
Applications of JAVA programming language to database

management

Bradley F. Burton and Victor W. Marek∗

Department of Computer Science

University of Kentucky

Lexington, KY 40506-0046

e-mail: {bfburton|marek}@cs.uky.edu

1 Motivation

The Java programming language [1,3] from its in-
ception has been publicized as a web programming
language. Many programmers have developed sim-
ple applications such as games, clocks, news tickers
and stock tickers in order to create informative, in-
novative web sites. However, it is important to note
that the Java programming language possesses much
more capability. The language components and con-
structs originally designed to enhance the functional-
ity of Java as a web-based programming language can
be utilized in a broader extent. Java provides a devel-
oper with the tools allowing for the creation of innova-
tive network, database, and Graphical User Interface
(GUI) applications. In fact, Java and its associated
technologies such as JDBC API [11,5], JDBC drivers
[2,12], threading [10], and AWT provide the program-
mer with the much-needed assistance for the develop-
ment of platform-independent database-independent
interfaces. Thus, it is possible to build a graphical
database interface capable of connecting and query-
ing distributed databases [13,14].

Here are components that are important for build-
ing the database interface we have in mind.

• JDBC – The Java Database Connectivity module
is a standardized database access solution (JDBC
is packaged in Java 1.1 and later versions).

• Java Threads – The Java programming language
is multithreaded language. It provides multi-
ple threads, light-weight quasi-processes, han-
dling different tasks at the same time.

∗Corresponding author.

• AWT – The abstract window toolkit provides the
ability to build platform-independent graphical
user interfaces.

The combination of the above technologies provides
the fundamental building blocks that we use to de-
velop a distributed database interface. This pack-
age, Java Distributed Query Dispatcher (Java DQD),
is a platform-independent GUI application capable of
querying multiple heterogeneous databases simultane-
ously. JavaDQD is based upon the following ideas:

1. JavaDQD application establishes database con-
nectivity using JDBC API and drivers. By utilizing
the JDBC API, JavaDQD provides uniform access to
any database providing a JDBC driver. That is, a
user may connect to any database for which a JDBC
driver is provided. For our purposes, we will con-
nect to Sybase and MiniSQL using FastForward and
mSQL-JDBC respectively. The mSQL-JDBC driver,
we use, has been modified to implement the desired
DatabaseMetaData functionality. As other JDBC
drivers are developed and become available, JavaDQD
will allow for their incorporation. Thus, JavaDQD is
an extendable tool for multiple database connectivity.

2. JavaDQD interface uses Java threads to allow
a user to connect to multiple databases simultane-
ously. The user can submit query distributed over
multiple databases; hence, when a user requests data
from multiple sources, a Java thread is started for each
database that needs to be queried. Each thread ac-
cepts a query string, queries a database, and accepts
the result. Thus, many databases can be queried at
virtually the same time.

3. JavaDQD uses the AWT and third party GUI
components in providing the capability to present the



user with a QBE-like interface. The QBE-like inter-
face creates a single virtual environment displaying
database information about all current connections.
In essence, the user benefits from a single interface
that can query across multiple databases as if the mul-
tiple databases were one.

Therefore, the technologies typically considered to
enhance Java’s web-based ability provide a basis for
constructing a versatile distributed database inter-
face. JavaDQD application utilizes Java’s AWT and
third party classes to present to the user a QBE-like
graphical interface to query and manipulate a virtual
database consisting of multiple heterogeneous databa-
ses unified by JDBC and Java threads. The following
sections discuss the implementation methodology and
observed results of JavaDQD.

2 Implementation

The JavaDQD application, that we have developed,
incorporates Java and JDBC to manage distributed
database querying and to provide the user a user-
friendly environment to create distributed queries. We
will mention the key ideas or methodology supporting
the implementation of JavaDQD. Namely, we will ex-
plain the key Java and JDBC concepts used, our pre-
vious work with Java and JDBC, and our distributed
querying approach.

2.1 Methodology, Java and JDBC

The Java Development Kit (version 1.1), released in
the Spring of 1997, was used in the development of
the Java code produced in the project. This version
of the JDK does provide (like the previous version) a
Java interpreter and compiler, but most importantly,
the JDK 1.1 provides the Java Database Connectivity
module called JDBC.

The Java programming language developed by Sun-
Soft is an excellent programming language. The
Java language may be described as relatively simple,
object-oriented, distributed, and portable. However,
one of the more important capabilities provided in the
Java language is its capability of producing platform-
independent programs. The Java language provides
an excellent framework for network-aware programs
that can run on any platform that has a Java inter-
preter. A Java program may be developed to run as an
applet, a program that is downloaded over the Internet
and run on the client, or as an application, a program
that resides on the client side. In either case, the Java

programmer has the ability using built-in classes and
methods to access and use remote web space data such
as text, images, or sound in their programs. Similar to
the network capabilities just mentioned, the recent ad-
dition of JDBC allows a Java programmer to connect
and query remote databases using an API supplied in
the JDK. Thus, Java can be viewed as an excellent
database programming language because of platform-
independence, network-awareness, and JDBC.

The development and inclusion of JDBC does ex-
tend the Java programming language capability of net-
work programming. JDBC is a package that has been
recently added to the JDK. JDBC offers a generic SQL
database framework that defines a uniform API for a
variety of data sources. Actually, the JDBC API is
a package of abstract classes that must be defined for
specific database sources. This implies that JDBC can
be viewed from a high-level abstract view or from a
low-level database specific view. A high-level, applica-
tion programmer view of JDBC is an API, called the
JDBC API, that provides methods allowing an appli-
cation to connect, query and manipulate multiple da-
tabases. By contrast, the low-level, database specific
view of JDBC interprets it as a package of abstract
classes that must be implemented for specific data-
bases. That is, a database specific implementation
of the JDBC abstract classes, called a JDBC driver,
must be provided in order for the Java database pro-
grammer to access the database. Once a program-
mer implements a JDBC driver for a particular source,
the driver becomes an abstract SQL engine whose de-
tails are internalized and can be accessed through the
high-level JDBC API. Consequently, a database ap-
plication obtaining database access through the JDBC
API will work with any data source providing a JDBC
driver. For instance, if a programmer developed an ap-
plication powered by the JDBC API, the application
would be able to connect to any data source provid-
ing a JDBC driver, be it Sybase, MiniSQL, or Access.
Thus, JDBC is a powerful, flexible database connec-
tivity module for the Java programming language.

2.2 Previous Work

Prior to developing JavaDQD, we researched Java
and JDBC in order to develop a platform-
independent database-independent database interface
named JavaQD (Java Query Dispatcher). It is a Java
client-side application that allows a user to query mul-
tiple databases by the way of SQL-like interfaces or
QBE-like interfaces. JavaQD was constructed using



the Java language and established database connec-
tivity using JDBC API and JDBC drivers. Most
importantly, the QBE-like interface utilized JDBC
drivers’ capability to probe a database’s metadata.
As a result, JavaQD’s QBE-like interfaces were built
dynamically reflecting information about the current
database connection such as the available tables, avail-
able columns, or available data types. Consequently,
JavaQD provided multiple database access and a user-
friendly query interface.

The JavaQD application did demonstrate the abil-
ity to utilize Java and JDBC to build an effective user
interface for querying many database engines. How-
ever, JavaQD could only manage one database con-
nection at a time. Similar to our JavaQD, non-Java
systems for querying remote databases have been pro-
posed. In particular, the technique for using URLs of
remote databases for connection has been introduced
by Konopnicki and Shmueli in [7]. Their proposed
interface, just as JavaQD, does not allow for simul-
taneous connection to several remote databases. Our
approach solves this problem. Specifically, we realized
JavaQD could be extended to handle multiple simul-
taneous connections; and, therefore, JavaQD could be
migrated to a distributed database interface, which we
call JavaDQD. That is, JavaDQD could query mul-
tiple heterogeneous databases simultaneously. Thus,
the idea for JavaDQD was formed. JavaQD would be
modified to handle distributed databases by utilizing
Java threads and handling pre- and post-processing of
queries.

2.3 Distributed Approach

As stated above, the JavaDQD application was mod-
ified from an earlier work JavaQD in order to han-
dle distributed query processing. Primarily, JavaDQD
implements distributed querying through Java threads
and localized pre- and post-processing. We will out-
line the methodology of the distributed querying in
JavaDQD.

1. Pre-process a user’s query to create query strings.
Query strings needed to query each of the dis-
tributed databases must be determined. These
query strings will obtain data from multiple da-
tabases that ultimately might be included in the
final query result. Similarly, a collection query
string must be constructed to query all the dis-
tributed results.

2. Fork a thread to query each of the distributed da-

tabases that need to be queried. Each thread uses
its given distributed query string to query the ap-
propriate database, gather the result, and then
place the result in a temporary database. The
temporary database is a database used to store
the results of all the databases queried. The
tables within the temporary database will later
be queried using the collection query in order to
obtain the final result. Specifically, each thread
gathers the result from the distributed query, cre-
ates a table in the temporary database to store
the result, and then, the thread populates or
stores the result in the table. It is important to
realize a thread, by utilizing the ResultSetMeta-
Data methods in order to determine data types
and column sizes for the new table, creates a table
within the temporary database.

3. Wait for each thread to finish.

4. Query the temporary database with the collection
query. The temporary database is queried and
the result of the query is displayed to the user in
a window.

The distributed query processing is handled inter-
nally by pre- and post- processing. Thus, a user of
JavaDQD is not required to know information about
the individual database connection. The utilization
of the JDBC API and JDBC drivers allows the dis-
tributed nature of queries be transparent to the user.
Consequently, the JavaDQD interface presents a single
virtual database of distributed databases.

Security issues for JavaDQD are handled by the
JDBC driver. Our application calls the JDBC method
getConnection(). This method facilitates the connec-
tion to the remote server. In particular this implies
that the JDBC driver is responsible for a proper han-
dling of security issues. Thus a user must investigate
the security of JDBC drivers called by JavaDQD since
this affects the JavaDQD security.

3 User-interface

We have described the methodology of the develop-
ment of JavaDQD. However, now, we will address
JavaDQD from a user’s perspective. JavaDQD’s user
interface provides a user with the capability to build
distributed queries in a graphical environment orga-
nizing multiple heterogeneous databases as if they are



one. It is important to note that JavaDQD’s user-
interface does not require the user to know the schema
of the each connected database; JavaDQD probes each
connected database’s metadata in order to determine
knowledge of the database and present the user with
an informative interface. Thus, the user has the abil-
ity to query across multiple databases with the ease
and flexibility accompanied with querying only one
database. In this section, we will give details of spe-
cific elements of the JavaDQD user-interface such as
the connection dialog, create interface, select interface,
and insert interface.

JavaDQD’s database connection dialog provides the
user with the ability to connect to local or remote
distributed databases and the ability to connect to
a temporary database. In order to make a database
connection, a user must provide a database URL and,
if necessary, a user name and password. A database
URL specifies the JDBC driver, the database source,
and the database port. The database URL pictured in
the connection dialog below allows the user to attempt
to make a connection to a miniSQL database server
on the machine, shelley.ca.uky.edu. For instance, the
URL specifies the miniSQL database server is listening
to port 1114 and the connection should make wxdb
(the current remote database) the working database.
Moreover, the database connection dialog allows the
user to enter a user name and password if required.
For simplicity, the collection of an URL and user name
can be saved in the configuration file that is loaded
when JavaDQD is initiated; thus, the user can save
information about frequently accessed databases.

Once a database connection is made, the user can
begin to query the database using dynamically built
QBE interfaces.

The JavaDQD’s QBE-like distributed database in-
terface demonstrates a user-friendly interface that uti-
lizes the knowledge of the database schema. The
QBE-like interfaces incorporate the GUI capabilities
of Java and MCT, Microline Component Toolkit, such
as radio buttons, lists, buttons, grids, and scrollbars.
These capabilities are used to construct interfaces de-
rived from the QBE specification proposed by Zloof
[15] and utilized by IBM. Indeed, the GUI compo-
nents and the ability packaged in the JDBC API to
probe the schema of a database allows the QBE-like
interfaces to be built dynamically after a connection
to a database is established. Therefore, the QBE-like
interfaces do show the database-independent ability
of JDBC. The QBE-like interfaces provided in the
JavaDQD application are create, drop, select, insert,

update, and delete 1. We will detail the create, insert,
and select interfaces.

The QBE create interface provides the user with the
ability to create a new table in a database. The create

interface has three main components. First, the create

interface provides a selection list that provides a list
of all the current databases. The user must select a
database in which the new table will created. Second,
the create interface provides a text field to enter the
new table name. Third, the interface provides a grid
in which one can define the columns of the table. One
can define the column name, pick a supported data
type, and a column length. The supported data types
are determined dynamically by probing the schema of
the selected database. The QBE create interface is
shown below.

The QBE select interface allows the user to select
data from the distributed database. This data is sub-
sequently presented in a result frame. The QBE se-
lect interface presents a list of available tables from
which data can be selected. The list of available in-
cludes all tables from all current database connections.
One should note that we choose to identify tables by
database URL and table name (refer to sample select

interface below). Once a user chooses a table, a select
grid is constructed to designate the criteria the re-
sult data must adhere to. The user can specify which
columns will be displayed by the checking a column in
the view row. Also, a user can specify an example of
what a returned row of data should be. The user can
express a column value to be =, <,>,≤,≥, LIKE, or
<> a literal value; a literal value is a character string
or a numeric value. The expression criteria placed
in one row constitute a conjunctive clause, and crite-
ria placed in separate rows constitute a disjunction of
conjunctive clauses. Lastly, once a user chooses two or
more tables from the available list, a join item row is
present. The join item row provides a series of radio
buttons to specify the columns to join tables. One can
select one column from each table, and the selected
columns signify equal column values. Thus, one does
have the ability to join multiple tables on one column
value. Admittedly, this is a limitation; however, us-
ing the concept of radio buttons and with additional
join item rows, one can construct a conjunction of join
items and achieve full join functionality.

The QBE insert interface provides the user with the
ability to insert a new row into a table. The insert in-
terface presents a list of available tables to insert into.

1Space restrictions permit us to show only few screens.



Create interface

Again, the list of tables includes all tables from all
current database connections, and the tables are iden-
tified by database URL and table name. Once a table
is chosen, a grid is displayed with the columns and
cells to enter the new data. The QBE insert interface
is displayed below.

As should be clear from the above discussion,
JavaDQD’s interface provides the user with a friendly,
informative interface that can be used with many
data sources. The QBE-like interfaces, most impor-
tantly, demonstrate the database-independent ability
of the Java programming language and the JDBC
API. The project demonstrates that the JDBC API
can be used to generate platform-independent dis-
tributed database interfaces. It is clear that Java GUI
capabilities can be used to build better database in-
terfaces. The consequences of the Java and JDBC
combination allow for further development and will
be a subject of database research in years to come.

4 Results

The work described above on the JavaDQD applica-
tion demonstrates the feasibility of using Java and
JDBC in developing distributed database interfaces.

In our final remarks, we will critically consider the
accomplishments and restrictions of JavaDQD as well
as the current state and future of the technologies uti-
lized in the development of JavaDQD. Several conclu-
sions drawn from the development of JavaDQD are
JavaDQD is a prototype distributed database inter-
face, Java threads provided an efficient mechanism in
distributed query processing, and Java’s AWT and
third party classes were useful in developing a user-
friendly QBE-like database interface. The conclusions
are presented below:

• JavaDQD database interface should be character-
ized as a prototype Java distributed database in-
terface. JavaDQD has been successfully tested
querying remote MiniSQL databases located on
different machines using the modified mSQL-
JDBC driver. It is important to note since the
JavaDQD interface handles database connectivity
using the JDBC API. The test does signify that
JavaDQD can be utilized to query any database
providing a JDBC driver. That is, JavaDQD can
query Sybase, Oracle, Informix, and other data-
bases providing a JDBC driver that implements
the minimal set of classes and methods used by
JavaDQD. Thus, JavaDQD is an extendable dis-



Insert interface

tributed database interface.

• JavaDQD effectively queries multiple databases
by Java threads. The JavaDQD application does
handle the network connections and query pro-
cessing by the way of Java threads. The Java
threads, when given a query string, submit the
query to the desired database and collect the
results. By handling the multiple queries in
threads, one achieves an advantage of querying
multiple databases virtually simultaneously not
sequentially. Therefore, JavaDQD’s utilization of
threads greatly enhance the performance of dis-
tributed database processing.

• The combination of JDBC, Java threads, AWT,
and third-party classes facilitates the ability to
develop a QBE-like interface presenting a vir-
tual database. The interface presented to the
user transparently organizes the multiple connec-
tions utilizing database metadata information to
present the user a friendly, informative interface.
JDBC DatabaseMetaData class is used to query
each connection’s available tables, columns, and
data types. The resulting metadata is used to es-
tablish an environment displaying multiple het-

erogeneous databases as if they were one. Con-
sequently, the user can query multiple databases
just as he or she queries one database. Thus, the
JavaDQD interface can be used to query multi-
ple databases located on different machines and
stored in different database engines.

Just as we stated some conclusions above, we also
need to state restrictions involved in using JavaDQD
to query distributed databases. The JDBC drivers
and temporary databases utilized in conjunction with
JavaDQD must be considered carefully. The restric-
tions are stated below.

• JDBC drivers used with JavaDQD must im-
plement a minimal set of classes and meth-
ods. The JavaDQD application relies on JDBC
classes and methods implemented in a JDBC
driver for database connectivity; thus, in order
for JavaDQD to connect to a particular database
engine, a JDBC driver must exist for the database
implementing all classes and methods utilized by
JavaDQD. In particular, JDBC drivers accessed
by the JavaDQD application must implement at
least the following classes and methods:

• The temporary database must be the greatest



Classes Methods

Connection close(), getMetaData(),
createStatement(), getConnection()

Statement execute(), executeUpdate()
DatabaseMetaData getTables(), getColumns(),

getTypeInfo()
ResultSet getMetaData(), getString(), next()
ResultSetMetaData getColumnCount(),

getColumnDisplaySize(),
getColumnTypeName(),
getTableName(),
getColumnName()

common denominator of all databases involved in
a distributed select query. That is, all the pos-
sible data types from all databases involved in
the query must be available in the system serving
as a basis for temporary storage. The tempo-
rary database is managed by JavaDQD to store
results of each distributed database queried and
to obtain the final query result. Since the tem-
porary database must store the results from all
distributed database queries, it must provide all
the data types that are possible in the results.
Therefore, the temporary database should be the
greatest common denominator of the distributed
databases queried.

Similarly, a JDBC driver (if fully compliant) al-
lows the user to submit the queries in SQL-92
standard. This does not imply that the remote
server must support the SQL-92 natively. What is
implied is that the JDBC driver must implement
a mechanism for conversion of SQL-92 queries
into the remote database query language. In par-
ticular, we are trusting the JDBC driver for each
particular remote database to be correctly imple-
mented (which is not always the case, see con-
clusions below). Moreover, JDBC does not sup-
port types beyond SQL-92 standard. Thus, even
if the remote database supports additional types
JavaDQD will not be able to handle these types.

In addition to reporting the specific results and
facts, the research and implementation of JavaDQD
lead us to draw several conclusions about the current
state and future of Java and JDBC technologies.

1. The JDBC API, currently, is a versatile interface
for distributed database connectivity. Java facil-
itates platform-independence in addition to the
JDBC API being a standardized set of abstract
methods, which define database access in Java.

Thus, by using Java and JDBC, JavaDQD is a
platform-independent application that possesses
the ability to connect, query, and manipulate any
database in, which provides a JDBC driver im-
plementing the minimal set of methods needed
by JDBC.

2. The reality, however, of the current state of JDBC
drivers is not satisfactory. Many JDBC drivers
are in an immature stage. That is, many are not
JDBC-compliant or do not implement the mini-
mal set needed by JavaDQD. However, one must
realize the immature state of JDBC drivers did
not hinder the development of JavaDQD; it did
restrict the ability to test on multiple database
engines.

3. Java’s AWT and other third party GUI classes
are useful in developing user-friendly platform-
independent interfaces. We conclude that JDBC,
the AWT, and third-party GUI classes provided
an excellent base for developing JavaDQD.

The future potential of Java distributed
database interfaces is very promising. How-
ever, in order for that potential to be real-
ized, several steps need to be taken by database
vendors and developers. First, the capabil-
ity of the JDBC standard must be recognized
and upheld. Secondly, much effort should
be directed toward developing fully compli-
ant JDBC implementations (drivers). If these
steps are achieved, the combination of Java and
JDBC will provide a powerful, versatile tool in
the development of distributed database inter-
faces.



Acknowledgements

We thank Yuri Breitbart for valuable suggestions. Re-
search of the second author has been partially sup-
ported by US ARO grant DAAH 04-96-1-0398.

References

[1] Cornell, G. and Horstmann, C., Core Java,
SunSoft Press, 1996.
[2] FastForward JDBC driver, Connect Software, Six
months educational license.
[3] Flannagan, D. Java in a Nutshell, Reilly &
Associates, 1996.
[4] Java Development Kit. http://www.javasoft.com.
[5] Jepson, B., Database Conncetivity: The Lure of
Java, Java Report, 1997.
[6] JDBC Specifications, JavaSoft.
http://splash.jacasoft.com/jdbc/index.html, 1996.
[7] Konopnicki, D., Shmueli, O., W3QS: A Query
System for the WWW, VLDB-95.
http://www.cs.technion.ac.il/
k̃onop/w3qs.html#publications
[8] Microline Component Toolkit, Microline Software.
http://www.neurondata.com/index2.html, Free lite
ed. license, 1997.
[9] MiniSQL, Hughes Techn. http://Hughes.com.au,
1997.
[10] Oaks S., Wong, H., Java Threads, O’Reilly,
1997. [11] Patel, P., and Moss, K., Java Database
Programming with JDBC, Coriolis Group Book,
1996.
[12] Reese, G., mSQL-JDBC driver, Center for Imag.
Environments,
http://www.imaginary.com, 1997.
[13] Silberschatz, A., Korth, H.F. and Sudarshan,
S., Database System Concepts, McGraw-Hill, 1997.
[14] Ullman, J. Database and Knowledge-Base Sys-
tems, Computer Science Press, 1988.
[15] Zloof, M.M., Query-by Example: a database
language, IBM System Journal 16: 324–343, 1977.


