
Computing stable models in parallel

R.A. Finkel, V.W. Marek, N. Moore and M. Truszczyński
Department of Computer Science

University of Kentucky
Lexington KY 40506-0046, USA

email: raphael—marek|neil|mirek@cs.uky.edu

Abstract

Answer-set programming (ASP) solvers must handle
difficult computational problems that are NP-hard.
These solvers are in the worst case exponential and
their scope of applicability, despite recent impressive
gains in performance, remains limited. One way to
deal with limitations of answer-set programming is to
exploit parallelism. In this paper, we design and im-
plement a parallel algorithm, parstab, that computes
stable models of logic programs. We describe prelim-
inary experimental studies of parstab, running it on
seven machines and comparing its performance to a se-
rial execution. Our results are encouraging. For some
problems, significant speedups are obtained by running
parstab on multiple machines.

Introduction

The stable model semantics (Gelfond & Lifschitz 1988)
is one of the two most commonly accepted semantics
of logic programs with negation, the other one be-
ing the well-founded semantics (Van Gelder, Ross, &
Schlipf 1991). Yet, despite its long presence on the logic
programming stage, the full potential of stable model
semantics is only now becoming to be fully appreci-
ated. The two factors are the development of smodels
(Niemelä & Simons 1997; 2000), a fast implementation
of an algorithm to compute stable models of logic pro-
grams without function symbols, and a better under-
standing of how to apply the stable model semantics
in computation and what is the scope of its applicabil-
ity (Marek & Truszczyński 1999; Niemelä 1999; ?; ?;
Syrjänen 1999).

Work on declarative programming formalism based
on the stable model semantics led researchers to in-
troduce answer-set programming (ASP), a computa-
tional paradigm in which theories (in some formal
systems) serve as problem specifications, and differ-
ent models of these theories determine different so-
lutions (Marek & Truszczyński 1999; Niemelä 1999).
Logic programming with stable model semantics is an
answer-set programming system but several other for-
malisms and corresponding implementations were pro-
posed recently. They include disjunctive logic program-
ming and its implementation dlv (Eiter et al. 1997;

1998), and DATALOG with constraints and its solver
dcs (East & Truszczyński 2000a; East & Truszczyński
2000b). Propositional logic with satisfiability checkers
to compute models can also be regarded as an ASP
formalism.

The general problems these computational tools are
solving are complex. Computing stable models of logic
programs and answer sets of theories of DATALOG
with constraints is NP-hard (Marek & Truszczyński
1991; East & Truszczyński 2000b), computing answer
sets of disjunctive logic programs is Σ2

P
-hard. De-

spite impressive recent advances progress in the per-
formance of smodels, dlv, dcs and propositional satisfi-
ability checkers, the problem of addressing the issue of
computational complexity remains a challenge.

In this paper we study the use of parallel computing
environments to improve the performance of of ASP for-
malisms. To this end, we design and implement a par-
allel algorithm, parstab, that computes stable models
of logic programs. We performed preliminary experi-
mental studies of parstab, running it on seven machines
and comparing its performance to a serial execution.
We chose hard combinatorial problems for the initial
experiments. The results are highly encouraging. Sig-
nificant speedups are obtained by running parstab on
multiple machines. These results are preliminary. Still,
they provide strong evidence that parallelism, inherent
in search procedures underlying ASP implementations,
can be exploited in order to expand the range of appli-
cability of ASP.

The paper is organized as follows. The next section
describes details of serial and parallel design of parstab,
The following section describes our experimental re-
sults. The last section provides a brief discussion of
these results and directions for future work.

Description of parstab

parstab is a parallel implementation of an algorithm
to compute stable models of logic programs. It uses
the PVM (Parallel Virtual Machine) system for inter-
node communication (Geist et al. 1996), see also http:
//www.epm.ornl.gov/pvm/pvm_home.html. The ba-
sic algorithm whose parallel version was developed and
studied in this work is stable, a part of the lpsms

collection of programs developed at the University
of Kentucky1. stable is itself based on the smodels
program2 developed by Ilkka Niemelä at the Helsinki
University of Technology (Niemelä & Simons 1997;
2000).

parstab must be compiled separately for each machine
type (processor/OS combination) it is to be run on. It
should then be placed in the PVM binary directory on
each machine appropriate for that architecture. This is
necessary so that PVM can spawn copies of parstab on
machines other than the master (see below).

Serial Algorithm

The algorithm used by parstab is a modification of that
used by stable which is a slight modifications of the algo-
rithm used by smodels version WHAT. This algorithm
is described in more detail in (Simons 1997). We out-
line here only those features of the algorithm important
in our discussion of its parallel implementation.

The stable algorithm uses backtracking. The algo-
rithm alternates between adding to the current model
atoms which must be true (or false) given the current
knowledge, and guessing atoms to be true or false. The
first task is called ‘expansion’. It uses what is basically
the well-founded semantics to expand the current par-
tial model. The second task is called ‘guessing’. We
do not discuss here the heuristics used to determine
which atoms to guess; we use a slight modification of
the heuristic described in (Simons 1997). One thing to
note about expansion is that it relies on full lookahead
and can cause certain atoms to be added to the model
positively or negatively, as we discover that their nega-
tion produces a contradiction. smodels refers to those
as ‘forced’. We keep that terminology here.

In implementing the algorithm, we make use of two
stacks, which are operated on in concert. The first
lists the atoms which have been added to the model;
the second, stores annotations indicating whether the
corresponding atom is in the model positively or neg-
atively, and whether it is known (expanded or forced)
or guessed. As we alternately expand and guess, atoms
are pushed onto the stack. When a contradiction or
a stable model is reached, atoms are popped off until
we reach an atom which was guessed. These atoms are
known as ‘choice points’, and represent nodes in the
search tree. Choice points are initially ‘undecided’ as
their negation has not been tried.

As stated above, backtracking proceeds to the most
recent (highest on the stack) undecided choice point.
That choice point is then negated and marked as ‘de-
cided’. A decided choice point will no longer be treated
specially when backtracking; all the models, if any, in
the uncomputed subtree of the choice tree have been
found. Thus, a decided choice point is marked as known

1lpsms is available from: http://www.cs.uky.edu/
~neil/progs/lpsms-current.tar.gz.

2The program is available from: http://saturn.tcs.
hut.fi/pub/smodels/.

— making it indistinguishable from an expanded or
forced atom. If we backtrack to the top of the search
tree (an empty stack) without encountering an unde-
cided choice point, we know that we have exhausted
the search space. The algorithm then terminates.

Parallel Algorithm
parstab makes use of a master/slave parallel architec-
ture. The first node, generally the one executed by
the user, is the master. The master spawns a user-
specified number of children, keeps track of models and
logs them, assigns work to the children, and coordinates
branching (see below). Initially, the children are as-
signed subtrees of the search tree by the master. Later
in the execution, they obtain subtrees from other chil-
dren. They then use the serial algorithm on these sub-
trees, sometimes breaking off part of their search space
at the request of other children. In general, there will
be one child node on each machine; the master, since
it requires so little CPU time, can share a node with a
child.

PVM is a message-passing library; messages are se-
quences of strongly-typed elements, each of some fun-
damental data type (integer, long integer, character,
string, floating-point number, etc.). parstab uses a com-
mon format for messages, with eight subtypes. All
messages begin with two integers; the first is the type
of message, the second the PVM task ID of the ma-
chine generating the message. The remaining content
of the message depends on the value of the message-type
field. The master, since it does not perform a great deal
of computation, spends nearly all its time waiting for
messages. Children, on the other hand, only wait for
messages when they have no work, once at each choice
point, and once for every ten executions of the heuristic
which do not encounter a choice point. Thus, though
the delay between the message reaching a child and that
child processing it is in theory arbitrarily large, it is in
practice not too long.

Initialization

Initialization begins when the user runs the master, ei-
ther from the command-line or from the PVM console.
The master loads the logic program (and optionally a
stratification; see the documentation of stable for more
information on this). It then spawns children using the
PVM routine pvm spawn(). PVM then runs the re-
quested number of copies of parstab. If the number
requested is greater than the number of machines in
the PVM configuration, some machines will run multi-
ple children. parstab, when spawning children, passes
them the version number of the master, as well as log-
ging and timing flags. The flags must be sent through
the command line so that the children know whether
to log the initialization messages. The version number
is used as a crude test for compatibility; if the version
numbers do not match, the children assume that they
are not using a protocol compatible with that of the
master, and exit.

Once the children have been started, the master uses
PVM to send each an initialization message. This mes-
sage contains all the information the children need to
begin working. It contains the program (with atom
names stripped; all user interaction is done by the mas-
ter so slaves can refer to atoms by number alone), the
stratification if any is used, certain flags, the total num-
ber of children, and the number (label) of each child (an
integer between zero and one less than the number of
children; this number is different from the PVM task
ID, and is used by the child to locate its initial subtree
of the search space). The flags are in general tuning
parameters for the heuristic, and are beyond the scope
of this document.

Initial Choice Points

The children all begin at the top of the search tree, with
an empty stack. If they proceeded to use the smod-
els algorithm without modification, they would each
make exactly the same guesses and we would uselessly
perform exactly the same computation on many differ-
ent machines. Instead, each machine has its first few
guesses determined beforehand. There are enough such
initially determined choices to ensure that the children
reach disjoint subtrees of the search space.

The initial choices are based on the binary pattern of
the machine’s child number (the one transmitted in the
initialization message), with lower-order bits represent-
ing earlier choice points. For example, machine 11 of 16
(binary 1011) would choose true at the first two choice
points, false at the third, and true at the fourth. If the
number of machines is not a power of two, some ma-
chines will have more initially determined choice points
than the others. For example, if there are 6 (4 + 2)
machines, machines 0, 1, 4, and 5 will have three such
choice points, while machines 2 and 3 will have two.

While a child still has predetermined choice points
left, it uses the heuristic as normal to determine which
atom will be the choice point. It then pushes that atom
as a decided choice point, true or false, depending on
the low bit of its child number. Finally, it shifts its
child number right by one bit (so 11 becomes 5, etc.).
Since initial choice points are marked as decided, the
algorithm will not try their negation when backtrack-
ing. Thus a child will not backtrack into another child’s
portion of the search space.

Note that, for the above to not omit parts of the
search tree, running the heuristics twice with the same
stack must give the same result. This way, machines 3
and 11, for example, will always choose the same atom
at the fourth choice point (though one will mark it true
and the other false). This requires that the heuristics be
deterministic — not a problem currently, as the smodels
heuristics is so. Assuming this determinism, the initial
choices partition the remaining search space (that be-
low the initial choice points). Each machine receives a
subtree, these trees are disjoint, and they, taken with
the common portions of the tree (where not all of the
initial choices have been made yet), cover the entire

search space.

Branching

Since the search tree is not uniform, it is quite likely
that some children should finish their subtrees before
others. We do not want them to be idle for potentially
long periods of time while they could be doing useful
work. Therefore we employ a method of branching the
computation to other machines.

When a child has exhausted its search tree, it reports
this fact to its master. The master then selects at ran-
dom a child which is still computing, and sends a mes-
sage to that child. For the sake of illustration, let us call
the child that wants work A, and the child selected by
the master B. Child B, upon receiving this message from
the master, breaks off its search tree at the first (lowest
on the stack) undecided choice point (atom X, say).
That choice point is then marked as decided. Child B
sends to child A the stack up and including atom X,
with atom X negated (and still marked as decided).
Thus child A receives the largest untouched subtree of
child B’s search tree. Finally, child A reports to the
master that it has received work.

Using this method, children always get stacks with
no undecided choice points. Thus, once they complete
the tree they are assigned, they will not backtrack into
another child’s portion of the search space. Likewise,
the child that is giving up work marks the branched
choice point as decided; thus it will not backtrack into
the portion of the search space it has just assigned to
another machine. We therefore ensure that, once the
initial choice points (see above) are exhausted, no two
children will ever be in the same portion of the search
space. Likewise, we preserve the covering of the non-
computed search space, so we can be sure of not losing
models (unless, of course, a machine dies).

Models

The purpose of running parstab is, of course, to find
stable models (or to show that they do not exist). We
therefore need some way of reporting stable models to
the user. The children cannot communicate directly
with the user; they may be running on any number of
machines, which the user may not have easy non-PVM
access to. Thus the master must be the one to report all
models. Children therefore send models to the master
through PVM messages — one per model. Since PVM
messages may be arbitrarily large, and are broken up
into transmittable chunks by lower-layer protocols, this
does not pose a communication problem.

There is only one complication with regard to mod-
els. Recall that, before the initial choices have been
exhausted, two or more different children may be in
the same portion of the search tree. If there is a model
so high in the search tree, multiple children will find
it. This is a problem, because we want the master to
report each model only once. There is a simple solu-
tion, though. Children which are in a common part
of the search tree must have made the same choices

so far; hence they share the lowest, already shifted-off,
bits of their child numbers. Since children have unique
child numbers, this means they differ in the remaining
bits. Thus we can have only the lowest-numbered child
which would come across the model report it. Since
child numbers are assigned sequentially, this would be
the child with 0 for all the unshifted bits. Hence, while
there are still initial choices to be made, only children
with 0 for the unshifted portion of their child numbers
will report stable models.

Ending Computation

Recall that, for the purposes of branching, children re-
port to the master when they have completed work.
The master uses these messages for another purpose.
As noted above, the running children always cover the
remaining portion of the search space. Thus, if all chil-
dren have completed their search trees, there must be
no uncomputed portion of the search space remaining;
thus all the stable models have been found, and com-
putation is finished. When this happens, the master
sends a message to all children asking that they termi-
nate. Then, after three seconds, the master has PVM
kill any remaining children which did not terminate for
some reason.

It may also be the case that the user specified a fixed
number N of models to search for. Once the master re-
ceives the Nth model, it ends computation in the same
way. In this case, the second step, of having PVM kill
any remaining children, is necessary more often; those
children can be stuck in computation for a potentially
long time before they check messages.

Finally, the master may die for some reason: a
power failure, the user killing the process, etc. To
take into account this possibility, the children use the
pvm notify() routine to have PVM notify them on the
death of the parent. This notification is treated just
like any other message; when the child receives it, it
behaves exactly as though the parent had asked it to
die (except that it logs a different message). In this
case, the master cannot ask PVM to kill its children;
thus children may continue running for a relatively long
period of time, until they next check for messages.

Results

We tested parstab using a cluster of 7 Sun workstations.
We compared run times on the cluster with those of a
sequential algorithm on a single Sun machine. Times
reported here include initialization but not the 3 sec-
onds that are spent waiting for slaves to die.

For the tests we have selected several difficult search
problems that are commonly used as benchmarks for
ASP programs. They are:

1. computing bounds on Ramsey numbers

2. n-queens problems

3. pigeonhole problem with n holes and n + 1 pigeons

Ramsey numbers. The Ramsey number R(k,m) is
defined as the least integer n such that in every color-
ing of the complete graph with n vertices so that each
edge is either read or blue, there is a complete subgraph
with k vertices and with all edges red or a complete
subgraph with m vertices with all edges blue. Even
for relatively small values of k and m precise value of
R(k,m) is not known. For instance, if both k and m
are at least 4, only two values are known: R(4, 4) = 18
and R(4, 5) = 25. To show that R(k,m) > n one needs
to find a coloring in which neither a red copy of a com-
plete graph on k vertices nor a blue copy of a complete
graph on m vertices exists. To this end, in the case of
k = 4 and m = 5, we use the following program. Its sta-
ble models define colorings without required monochro-
matic complete graphs. Thus, if a stable model is found,
R(4, 5) > n

vtx(1..n).

edge(X,Y) :- vtx(X), vtx(Y), X < Y.

blue(X,Y) :- edge(X,Y), not red(X,Y).
red(X,Y) :- edge(X,Y), not blue(X,Y).

:- edge(W,X),edge(W,Y),edge(W,Z),
edge(X,Y),edge(X,Z),edge(Y,Z),
blue(W,X),blue(W,Y),blue(W,Z),
blue(X,Y),blue(Y,Z),blue(X,Z).

:- edge(V,W),edge(V,X),edge(V,Y),
edge(V,Z),edge(W,X),edge(W,Y),
edge(W,Z),edge(X,Y),edge(X,Z),
edge(Y,Z),
red(V,W),red(V,X),red(V,Y),
red(V,Z),red(W,X),red(W,Y),
red(W,Z),red(X,Y),red(X,Z),
red(Y,Z).

This problem was chosen as it is very hard and, as n
increases the constraints become tighter, the number of
stable models goes down and eventually becomes equal
to 0 (when this first happens, the corresponding value
of n is the Ramsey number).
n-queens problem. In this problem the goal is to find
an arrangement of queens on an n × n chess board so
that no two queens attack each other. This problem
is often used as a benchmark. Its key feature is that
there are very many solutions. We used the following
program for our tests:

row(1..n).
col(1..n).

queen(X,Y) :- row(X), col(Y),
not otherqueen(X,Y).

otherqueen(X,Y) :- row(X), col(Y;Z),
queen(X,Z), Y!=Z.

:- row(X;Z), col(Y),

queen(X,Y), queen(Z,Y), X!=Z.

:- row(U;X), col(V;Y),
queen(X,Y), queen(U,V),
(X-U)==(Y-V), X!=U.

:- row(U;X), col(V;Y),
queen(X,Y), queen(U,V),
(X-U)==(V-Y), X!=U.

In our experiments in which we wanted to study the
effect of parallelism, we ran this program to find all
stable models so that to exhaust the whole search space.
Pigeonhole problem. We considered the case of n
holes and n + 1 pigeons. Clearly the problem has no
solution and to discover that the program has to search
through the entire search space. We used the following
program in our tests:

pigeon(1..n+1).
hole(1..n).

in_hole(P,H) :- pigeon(P), hole(H),
not otherhole(P,H).

otherhole(P,H) :- pigeon(P), hole(H;X),
in_hole(P,X), H != X.

:- pigeon(P;Q), hole(H),
in_hole(P,H), in_hole(Q,H), P != Q.

The results of our experiments are shown in Tables
1 - 2. The size of the problem is specified in the first
column. The column stable gives times obtained by
running the program stable — a sequential version of
parstab. The column parstab gives times obtained by
running parstab on seven Sun workstations. The last
column gives the speedup.

n stable parstab speed up
18 ¿30m 30.5s ¿60
19 ¿12h 44.5s ¿60
20 ¿12h 71.5s ¿60
21 ¿12h 101s ¿60
22 ¿12h 141s ¿60
23 ¿12h ¿12h ?

Table 1: Computing Ramsey number R(4, 5)

n stable parstab speed up
8 10.7s 5.75s 1.86
9 59.7s 22.8s 2.62
10 282.6s 189.0s 1.49
11 1113s 445.1s 2.50
12 ¿30m ¿30m ?

Table 2: n-queens problem

n stable parstab speed up
6 4.38s 1.17s 3.74
7 36.6s 7.02s 5.21
8 317.2s 52.15s 6.08
9 ¿30m ¿30m ?

Table 3: Pigeonhole problem

The results show impressive speedups in the case
of Ramsey numbers. They seem to indicate that the
heuristics of stable (or smodels is not well tuned to
the problem of computing Ramsey numbers. Running
parstab we are searching in parallel in several places of
the search tree in same time. In some of them, few
decided atoms allow us to identify a solution quickly.

In two other examples we ran our algorithms so that
they had to search through the whole search space. The
speedups for the n-queens problem are much lower than
those obtained for the pigeonhole problem. This differ-
ence is almost surely a result of having to report many
models present in the case of the former problem. The
results for the pigeonhole problem are very promising—
they indicate that, if we have few models and not too
many machines, we get asymptotically close to a linear
speedup.

Conclusions and future directions

This is a preliminary report. We are still conducting
experiments. They will be presented and discussed in
the full version of this paper. We will also experiment
with larger clusters of workstations.

In the future, we intend to develop parallel implemen-
tations of the most recent version of smodels including
its choice, cardinality, and weight constraints. We will
also develop parallel implementations of algorithms for
ASP formalisms based on the Message Passing Interface
(MPI) approach.

References

East, D., and Truszczyński, M. 2000a. Datalog with
constraints. Unpublished manuscript.

East, D., and Truszczyński, M. 2000b. Datalog with
constraints. In Proccedings of the Seventeenth Na-
tional Conference on Artificial Intelligence (AAAI-
2000), 163–168.

Eiter, T.; Leone, N.; Mateis, C.; Pfeifer, G.; and
Scarcello, F. 1997. A deductive system for non-
monotonic reasoning. In Logic programming and non-
monotonic reasoning (Dagstuhl, Germany, 1997), vol-
ume 1265 of Lecture Notes in Computer Science, 364–
375. Springer.

Eiter, T.; Leone, N.; Mateis, C.; Pfeifer, G.; and Scar-
cello, F. 1998. A KR system dlv: Progress report,
comparisons and benchmarks. In Proceeding of the
Sixth International Conference on Knowledge Repre-

sentation and Reasoning (KR ’98), 406–417. Morgan
Kaufmann.

Geist, A.; Beguelin, A.; Dongarra, J.; Jiang, W.;
Manchek, R.; and Sunderam, V. 1996. PVM: Par-
allel Virtual Machine. MIT Press, Cambridge, MA.

Gelfond, M., and Lifschitz, V. 1988. The stable seman-
tics for logic programs. In Kowalski, R., and Bowen,
K., eds., Proceedings of the 5th International Confer-
ence on Logic Programming, 1070–1080. Cambridge,
MA: MIT Press.

Marek, W., and Truszczyński, M. 1991. Autoepistemic
logic. Journal of the ACM 38(3):588–619.

Marek, V., and Truszczyński, M. 1999. Stable models
and an alternative logic programming paradigm. In
Apt, K.; Marek, W.; Truszczyński, M.; and Warren,
D., eds., The Logic Programming Paradigm: a 25-Year
Perspective. Springer Verlag. 375–398.

Niemelä, I., and Simons, P. 1997. Smodels — an im-
plementation of the stable model and well-foundd se-
mantics for normal logic programs. In Logic Program-
ming and Nonmonotonic Reasoning (the 4th Interna-
tional Conference, Dagstuhl, Germany, 1997), volume
1265 of Lecture Notes in Computer Science, 420–429.
Springer-Verlag.

Niemelä, I., and Simons, P. 2000. Extending the smod-
els system with cardinality and weight constraints.
In Minker, J., ed., Logic-Based Artificial Intelligence.
Kluwer Academic Publishers.

Niemelä, I. 1999. Logic programming with sta-
ble model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial In-
telligence 25(3-4):241–273.

Simons, P. 1997. Towards constraint satisfaction
through logic programs and the stable model seman-
tics. Technical Report 47, Helsinki University of Tech-
nology, Laboratory for Theoretical Computer Science,
Helsinki, Finland.

Syrjänen, T. 1999. A rule-based formal model for soft-
ware configuration. Technical Report A55, Helsinki
University of Technology, Laboratory for Theoretical
Computer Science, Helsinki, Finland, December 1999.

Van Gelder, A.; Ross, K.; and Schlipf, J. 1991.
The well-founded semantics for general logic programs.
Journal of the ACM 38(3):620–650.

