfied by an interpretation (set of atoms) M if the
sum of weights assigned to atoms in M ∩ {p1, . . . , pk} is at least a.

Next, there is a question whether Fages lemma [6] generalizes to mca-programs.
If so, for some classes of programs, one could reduce stable-model computation
to satisfiability checking for propositional theories with cardinality atoms [4,
9]. That, in turn, might lead to effective computational methods, alternative to
direct algorithms such as smodels [10] and similar in spirit to the approach of
cmodels [5, 1].

Another interesting aspect concerns some syntactic modifications and “nor-
mal form representations” for mca-programs. For instance, at a cost of introduc-
ing new atoms, one can rewrite any mca-program into a simple mca-program
in which every mca-clause contains at most one mca-literal in its body and in
which the use of negation is restricted (but not eliminated). We will present
these results in a full version of the paper.

The emergence of a nondeterministic one-step provability operator is partic-
ularly intriguing. It suggests that, as in the case of normal logic programming
[7, 13], the theory of mca-programs can be developed by algebraic means. For
that to happen, one would need techniques for handling nondeterministic oper-
ators on lattices, similar to those presented in the deterministic operators in [2,
3]. That approach might ultimately lead to a generalization of the well-founded
semantics to the case of mca-programs.

Acknowledgments

The second author was supported by the Academy of Finland grant 53695. The
other two authors were supported by the NSF grant IIS-0097278.

References

1. Y. Babovich and V. Lifschitz. Cmodels, 2002. http://www.cs.utexas.edu/users/
tag/cmodels.html.

2. M. Denecker, V. Marek, and M. Truszczyński. Approximations, stable operators,
well-founded fixpoints and applications in nonmonotonic reasoning. In J. Minker,
editor, Logic-Based Artificial Intelligence, pages 127–144. Kluwer Academic Pub-
lishers, 2000.

3. M. Denecker, V. Marek, and M. Truszczyński. Ultimate approximations in non-
monotonic knowledge representation systems. In Principles of Knowledge Rep-
resentation and Reasoning, Proceedings of the Eighth International Conference
(KR2002), pages 177–188. Morgan Kaufmann Publishers, 2002.

4. D. East and M. Truszczyński. Propositional satisfiability in answer-set program-
ming. In Proceedings of Joint German/Austrian Conference on Artificial Intelli-
gence, KI’2001, volume 2174, pages 138–153. Lecture Notes in Artificial Intelli-
gence, Springer Verlag, 2001.

5. E. Erdem and V. Lifschitz. Tight logic programs. Theory and Practice of Logic
Programming, 3(4-5):499–518, 2003.

6. F. Fages. Consistency of Clark’s completion and existence of stable models. Journal
of Methods of Logic in Computer Science, 1:51–60, 1994.

7. M. C. Fitting. Fixpoint semantics for logic programming – a survey. Theoretical
Computer Science, 278:25–51, 2002.

8. M. Gelfond and V. Lifschitz. The stable semantics for logic programs. In R. Kowal-
ski and K. Bowen, editors, Proceedings of the 5th International Conference on Logic
Programming, pages 1070–1080. MIT Press, 1988.

9. L. Liu and M. Truszczyński. Local-search techniques in propositional logic ex-
tended with cardinality atoms. In Proceedings of the Ninth International Con-
ference on Principles and Practice of Constraint Programming, CP-2003. Lecture
Notes in Computer Science, Springer Verlag, 2003.

10. I. Niemelä and P. Simons. Efficient implementation of the well-founded and stable
model semantics. In Proceedings of JICSLP-96. MIT Press, 1996.

11. I. Niemelä and P. Simons. Extending the smodels system with cardinality and
weight constraints. In J. Minker, editor, Logic-Based Artificial Intelligence, pages
491–521. Kluwer Academic Publishers, 2000.

12. I. Niemelä, P. Simons, and T. Soininen. Stable model semantics of weight constraint
rules. In Proceedings of LPNMR-1999, volume 1730 of Lecture Notes in Computer
Science, pages 317–331. Springer-Verlag, 1999.

13. T.C. Przymusinski. The well-founded semantics coincides with the three-valued
stable semantics. Fundamenta Informaticae, 13(4):445–464, 1990.

14. C. Sakama and K. Inoue. An alternative approach to the semantics of disjunctive
logic programs and deductive databases. Journal of Automated Reasoning, 13:145–
172, 1984.

15. P. Simons, I. Niemelä, and T. Soininen. Extending and implementing the stable
model semantics. Artificial Intelligence, 138:181–234, 2002.

