
Annotated revision programs

Victor Marek Inna Pivkina Miros law Truszczyński

Department of Computer Science,
University of Kentucky,

Lexington, KY 40506-0046
marek|inna|mirek@cs.engr.uky.edu

Abstract

Revision programming is a formalism to describe and enforce updates of belief sets and
databases. That formalism was extended by Fitting who assigned annotations to revision
atoms. Annotations provide a way to quantify the confidence (probability) that a revision
atom holds. The main goal of our paper is to reexamine the work of Fitting, argue that
his semantics does not always provide results consistent with intuition, and to propose
an alternative treatment of annotated revision programs. Our approach differs from that
proposed by Fitting in two key aspects: we change the notion of a model of a program
and we change the notion of a justified revision. We show that under this new approach
fundamental properties of justified revisions of standard revision programs extend to the
annotated case.

1 Introduction

Revision programming is a formalism to specify and enforce constraints on databases, belief
sets and, more generally, on arbitrary sets. Revision programming was introduced and studied
in [MT95, MT98]. The formalism was shown to be closely related to logic programming
with stable model semantics [MT98, PT97]. In [MPT99], a simple correspondence of revision
programming with the general logic programming system of Lifschitz and Woo [LW92] was
discovered. Roots of another recent formalism of dynamic logic programming [ALP+98] can
also be traced back to revision programming.

(Unannotated) revision rules come in two forms of in-rules and out-rules:

in(a)← in(a1), . . . , in(am),out(b1), . . . ,out(bn) (1)

and
out(a)← in(a1), . . . , in(am),out(b1), . . . ,out(bn). (2)

Expressions in(a) and out(a) are called revision atoms. Informally, the atom in(a) stands for
“a is in the current set” and out(a) stands for “a is not in the current set.” The rules (1)
and (2) have the following interpretation: whenever all elements ak, 1 ≤ k ≤ m, belong to the
current set (database, belief set) and none of the elements bl, 1 ≤ l ≤ n, belongs to the current
set then, in the case of rule (1), the item a should be in the revised set, and in the case of rule
(2), a should not be in the revised set.

1

To provide a precise semantics to revision programs (collections of revision rules), the
concept of a justified revision was introduced in [MT95, MT98]. Informally, given an initial
set BI and a revision program P , a justified revision of BI with respect to P (or, simply, a
P -justified revision of BI) is obtained from BI by adding some elements to BI and by removing
some other elements from BI so that each change is, in a certain sense, justified.

The formalism of revision programs was extended by Fitting [Fit95] to the case when
revision atoms occurring in rules are assigned annotations. Such annotation can be interpreted
as the degree of confidence that a revision atom holds. For instance, an annotated atom
(in(a) :0.2) can be regarded as the statement that a is in the set with the probability 0.2.
Thus, annotated atoms and annotated revision programs can be used to model situations
when membership status of atoms (whether they are “in” or “out”) is not precisely known and
when constraints reflect this imprecise knowledge. In his work, Fitting defined the concept of
an annotated revision program, described the concept of a justified revision of a database by
an annotated revision program, and studied properties of that notion.

The annotations do not have to be numeric. In fact they may come from any set. It is
natural, though, to assume that the set of annotations has a mathematical structure of a com-
plete distributive lattice. Such lattices allow us to capture within a single algebraic formalism
different intuitions associated with annotations. For instance, annotations expressing probabil-
ities [NS94]), possibilistic annotations [vE86], and annotations in terms of opinions of groups
of experts [Fit95] can all be regarded as elements of certain complete and distributive lattices.
The general formalism of lattice-based annotations was studied by Kifer and Subrahmanian
[KS92] but only for logic programs without negations.

In the setting of logic programs, an annotation describes the probability (or the degree of
belief) that an atom is implied by a program or, that it is “in” a database. The closed world
assumption then implies the probability that an atom is “out”. Annotations in the context
of revision programs provide us with richer descriptions of the status of atoms. Specifically, a
possible interpretation of a pair of annotated revision literals (in(a) : α) and (out(a) : β) is
that our confidence in a being in a database is α and that, in the same time, our confidence
that a does not belong to the database is β. Annotating atoms with pairs of annotations allows
us to model incomplete and contradictory information about the status of an atom.

Thus, in annotated revision programming the status of an atom a is, in fact, given by
a pair of annotations. Therefore, in this paper we will consider, in addition to a lattice of
annotations, which we will denote by T , the product of T by itself — the lattice T 2. There
are two natural orderings on T 2. We will use one of them, the knowledge ordering, to compare
the degree of incompleteness (or degree of contradiction) of the pair of annotations describing
the status of an atom.

The main goal of our paper is to reexamine the work of Fitting, argue that his semantics
does not always provide results consistent with intuition, and to propose an alternative treat-
ment of annotated revision programs. Our approach differs from that proposed by Fitting in
two key aspects: we use the concept of an s-model which is a refinement of the notion of a
model of a program, and we change the notion of a justified revision. We show that under
this new approach fundamental properties of justified revisions of standard revision programs
extend to the case of annotated revision programs.

Here is a short description of the content and the contributions of our paper. In Section
2, we introduce annotated revision programs, provide some examples and discuss underlying

2

motivations. We define the concepts of a valuation of a set of revision atoms in a lattice of
annotations T and of a valuation of a set of (ordinary) atoms in the corresponding product
lattice T 2. We also define the knowledge ordering on T 2 and on valuations of atoms in T 2.

Given an annotated revision program, we introduce the notion of the operator associated
with the program. This operator acts on valuations in T 2 and is analogous to the van Emden-
Kowalski operator for logic programs [vEK76]. It is monotone with respect to the knowledge
ordering and allows us to introduce the notion of the necessary change entailed by an annotated
revision program.

In Section 3, we introduce one of the two main concepts of this paper, namely that of an
s-model of a revision program. Models of annotated revision programs may be inconsistent.
In the case of an s-model, if it is inconsistent, its inconsistencies are explicitly or implicitly
supported by the program and the model itself. We contrast the notion of an s-model with
that of a model. We show that in general the two concepts are different. However, we also
show that under the assumption of consistency they coincide.

In Section 4, we define the notion of a justified revision of an annotated database by an
annotated revision program P . Such revisions are referred to as P -justified revisions. They
are defined so as to generalize justified revisions of [MT95, MT98].

Justified revisions considered here are different from those introduced by Fitting in [Fit95].
We provide examples that show that Fitting’s concept of a justified revision fails to satisfy some
natural postulates and argue that our proposal more adequately models intuitions associated
with annotated revision programs. In the same time, we provide a complete characterization
of those lattices for which both proposals coincide. In particular, they coincide in the standard
case of revision programs without annotations.

We study the properties of justified revisions in Section 5. We show that annotated revision
programs with the semantics of justified revisions generalize revision programming as intro-
duced and studied in [MT95, MT98]. Next, we show that P -justified revisions are s-models
of the program P . Thus, the concept of an s-model introduced in Section 2 is an appropriate
refinement of the notion of a model to be used in the studies of justified revisions. Further,
we prove that P -justified revisions decrease inconsistency and, consequently, that a consistent
model of a program P is its own unique P -justified revision.

Throughout the paper we adhere to the syntax of annotated revision programs proposed by
Fitting in [Fit95]. This syntax stems naturally from the syntax of ordinary revision programs
introduced in [MT95, MT98] and allows us to compare directly our approach with that of
Fitting. However, in Section 6, we propose and study an alternative syntax for annotated
revision programs. In this new syntax (ordinary) atoms are annotated by elements of the
product lattice T 2. Using this alternative syntax, we obtain an elegant generalization of the
shifting theorem of [MPT99].

In Section 7, we provide a brief account of some miscellaneous results on annotated revision
programs. In particular, we discuss the case of programs with disjunctions in the heads and
the case when the lattice of annotations is not distributive.

2 Preliminaries

We will start with an example that illustrates main notions and a possible use of annotated
revision programming. Formal definitions will follow.

3

Example 2.1 A group of experts is about to discuss a certain proposal and then vote whether
to accept or reject it. Each person has an opinion on the proposal that may be changed during
the discussion as follows:

- any person can convince an optimist to vote for the proposal,

- any person can convince a pessimist to vote against the proposal.

The group consists of two optimists (Ann and Bob) and one pessimist (Pete). We want to
be able to answer the following question: given everybody’s opinion on the subject before the
discussion, what are the possible outcomes of the vote?

Assume that before the vote Pete is for the proposal, Bob is against, and Ann is indifferent
(has no arguments for and no arguments against the proposal). This situation can be described
by assigning to atom “accept” the annotation 〈{Pete}, {Bob}〉, where the first element of the
pair is the set of experts who have arguments for the acceptance of the proposal and the second
element is the set of experts who have arguments against the proposal. In the formalism of
annotated revision programs, as proposed by Fitting in [Fit95], this initial situation is described
by a function that assigns to each atom in the language (in this example there is only one atom)
its annotation. In our example, this function is given by: BI(accept) = 〈{Pete}, {Bob}〉. (Let
us mention here that in general, sets of experts in an annotation need not to be disjoint. An
expert may have arguments for and against the proposal at the same time. In such a case the
expert is contradictory.)

The ways in which opinions may change are described by the following annotated revision
rules:

(in(accept):{Ann}) ← (in(accept):{Bob})
(in(accept):{Ann}) ← (in(accept):{Pete})

(in(accept):{Bob}) ← (in(accept):{Ann})
(in(accept):{Bob}) ← (in(accept):{Pete})

(out(accept):{Pete}) ← (out(accept):{Ann})

(out(accept):{Pete}) ← (out(accept):{Bob})

The first rule means that if Bob accepts the proposal, then Ann should accept the proposal, too,
since she will be convinced by Bob. Similarly, the second rule means that if Pete has arguments
for the proposal, then he will be able to convince Ann. These two rules describe Ann being an
optimist. The remaining rules follow as Bob is an optimist and Pete is a pessimist.

Possible outcomes of the vote are given by justified revisions. In this particular case there are
two justified revisions of the initial database BI . They are BR(accept) = 〈{Ann,Bob, Pete}, {}〉
and B′

R(accept) = 〈{}, {Bob, Pete}〉. The first one corresponds to the case when the proposal
is accepted (Ann, Bob and Pete all voted for). This outcome happens if Pete convinces Bob
and Ann to vote for. The second revision corresponds to the case when Bob and Pete voted
against the proposal (Ann remained indifferent and did not vote). This outcome happens if
Bob convinces Pete to change his opinion.

Now let us move on to formal definitions. Throughout the paper we consider a fixed universe
U whose elements are referred to as atoms. In the above example U = {accept}. Expressions

4

of the form in(a) and out(a), where a ∈ U , are called revision atoms. In the paper we assign
annotations to revision atoms. These annotations are members of a complete distributive lattice
with the de Morgan complement (an order reversing involution). Throughout the paper this
lattice is denoted by T . The partial ordering on T is denoted by ≤ and the corresponding
meet and join operations by ∧ and ∨, respectively. The de Morgan complement of a ∈ T is
denoted by a. Let us recall that it satisfies the following two laws (the de Morgan laws):

a ∨ b = a ∧ b, a ∧ b = a ∨ b.

In the example above, T is the set of subsets of the set {Ann,Bob, Pete}, with ⊆ as the
ordering relation, and the set-theoretic complement as the de Morgan complement.

An annotated revision atom is an expression of the form (in(a):α) or (out(a):α), where
a ∈ U and α ∈ T . An annotated revision rule is an expression of the form

p← q1, . . . , qn,

where p, q1, . . . , qn are annotated revision atoms. An annotated revision program is a set of
annotated revision rules.

A T -valuation is a mapping from the set of revision atoms to T . A T -valuation v describes
our information about the membership of the elements from U in some (possibly unknown)
set B ⊆ U . For instance, v(in(a)) = α can be interpreted as saying that a ∈ B with certainty
α. A T -valuation v satisfies an annotated revision atom (in(a):α) if v(in(a)) ≥ α. Similarly,
v satisfies (out(a):α) if v(out(a)) ≥ α. The T -valuation v satisfies a list or a set of annotated
revision atoms if it satisfies each member of the list or the set. A T -valuation satisfies an
annotated revision rule if it satisfies the head of the rule whenever it satisfies the body of the
rule. Finally, a T -valuation satisfies an annotated revision program (is a model of the program)
if it satisfies all rules in the program.

Given an annotated revision program P we can assign to it an operator on the set of all
T -valuations. Let tP (v) be the set of the heads of all rules in P whose bodies are satisfied by
a T -valuation v. We define an operator TP as follows:

TP (v)(l) =
∨

{α|(l:α) ∈ tP (v)}

Here
∨

X is the join of the subset X of the lattice (note that ⊥ is the join of an empty set
of lattice elements). The operator TP is a counterpart of the well-known van Emden-Kowalski
operator from logic programming and it will play an important role in our paper.

It is clear that under T -valuations, the information about an element a ∈ U is given by a
pair of elements from T that are assigned to revision atoms in(a) and out(a). Thus, in the
paper we will also consider an algebraic structure T 2 with the domain T × T and with an
ordering ≤k defined by:

〈α1, β1〉 ≤k 〈α2, β2〉 if α1 ≤ α2 and β1 ≤ β2.

If a pair 〈α1, β1〉 is viewed as a measure of our information about membership of a in some
unknown set B then α1 ≤ α2 and β1 ≤ β2 imply that the pair 〈α2, β2〉 represents higher
degree of knowledge about a. Thus, the ordering ≤k is often referred to as the knowledge

5

or information ordering. Since the lattice T is complete and distributive, T 2 is a complete
distributive lattice with respect to the ordering ≤k

1.
The operations of meet, join, top, and bottom under ≤k are denoted ⊗, ⊕, ⊤, and ⊥,

respectively. In addition, we make use of the conflation operation. Conflation is defined as
−〈α, β〉 = 〈β, α〉. An element A ∈ T 2 is consistent if A ≤k −A. In other words, an element
〈α, β〉 ∈ T 2 is consistent if α is smaller than or equal to the complement of β (the evidence
“for” is less than or equal than the complement of the evidence “against”) and β is smaller
than or equal to the complement of α (the evidence “against” is less than or equal than the
complement of the evidence “for”).

The conflation operation satisfies the de Morgan laws:

−(〈α, β〉 ⊕ 〈γ, δ〉) = −〈α, β〉 ⊗ −〈γ, δ〉,

−(〈α, β〉 ⊗ 〈γ, δ〉) = −〈α, β〉 ⊕ −〈γ, δ〉,

where α, β, γ, δ ∈ T .
A T 2-valuation is a mapping from atoms to elements of T 2. If B(a) = 〈α, β〉 under some

T 2-valuation B, we say that under B the element a is in a set with certainty α and it is not
in the set with certainty β. We say that a T 2-valuation is consistent if it assigns a consistent
element of T 2 to every atom in U .

In this paper, T 2-valuations will be used to represent current information about sets
(databases) as well as the change that needs to be enforced. Let B be a T 2-valuation repre-
senting our knowledge about a certain set and let C be a T 2-valuation representing change
that needs to be applied to B. We define the revision of B by C, say B′, by

B′ = (B ⊗−C)⊕ C.

The intuition is as follows. After the revision, the new valuation must contain at least as much
knowledge about atoms being in and out as C. On the other hand, this amount of knowledge
must not exceed implicit bounds present in C and expressed by −C, unless C directly implies
so. In other words, if C(a) = 〈α, β〉, then evidence for in(a) must not exceed β̄ and the evidence
for out(a) must not exceed ᾱ, unless C directly implies so. Since we prefer explicit evidence
of C to implicit evidence expressed by −C, we perform the change by first using −C and then
applying C. However, let us note here that the order matters only if C is inconsistent; if C is
consistent, (B ⊗−C)⊕C = (B ⊕ C)⊗−C. This specification of how the change modeled by
a T 2-valuation is enforced plays a key role in our definition of justified revisions in Section 4.

There is a one-to-one correspondence θ between T -valuations (of revision atoms) and T 2-
valuations (of atoms). For a T -valuation v, the T 2-valuation θ(v) is defined by: θ(v)(a) =
〈v(in(a)), v(out(a))〉. The inverse mapping of θ is denoted by θ−1. Clearly, by using the
mapping θ, the notions of satisfaction defined earlier for T -valuations can be extended to T 2-
valuations. Similarly, the operator TP gives rise to a related operator T bP . The operator T bP is
defined on the set of all T 2-valuations by T bP = θ ◦ TP ◦ θ

−1. The key property of the operator
T bP is its ≤k-monotonicity.

1There is another ordering that can be associated with T 2. We can define 〈α1, β1〉 ≤t 〈α2, β2〉 if α1 ≤ α2

and β1 ≥ β2. This ordering is often called the truth ordering. Since T is a complete distributive lattice, T 2

with both orderings ≤k and ≤t forms a complete distributive bilattice (see [Gin88, Fit00] for a definition). In
this paper we will not use the ordering ≤t nor the fact that T 2 is a bilattice.

6

Theorem 2.2 Let P be an annotated revision program and let B and B′ be two T 2-valuations
such that B ≤k B

′. Then, T bP (B) ≤k T
b
P (B′).

By Tarski-Knaster Theorem [Tar56] it follows that the operator T bP has a least fixpoint in
T 2 (see also [KS92]). This fixpoint is an analogue of the concept of a least Herbrand model
of a Horn program. It represents the set of annotated revision atoms that are implied by
the program and, hence, must be satisfied by any revision under P of any initial valuation.
Given an annotated revision program P we will refer to the least fixpoint of the operator
T bP as the necessary change of P and will denote it by NC(P). The present concept of the
necessary change generalizes the corresponding notion introduced in [MT95, MT98] for the
original unannotated revision programs.

To illustrate concepts and results of the paper, we will consider two special lattices. The
first of them is the lattice with the domain [0, 1] (interval of reals), with the standard ordering
≤, and the standard complement operation ᾱ = 1 − α. We will denote this lattice by T[0,1].
Intuitively, the annotated revision atom (in(a):x), where x ∈ [0, 1], stands for the statement
that a is “in” with likelihood (certainty) x.

The second lattice is the Boolean algebra of all subsets of a given set X. It will be denoted
by TX . We will think of elements from X as experts. The annotated revision atom (out(a):Y),
where Y ⊆ X, will be understood as saying that a is believed to be “out” by those experts
that are in Y (the atom (in(a):Y) has a similar meaning).

3 Models and s-models

The semantics of annotated revision programs will be based on the notion of a model, as
defined in the previous section, and on its refinements. The first two results describe some
simple properties of models of annotated revision programs. The first of them characterizes
models in terms of the operator T bP .

Theorem 3.1 Let P be an annotated revision program. A T 2-valuation B is a model of P
(satisfies P) if and only if B ≥k T

b
P (B).

Models of annotated revision programs are closed under meets. This property is analogous
to a similar property holding for models of Horn programs. Indeed, since B1 ⊗ B2 ≤k Bi,
i = 1, 2, and T bP is ≤k-monotone, by Theorem 3.1 we obtain

T bP (B1 ⊗B2) ≤k T
b
P (Bi) ≤k Bi, i = 1, 2.

Consequently,
T bP (B1 ⊗B2) ≤k B1 ⊗B2.

Thus, again by Theorem 3.1 we obtain the following result.

Corollary 3.2 The meet of two models of an annotated revision program P is also a model
of P .

7

Given an annotated revision program P , its necessary change NC(P) satisfies NC(P) =
T bP (NC(P)). Hence, NC(P) is a model of P .

As we will now argue, not all models are appropriate for describing the meaning of an
annotated revision program. The problem is that T 2-valuations may contain inconsistent
information about elements from U . When studying the meaning of an annotated revision
program we will be interested in those models only whose inconsistencies are limited to those
explicitly or implicitly supported by the program and by the model itself.

Consider the program P = {(in(a):{q}) ←} (where the annotation {q} comes from the
lattice T{p,q}). This program asserts that a is “in”, according to expert q. By closed world
assumption, it also implies an upper bound for the evidence for out(a). In this case the only
expert that might possibly believe in out(a) is p (this is to say that expert q does not believe
in out(a)). Observe that a T 2-valuation B, such that B(a) = 〈{q}, {q}〉 is a model of P but
it does not satisfy the implicit bound on evidence for out(a).

Let P be an annotated program and let B be a T 2-valuation that is a model of P . By
the explicit evidence we mean evidence provided by heads of program rules applicable with
respect to B, that is with bodies satisfied by B. It is T bP (B). The implicit information is given
by a version of the closed world assumption: if the maximum evidence for a revision atom
l provided by the program is α then, the evidence for the dual revision atom lD (out(a), if
l = in(a), or in(a), otherwise) must not exceed ᾱ (unless explicitly forced by the program).
Thus, the implicit evidence is given by −T bP (B). Hence, a model B of a program P contains
no more evidence than what is directly implied by P given B and what is indirectly implied
by P given B if B ≤k T

b
P (B)⊕ (−T bP (B)) (since the direct evidence is given by T bP (B) and the

implicit evidence is given by −T bP (B)). This observation leads us to a refinement of the notion
of a model of an annotated revision program.

Definition 3.3 Let P be an annotated revision program and let B be a T 2-valuation. We say
that B is an s-model of P if

T bP (B) ≤k B ≤k T
b
P (B)⊕ (−T bP (B)).

The “s” in the term “s-model” stands for “supported” and emphasizes that inconsistencies
in s-models are limited to those explicitly or implicitly supported by the program and the
model itself.

Clearly, by Theorem 3.1, an s-model of P is a model of P . In addition, it is easy to see
that the necessary change of an annotated program P is an s-model of P (it follows directly
from the fact that NC(P) = T bP (NC(P))).

The distinction between models and s-models appears only in the context of inconsistent
information. This observation is formally stated below.

Theorem 3.4 Let P be an annotated revision program. A consistent T 2-valuation B is an
s-model of P if and only if B is a model of P .

Proof. (⇒) Let B be an s-model of P . Then, T bP (B) ≤k B ≤k T bP (B) ⊕ (−T bP (B)). In
particular, T bP (B) ≤k B and, by Theorem 3.1, B is a model of P .
(⇐) Let B satisfy P . From Theorem 3.1 we have T bP (B) ≤k B. Hence, −B ≤k −T

b
P (B). Since

B is consistent, B ≤k −B. Therefore,

T bP (B) ≤k B ≤k −B ≤k −T
b
P (B). (3)

8

It follows that T bP (B) ≤k −T
b
P (B) and T bP (B)⊕ (−T bP (B)) = −T bP (B). By (3), we get

T bP (B) ≤k B ≤k T
b
P (B)⊕ (−T bP (B))

and the assertion follows. 2

Some of the properties of ordinary models hold for s-models, too. For instance, the following
theorem shows that an s-model of two annotated revision programs is an s-model of their union.

Theorem 3.5 Let P1, P2 be annotated revision programs. Let B be an s-model of P1 and an
s-model of P2. Then, B is an s-model of P1 ∪ P2.

Proof. Clearly, B is a model of P1 ∪ P2. That is,

T bP1∪P2
(B) ≤k B. (4)

It is easy to see that T bP1∪P2
(B) = T bP1

(B)⊕ T bP2
(B). Hence, by the de Morgan law,

−T bP1∪P2
(B) = −T bP1

(B)⊗−T bP2
(B).

By the definition of an s-model:

T bP1
(B) ≤k B ≤k T

b
P1

(B)⊕−T bP1
(B), and

T bP2
(B) ≤k B ≤k T

b
P2

(B)⊕−T bP2
(B).

Therefore, by the distributivity of lattice operations in T 2,

B ≤k (T bP1
(B)⊕−T bP1

(B))⊗ (T bP2
(B)⊕−T bP2

(B)) =

= (T bP1
(B)⊗ (T bP2

(B)⊕−T bP2
(B)))⊕ (−T bP1

(B)⊗ (T bP2
(B)⊕−T bP2

(B))) ≤k

≤k T
b
P1

(B)⊕ (−T bP1
(B)⊗ T bP2

(B))⊕ (−T bP1
(B)⊗−T bP2

(B)) ≤k

≤k T
b
P1

(B)⊕ T bP2
(B)⊕−T bP1∪P2

(B) = T bP1∪P2
(B)⊕−T bP1∪P2

(B).

In other words,
B ≤k T

b
P1∪P2

(B)⊕−T bP1∪P2
(B). (5)

From (4) and (5) it follows that B is an s-model of P1 ∪ P2. 2

However, not all of the properties of models hold for s-models. For instance, the counterpart
of Corollary 3.2 does not hold. The following example shows that the meet of two s-models is
not necessarily an s-model.

Example 3.6 Consider the lattice T{p,q}. Let P be an annotated program consisting of the
following rules:

(in(a):{p}) ← (in(b):{p})

(out(a):{p}) ←

(in(a):{p}) ← (out(b):{p})

9

Let B1 and B2 be defined as follows.

B1(a) = 〈{p}, {p}〉, B1(b) = 〈{p}, ∅〉;

B2(a) = 〈{p}, {p}〉, B2(b) = 〈∅, {p}〉.

It is easy to check that both B1 and B2 are s-models of P . However, B1⊗B2 is not an s-model
of P . Indeed,

(B1 ⊗B2)(a) = 〈{p}, {p}〉, (B1 ⊗B2)(b) = 〈∅, ∅〉.

Then,
T bP (B1 ⊗B2)(a) = 〈∅, {p}〉, T bP (B1 ⊗B2)(b) = 〈∅, ∅〉, and

−T bP (B1 ⊗B2)(a) = 〈{q}, {p, q}〉, −T bP (B1 ⊗B2)(a) = 〈{p, q}, {p, q}〉.

Hence,
(B1 ⊗B2)(a) 6≤ (T bP (B1 ⊗B2)⊕−T

b
P (B1 ⊗B2))(a) = 〈{q}, {p, q}〉.

Therefore, B1 ⊗B2 is not an s-model of P .

In this example both B1 and B2, as well as their meet B1 ⊗ B2 are inconsistent. For B1 and
B2 there are rules in P that explicitly imply their inconsistencies. However, for B1 ⊗ B2 the
bodies of these rules are no longer satisfied. Consequently, the inconsistency in B1⊗B2 is not
implied by P . That is, B1 ⊗B2 is not an s-model of P .

4 Justified revisions

In this section, we will extend to the case of annotated revision programs the notion of a justified
revision introduced for revision programs in [MT95]. The reader is referred to [MT95, MT98]
for the discussion of motivation and intuitions behind the concept of a justified revision and
of the role of the inertia principle (a version of the closed world assumption).

There are several properties that one would expect to hold when the notion of justified
revision is extended to the case of programs with annotations. Clearly, the extended concept
should specialize to the original definition if annotations are dropped. Next, main properties
of justified revisions studied in [MT98, MPT99] should have their counterparts in the case of
justified revisions of annotated programs. In particular, justified revisions of an annotated
revision program should be models of the program.

There is one other requirement that naturally arises in the context of programs with anno-
tations. Consider two annotated revision rules r and r′ that are exactly the same except that
the body of r contains two annotated revision atoms (l:β1) and (l:β2), while the body of r′

instead of (l:β1) and (l:β2) contains annotated revision atom (l:β1 ∨ β2).

r = . . .← . . . , (l:β1), . . . , (l:β2), . . .

r′ = . . .← . . . , (l:β1 ∨ β2), . . .

We will refer to this operation as the join transformation.
It is clear, that a T 2-valuation B satisfies (l : β1) and (l : β2) if and only if B satisfies

(l:β1 ∨ β2). Consequently, replacing rule r by rule r′ (or vice versa) in an annotated revision

10

program should have no effect on justified revisions. In fact, any reasonable semantics for
annotated revision programs should be invariant under such operation, and we will refer to
this property of a semantics of annotated revision programs as invariance under join.

Now we introduce the notion of the justified revision of an annotated revision program and
contrast it with an earlier proposal by Fitting [Fit95]. In the following section we show that
our concept of a justified revision satisfies all the requirements listed above.

Let a T 2-valuation BI represent our current knowledge about some subset of the universe
U . Let an annotated revision program P describe an update that BI should be subject to.
The goal is to identify a class of T 2-valuations that could be viewed as representing updated
information about the subset, obtained by revising BI by P . As argued in [MT95, MT98], each
appropriately “revised” valuation BR must be grounded in P and in BI , that is, any difference
between BI and the revised T 2-valuation BR must be justified by means of the program and
the information available in BI .

To determine whether BR is grounded in BI and P , we use the reduct of P with respect
to these two valuations. The construction of the reduct consists of two steps and mirrors the
original definition of the reduct of an unannotated revision program [MT98]. In the first step,
we eliminate from P all rules whose bodies are not satisfied by BR (their use does not have
an a posteriori justification with respect to BR). In the second step, we take into account the
initial valuation BI .

How can we use the information about the initial T 2-valuation BI at this stage? Assume
that BI provides evidence α for a revision atom l. Assume also that an annotated revision
atom (l:β) appears in the body of a rule r. In order to satisfy this premise of the rule, it is
enough to derive, from the program resulting from step 1, an annotated revision atom (l:γ),
where α ∨ γ ≥ β. The least such element exists (due to the fact that T is complete and
distributive). Let us denote this value by pcomp(α, β)2.

Thus, in order to incorporate information about a revision atom l contained in the initial
T 2-valuation BI , which is given by α = (θ−1(BI))(l), we proceed as follows. In the bodies
of rules of the program obtained after step 1, we replace each annotated revision atom of the
form (l:β) by the annotated revision atom (l:pcomp(α, β)).

Now we are ready to formally introduce the notion of reduct of an annotated revision
program P with respect to the pair of T 2-valuations, initial one, BI , and a candidate for a
revised one, BR.

Definition 4.1 The reduct PBR
|BI is obtained from P by

1. removing every rule whose body contains an annotated atom that is not satisfied in BR,

2. replacing each annotated atom (l:β) from the body of each remaining rule by the annotated
atom (l:γ), where γ = pcomp((θ−1(BI))(l), β).

We now define the concept of a justified revision. Given an annotated revision program P ,
we first compute the reduct PBR

|BI of the program P with respect to BI and BR. Next, we
compute the necessary change for the reduced program. Finally we apply this change to the
T 2-valuation BI . A T 2-valuation BR is a justified revision of BI if the result of these three
steps is BR. Thus we have the following definition.

2The operation pcomp(·, ·) is known in the lattice theory as the relative pseudocomplement, see [RS70].

11

Definition 4.2 BR is a P -justified revision of BI if BR = (BI ⊗ −C) ⊕ C, where C =
NC(PBR

|BI) is the necessary change for PBR
|BI .

We will now contrast this approach with the one proposed by Fitting in [Fit95]. In order to
do so, we recall the definitions introduced in [Fit95]. The key difference is in the way Fitting
defines the reduct of a program. The first step is the same in both approaches. However,
the second steps, in which the initial valuation is used to simplify the bodies of the rules not
eliminated in the first step of the construction, differ.

Definition 4.3 (Fitting) Let P be an annotated revision program and let BI and BR be
T 2-valuations. The F -reduct of P with respect to (BI , BR) (denoted PFBR

|BI) is defined as
follows:

1. Remove from P every rule whose body contains an annotated revision atom that is not
satisfied in BR.

2. From the body of each remaining rule delete any annotated revision atom that is satisfied
in BI .

The notion of justified revision as defined by Fitting differs from our notion only in that
it uses the necessary change of the F -reduct (instead of the necessary change of the reduct
defined above in Definition 4.1). We call the justified revision based on the notion of F -reduct,
the F -justified revision.

In the remainder of this section we show that the notion of the F -justified revision does
not in general satisfy some basic requirements that we would like justified revisions to have. In
particular, F -justified revisions under an annotated revision program P are not always models
of P .

Example 4.4 Consider the lattice T{p,q}. Let P be a program consisting of the following rules:

(in(a):{p})← (in(b):{p, q}) and (in(b):{q})←

and let BI be a valuation such that BI(a) = 〈∅, ∅〉 and BI(b) = 〈{p}, ∅〉. Let BR be a valuation
given by BR(a) = 〈∅, ∅〉 and BR(b) = 〈{p, q}, ∅〉. Clearly, PFBR

|BI = P , and BR is an F -justified
revision of BI (under P). However, BR does not satisfy P .

The semantics of F -justified revisions also fails to satisfy the invariance under join property.

Example 4.5 Let P be the same revision program as before, and let P ′ consist of the rules

(in(a):{p})← (in(b):{p}), (in(b):{q}) and (in(b):{q})←

Let the initial valuation BI be given by BI(a) = 〈∅, ∅〉 and BI(b) = 〈{p}, ∅〉. The only F -
justified revision of BI (under P) is a T 2-valuation BR, where BR(a) = 〈∅, ∅〉 and BR(b) =
〈{p, q}, ∅〉. The only F -justified revision of BI (under P ′) is a T 2-valuation B′

R, where B′
R(a) =

〈{p}, ∅〉 and B′
R(b) = 〈{p, q}, ∅〉. Thus, replacing in the body of a rule (in(b):{p, q}) by (in(b):

{p}) and (in(b):{q}) affects F -justified revisions.

12

However, in some cases the two definitions of justified revision coincide. The following
theorem provides a complete characterization of those cases (let us recall that a lattice T is
linear if for any two elements α, β ∈ T either α ≤ β or β ≤ α).

Theorem 4.6 F -justified revisions and justified revisions coincide if and only if the lattice T
is linear.

Proof. (⇒) Assume that F -justified revisions and justified revisions coincide for a lattice T .
Let α, β ∈ T . We will show that either α ≤ β or β ≤ α. Indeed, let P be annotated revision
program consisting of the following rules.

(in(a):α)← (in(b):α ∨ β) and (in(b):β)←

Let BI be given by BI(a) = 〈⊥,⊥〉 and BI(b) = 〈α,⊥〉. Let BR be given by BR(a) = 〈α,⊥〉
and BR(b) = 〈α ∨ β,⊥〉. It is easy to see that BR is a justified revision of BI (with respect to
P). By our assumption, BR is also an F -justified revision of BI . There are only two possible
cases.
Case 1. α ∨ β ≤ α. Then, β ≤ α.
Case 2. α ∨ β 6≤ α. Then, PFBR

|BI = P . Let C = NC(PFBR
|BI). By the definition of the

necessary change,

C(a) = NC(PFBR
|BI)(a) = NC(P)(a) =

{

〈⊥,⊥〉, when α ∨ β 6≤ β
〈α,⊥〉, when α ∨ β ≤ β

By the definition of an F -justified revision, BR = (BI ⊗ −C) ⊕ C. From the facts that
BR(a) = 〈α,⊥〉 and BI(a) = 〈⊥,⊥〉 it follows that C(a) = 〈α,⊥〉. Therefore, it is the case
that α ∨ β ≤ β. That is, α ≤ β.
(⇐) Assume that lattice T is linear. Then, for any α, β ∈ T

pcomp(α, β) =

{

⊥, when α ≥ β
β otherwise (when α < β)

Let P be an annotated revision program. Let BI and BR be any T 2-valuations. Let us see
what is the difference between PBR

|BI and PFBR
|BI . The first steps in the definitions of reduct

and F -reduct are the same. During the second step of the definition of an F -reduct each
annotated atom (l:β) such that β ≤ BI(l) is deleted from bodies of rules. In the second step
of the definition of the reduct such annotated atom is replaced by (l:⊥). If β > BI(l), then in
the reduct PBR

|BI annotated atom (l:β) is replaced by (l:pcomp(BI(l), β)) = (l:β), that is, it
remains as it is. In the F -reduct, (l:β) also remains in the bodies for β > BI(l). Thus, the only
difference between PBR

|BI and PFBR
|BI is that bodies of the rules from PBR

|BI may contain
atoms of the form (l : ⊥), where l ∈ U , that are not present in the bodies of the corresponding
rules in PFBR

|BI . However, annotated atoms of the form (l : ⊥) are always satisfied. Therefore,

the necessary changes of PBR
|BI and PFBR

|BI , as well as justified and F -justified revisions of
BI coincide. 2

Theorem 4.6 explains why the difference between the justified revisions and F -justified
revisions is not seen when we limit our attention to revision programs as considered in [MT98].
Namely, the lattice T WO = {f , t} of boolean values is linear. Similarly, the lattice of reals
from the segment [0, 1] is linear, and there the differences cannot be seen either.

13

5 Properties of justified revisions

In this section we study basic properties of justified revisions. We show that key properties of
justified revisions in the case of revision programs without annotations have their counterparts
in the case of justified revisions of annotated revision programs.

First, we observe that revision programs as defined in [MT95] can be encoded as annotated
revision programs (with annotations taken from the lattice T WO = {f , t}). Namely, a revision
rule

p← q1, . . . qm

(where p and all qi’s are revision atoms) can be encoded as

(p:t)← (q1:t), . . . , (qm:t)

We will denote by P a the result of applying this transformation to a revision program P (rule
by rule). Second, let us represent a set of atoms B by a T WO2-valuation Bv as follows:
Bv(a) = 〈t, f〉, if a ∈ B, and Bv(a) = 〈f , t〉, otherwise.

Fitting [Fit95] argued that under such encodings the semantics of F -justified revisions
generalizes the semantics of justified revisions introduced in [MT95]. Since for lattices whose
ordering is linear the approach by Fitting and the approach presented in this paper coincide,
and since the ordering of T WO is linear, the semantics of justified revisions discussed here
extends the semantics of justified revisions from [MT95]. Specifically, we have the following
result.

Theorem 5.1 Let P be an ordinary revision program and let BI and BR be two sets of atoms.
Then, BR is a P -justified revision of BI if and only if the necessary change of P aBv

R

|Bv
I is

consistent and Bv
R is a P a-justified revision of Bv

I .

Before we study how properties of justified revisions generalize to the case with annotations,
we prove the following auxiliary results.

Lemma 5.2 Let P be an annotated revision program. Let B be a T 2-valuation. Then,
NC(PB|B) = T bP (B).

Proof. The assertion follows from definitions of a necessary change and operator TP . 2

Lemma 5.3 Let P be an annotated revision program. Let BI , BR, and C be T 2-valuations,
such that BR ≤ BI ⊕ C. Then, C satisfies the bodies of all rules in PBR

|BI .

Proof. Let r′ ∈ PBR
|BI . Let (l:γ) be an annotated revision atom from the body of r′. Let

(θ−1(BI))(l) = α. By the definition of the reduct, r′ was obtained from some rule r ∈ P , such
that the body of r is satisfied by BR, and γ = pcomp(α, β), where (l:β) is in the body of r.
Since the body of r is satisfied by BR, we have β ≤ (θ−1(BR))(l). From BR ≤k BI ⊕ C it
follows that

(θ−1(BR))(l) ≤ (θ−1(BI ⊕ C))(l) =

= (θ−1(BI))(l) ∨ (θ−1(C))(l) = α ∨ (θ−1(C))(l).

14

Combining this inequality with our previous observation that β ≤ (θ−1(BR))(l), we get β ≤
α∨ (θ−1(C))(l). By the definition of pcomp(α, β), we get γ ≤ (θ−1(C))(l). That is, C satisfies
(l : γ). Since (l : γ) was arbitrary, C satisfies all annotated revision atoms in the body of r′.
As r′ was an arbitrary rule from PBR

|BI , we conclude that C satisfies the bodies of all rules
in PBR

|BI . 2

Lemma 5.4 Let BR be a P -justified revision of BI . Then, NC(PBR
|BI) = T bP (BR).

Proof. By the definition of a justified revision BR = (BI ⊗−C)⊕C, where C = NC(PBR
|BI).

Hence, BR ≤ BI ⊕C. By Lemma 5.3, C satisfies the bodies of all rules in PBR
|BI . Since C is

a model of PBR
|BI , C satisfies all heads of clauses in PBR

|BI .
Let D be a valuation satisfying all heads of rules in PBR

|BI . Then D is a model of PBR
|BI .

Since C is the least model of the reduct PBR
|BI , we find that C ≤k D. Consequently, C is the

least valuation that satisfies all heads of the rules in PBR
|BI . The rules in PBR

are all those
rules from P whose bodies are satisfied by BR. Thus, by the definition of the operator T bP ,
C = T bP (BR). 2

We will now look at properties of the semantics of justified revisions. We will present a
series of results generalizing properties of revision programs to the case with annotations. We
will show that the concept of an s-model is a useful notion in the investigations of justified
revisions of annotated programs.

Our first result relates justified revisions to models and s-models. Let us recall that in the
case of revision programs without annotations, justified revisions under a revision program P

are models of P . In the case of annotated revision programs we have an analogous result.

Theorem 5.5 Let P be an annotated revision program and let BI and BR be T 2-valuations.
If BR is a P -justified revision of BI then BR is an s-model of P (and, hence, a model of P).

Proof. By the definition of a P -justified revision, BR = (BI ⊗ −C) ⊕ C, where C is the
necessary change for PBR

|BI . From Lemma 5.4 it follows that C = T bP (BR). Therefore,

BR = (BI ⊗−T
b
P (BR))⊕ T bP (BR) ≤k −T

b
P (BR)⊕ T bP (BR).

Also,
BR = (BI ⊗−T

b
P (BR))⊕ T bP (BR) ≥ T bP (BR).

Hence, BR is an s-model of P . 2

In the previous section we showed an example demonstrating that that F -justified revisions
do not satisfy the property of invariance under joins. In contrast, justified revisions in the sense
of our paper do have this property.

Theorem 5.6 Let P2 be the result of simplification of an annotated revision program P1 by
means of the join transformation. Then for every initial database BI , P1-justified revisions of
BI coincide with P2-justified revisions of BI .

The proof follows directly from the definition of P -justified revisions and from the following
distributivity property of pseudocomplement: pcomp(α, β1)∨pcomp(α, β2) = pcomp(α, β1∨β2).

In the case of revision programs without annotations, a model of a program P is its unique
P -justified revision. In the case of programs with annotations, the situation is slightly more

15

complicated. The next several results provide a complete description of justified revisions of
models of annotated revision programs. First, we characterize those models that are their own
justified revisions. This result provides additional support for the importance of the notion of
an s-model in the study of annotated revision programs.

Theorem 5.7 Let a T 2-valuation BI be a model of an annotated revision program P . Then,
BI is a P -justified revision of itself if and only if BI is an s-model of P .

Proof. Let us denote C = NC(PBI
|BI). By the definition, BI is a P -justified revision of itself

if and only if BI = (BI ⊗−C)⊕ C. Since BI satisfies P , Theorem 3.1 implies that BI ≥k C.
Thus, BI ⊕ C = BI . Distributivity of the product lattice T 2 implies that (BI ⊗ −C) ⊕ C =
(BI ⊕ C) ⊗ (−C ⊕ C) = BI ⊗ (−C ⊕ C). Clearly, BI = BI ⊗ (−C ⊕ C) if and only if
BI ≤k (−C ⊕ C).

By Lemma 5.2, C = NC(PBI
|BI) = T bP (BI). Thus, BI is a P -justified revision of itself

if and only if BI ≤k T
b
P (BI) ⊕ (−T bP (BI)). But this latter condition is precisely the one that

distinguishes s-models among models. Thus, under the assumptions of the theorem, BI is a
P -justified revision of itself if and only if it is an s-model of P . 2

As we observed above, in the case of programs without annotations, models of a revision
program are their own unique justified revisions. This property does not hold, in general, in the
case of annotated revision programs. In other words, s-models, if they are inconsistent, may
have other revisions besides themselves (by Theorem 5.7 they always are their own revisions).

Example 5.8 Consider an annotated revision program P (with annotations belonging to T{p,q})
consisting of the clauses:

(out(a):{q})← and (in(a):{q})← (in(a):{q})

Consider a T 2-valuation BI such that BI(a) = 〈{q}, {q}〉. It is easy to see that BI is an
s-model of P . Hence, BI is its own justified revision (under P).

However, BI is not the only P -justified revision of BI . Consider the T 2-valuation BR such
that BR(a) = 〈∅, {q}〉. We have PBR

|BI = {(out(a):{q})←}. Let us denote the corresponding
necessary change, NC(PBR

|BI), by C. Then, C(a) = 〈∅, {q}〉. Hence, −C = 〈{p}, {p, q}〉 and
((BI ⊗−C)⊕ C)(a) = 〈∅, {q}〉 = BR(a). Consequently, BR is a P -justified revision of BI .

The same behavior can be observed in the case of programs annotated with elements from
other lattices.

Example 5.9 Let P be an annotated revision program (annotations belong to the lattice T[0,1])
consisting of the rules:

(out(a):1)← and (in(a):0.4)← (in(a):0.4)

Let BI be a valuation such that BI(a) = 〈0.4, 1〉. Then, BI is an s-model of P and, hence, it
is its own P -justified revision. Consider a valuation BR such that BR(a) = 〈0, 1〉. We have
PBR
|BI = {(out(a):1) ←}. Let us denote the necessary change NC(PBR

|BI) by C. Then
C(a) = 〈0, 1〉 and −C = 〈0, 1〉. Thus, ((BI ⊗−C)⊕C)(a) = 〈0, 1〉 = BR(a). That is, BR is a
P -justified revision of BI .

16

Note that in both examples the additional justified revision BR of BI is smaller than BI
with respect to the ordering ≤k. It is not coincidental as demonstrated by our next result.

Theorem 5.10 Let BI be a model of an annotated revision program P . Let BR be a P -justified
revision of BI . Then, BR ≤k BI .

Proof. By the definition of a P -justified revision, BR = (BI ⊗ −C) ⊕ C, where C is the
necessary change of PBR

|BI . By the definition of the reduct PBR
|BI and the fact that BI is

a model of P , it follows that BI is a model of PBR
|BI . The necessary change C is the least

fixpoint of T bPBR
|BI

, therefore, C ≤ BI . Hence,

BR = (BI ⊗−C)⊕ C ≤k BI ⊕ C ≤k BI ⊕BI = BI . 2

Finally, we observe that if a consistent T 2-valuation is a model (or an s-model; these notions
coincide in the class of consistent valuations) of a program then it is its unique justified revision.

Theorem 5.11 Let BI be a consistent model of an annotated revision program P . Then, BI
is the only P -justified revision of itself.

Proof. Theorem 3.4 implies that BI is an s-model of P . Then, from Theorem 5.7 we get
that BI is a P -justified revision of itself. We need to show that there are no other P -justified
revisions of BI .

Let BR be a P -justified revision of BI . Then, BR ≤k BI (Theorem 5.10). Therefore,
T bP (BR) ≤k T

b
P (BI). Hence, −T bP (BI) ≤k −T

b
P (BR). Theorem 3.1 implies that BI ≥k T

b
P (BI).

Thus, −BI ≤k −T
b
P (BI). Since BI is consistent, BI ≤k −BI . Combining the above inequali-

ties, we get
BI ≤k −BI ≤k −T

b
P (BI) ≤k −T

b
P (BR).

That is, BI ≤k −T
b
P (BR). Hence, BI ⊗−T

b
P (BR) = BI .

From definition of justified revision and Lemma 5.4,

BR = (BI ⊗−T
b
P (BR))⊕ T bP (BR) = BI ⊕ T

b
P (BR) ≥k BI .

Therefore, BR = BI . 2

To summarize, when we consider inconsistent valuations (they appear naturally, especially
when we measure beliefs of groups of independent experts), we encounter an interesting phe-
nomenon. An inconsistent valuation BI , even when it is an s-model of a program, may have
different justified revisions. However, all these additional revisions must be ≤k-less inconsistent
than BI . In the case of consistent models this phenomenon does not occur. If a valuation B

is consistent and satisfies P then it is its unique P -justified revision.
In [MT98] we proved that, in the case of ordinary revision programs, “additional evidence

does not destroy justified revisions”. More precisely, we proved that if BR is a P -justified
revision of BI and BR is a model of P ′ then BR is a P ∪ P ′-justified revision of BI . We
will now prove a generalization of this property to the case of annotated revision programs.
However, as before, we need to replace the notion of a model with that of an s-model.

Theorem 5.12 Let P , P ′ be annotated revision programs. Let BR be a P -justified revision of
BI . Let BR be an s-model of P ′. Then, BR is a P ∪ P ′-justified revision of BI .

17

Proof. Let C = NC(PBR
|BI). Let C ′ = NC((P ∪ P ′)BR

|BI). Clearly, C ≤ C ′. By the
definition of a justified revision BR = (BI ⊗−C)⊕ C. Hence,

BR ≤ BI ⊕ C ≤ BI ⊕ C
′.

By Lemma 5.3 it follows that C ′ satisfies the bodies of all rules in (P ∪ P ′)BR
|BI . Since C ′ is

the necessary change of (P ∪ P ′)BR
|BI we conclude that C ′ satisfies the heads of all rules in

(P ∪ P ′)BR
|BI . Reasoning as in the proof of Lemma 5.4 we find that C ′ = T bP∪P ′(BR).

By Theorem 5.5, BR is an s-model of P . Therefore, by Theorem 3.5, BR is a s-model of
P ∪ P ′. Theorem 5.7 implies that BR is a P ∪ P ′-justified revision of itself. In other words,

BR = (BR ⊗−NC((P ∪ P ′)BR
|BR))⊕NC((P ∪ P ′)BR

|BR).

From Lemma 5.2 it follows that NC((P ∪ P ′)BR
|BR) = T bP∪P ′(BR). Hence,

BR = (BR ⊗−C
′)⊕ C ′.

Next, let us recall that BR = (BI ⊗−C)⊕ C. Hence,

BR = (((BI ⊗−C)⊕ C)⊗−C ′)⊕ C ′.

Now, using the facts that C ≤ C ′ and −C ′ ≤ −C, we get the following equalities:

BR = (((BI ⊗−C)⊕ C)⊗−C ′)⊕ C ′ =

= ((BI ⊗−C)⊗−C ′)⊕ (C ⊗−C ′)⊕ C ′ =

= (BI ⊗ (−C ⊗−C ′))⊕ C ′ = (BI ⊗−C
′)⊕ C ′

Thus, BR = (BI ⊗−C
′)⊕ C ′. By the definition of justified revisions, BR is a P ∪ P ′-justified

revision of BI . 2

6 An alternative way of describing annotated revision pro-

grams and order isomorphism theorem

We will now provide an alternative description of annotated revision programs. Instead of
evaluating separately revision atoms in T we will evaluate atoms in T 2. This alternative
presentation will allow us to obtain a result on the preservation of justified revisions under
order isomorphisms of T 2. This result is a generalization of the “shifting theorem” of [MPT99].

An expression of the form a:〈α, β〉, where 〈α, β〉 ∈ T 2, will be called an annotated atom
(thus, annotated atoms are not annotated revision atoms). Intuitively, an atom a:〈α, β〉 stands
for the conjunction of (in(a):α) and (out(a):β). An annotated rule is an expression of the
form p← q1, . . . , qn where p, q1, . . . , qn are annotated atoms. An annotated program is a set of
annotated rules.

A T 2-valuation B satisfies an annotated atom a:〈α, β〉 if 〈α, β〉 ≤k B(a). This notion of
satisfaction can be extended to annotated rules and annotated programs.

We will now define the notions of reduct, necessary change and justified revision for the new
kind of programs. Let P be an annotated program. Let BI and BR be two T 2-valuations. The

18

reduct of a program P with respect to two valuations BI and BR is defined in a manner similar
to Definition 4.1. Specifically, we leave only the rules with bodies that are satisfied by BR, and
in the remaining rules we reduce the annotated atoms (except that now the transformation θ
is no longer needed!).

Definition 6.1 The reduct PBR
|BI is obtained from P by

1. removing every rule whose body contains an annotated atom that is not satisfied in BR,

2. replacing each annotated atom l:β from the body of each remaining rule by the annotated
atom l:γ, where γ = pcomp(BI(l), β) (here β, γ ∈ T 2).

Next, we compute the least fixpoint of the operator associated with the reduced program.
Finally, as in Definition 4.2, we define the concept of justified revision of a valuation BI with
respect to a revision program P .

Definition 6.2 BR is a P -justified revision of BI if BR = (BI ⊗ −C) ⊕ C, where C =
NC(PBR

|BI) is the necessary change for PBR
|BI .

It turns out that this new syntax does not lead to a new notion of justified revision. Since
we talk about two different syntaxes, we will use the term “old syntax” to denote the revision
programs as defined in Section 2, and “new syntax” to describe programs introduced in this
section. Specifically we now exhibit two mappings. The first of them, tr1, assigns to each “old”
in-rule

(in(a):α)← (in(b1):α1), . . . , (in(bm):αm), (out(s1):β1), . . . , (out(sn):βn),

a “new” rule

a:〈α,⊥〉 ← b1:〈α1,⊥〉, . . . , bm:〈αm,⊥〉, s1:〈⊥, β1〉, . . . , sn:〈⊥, βn〉.

An “old” out-rule

(out(a):β)← (in(b1):α1), . . . , (in(bm):αm), (out(s1):β1), . . . , (out(sn):βn)

is encoded in analogous way:

a:〈⊥, β〉 ← b1:〈α1,⊥〉, . . . , bm:〈αm,⊥〉, s1:〈⊥, β1〉, . . . , sn:〈⊥, βn〉.

Translation tr2, in the other direction, replaces a “new” revision rule by one in-rule and one
out-rule. Specifically, a “new” rule

a:〈α, β〉 ← a1:〈α1, β1〉, . . . , an:〈αn, βn〉

is replaced by two “old” rules (with identical bodies but different heads)

(in(a):α)← (in(a1):α1), (out(a):β1), . . . , (in(an):αn), (out(an):βn)

and
(out(a):β)← (in(a1):α1), (out(a):β1), . . . , (in(an):αn), (out(an):βn).

The translations tr1 and tr2 can be extended to programs. We then have the following theorem
that states that the new syntax and semantics of annotated revision programs presented in
this section are equivalent to the syntax and semantics introduced and studied earlier in the
paper.

19

Theorem 6.3 Both transformations tr1, and tr2 preserve justified revisions. That is, if
BI , BR are valuations in T 2 and P is a program in the “old” syntax, then BR is a P -justified
revision of BI if and only if BR is a tr1(P)-justified revision of BI . Similarly, if BI , BR are
valuations in T 2 and P is a program in the “new” syntax, then BR is a P -justified revision of
BI if and only if BR is a tr2(P)-justified revision of BI .

In the case of unannotated revision programs, the shifting theorem proved in [MPT99]
shows that for every revision program P and every two initial databases B and B′ there
is a revision program P ′ such that there is a one-to-one correspondence between P -justified
revisions of B and P ′-justified revisions of B′. In particular, it follows that the study of justified
revisions (for unannotated programs) can be reduced to the study of justified revisions of empty
databases. We will now present a counterpart of this result for annotated revision programs.
The situation here is more complex. It is no longer true that a T 2-valuation can be “shifted”
to any other T 2-valuation. However, the shift is possible if the two valuations are related to
each other by an order isomorphism of the lattice of all T 2-valuations.

There are many examples of order isomorphisms on the lattice of T 2. For instance, the
mapping ψ : T 2 → T 2 defined by ψ(〈α, β〉) = 〈β, α〉 is an order isomorphism of T 2. In the
case of the lattice TX , order isomorphisms of T 2

X can also be generated by permutations of the
set X.

Let ψ be an order isomorphism on T 2. It can be extended to annotated atoms, annotated
rules, and T 2-valuations as follows:
ψ(a : δ) = a : ψ(δ),
ψ(a:δ ← a1:δ1, . . . , an:δn) = ψ(a:δ)← ψ(a1:δ1), . . . , ψ(an:δn),
(ψ(B))(a) = ψ(B(a)),
where a, a1, . . . , an ∈ U , δ, δ1, . . . , δn ∈ T

2, and B is a T 2-valuation.
The extension of an order isomorphism on T 2 to T 2-valuations is again an order isomor-

phism, this time on the lattice of all T 2-valuations. We say that an order isomorphism ψ on a
lattice preserves conflation if ψ(−δ) = −ψ(δ) for all elements δ from the lattice. We now have
the following result that generalizes the shifting theorem of [MPT99].

Theorem 6.4 Let ψ be an order isomorphism on the set T 2-valuations which preserves confla-
tion. Then, BR is a P -justified revision of BI if and only if ψ(BR) is a ψ(P)-justified revision
of ψ(BI).

Proof. By definition, BR is a P -justified revision of BI if and only if BR = (BI⊗−C)⊕C, where
C = NC(PBR

|BI). Since ψ is an order isomorphism, it preserves meet and join operations.
Therefore,

ψ(BR) = ψ((BI ⊗−C)⊕ C) = ψ(BI ⊗−C)⊕ ψ(C) =

= (ψ(BI)⊗ ψ(−C))⊕ ψ(C) = (ψ(BI)⊗−ψ(C))⊕ ψ(C).

At the same time, ψ(PBR
|BI) = (ψ(P))ψ(BR)|ψ(BI), and NC(ψ(PBR

|BI)) = ψ(NC(PBR
|BI)).

Thus, BR is a P -justified revision of BI if and only if ψ(BR) is a ψ(P)-justified revision of
ψ(BI). 2

Shifting theorem of [MPT99], that applies to ordinary revision programs, is just a particular
case of Theorem 6.4. In order to derive it from Theorem 6.4, we take T = T WO. Next, we
consider an ordinary revision program P and two databases B1 and B2 (let us recall that in

20

the case of ordinary revision programs, databases are sets of atoms and not valuations). Let
P a and Bv

1 and Bv
2 be defined as in Theorem 5.1. It is easy to see that the operator ψ, defined

by

(ψ(v))(a) =

{

〈β, α〉, when Bv
1(a) 6= Bv

2(a)
〈α, β〉, when Bv

1(a) = Bv
2(a)

,

is an order-isomorphism on T WO2-valuations and that ψ(Bv
1) = Bv

2 . Let C1 and C2 be two
sets of atoms such that Cv2 = ψ(Cv1). By Theorem 6.4, Cv1 is a P a-justified revision of Bv

1 if
and only if Cv2 is a ψ(P a)-justified revision of Bv

2 . Theorem 5.1 and the observation that the
necessary change of P aCv

1

|Bv
1 is consistent if and only if the necessary change of ψ(P a)Cv

2
|Bv

2 is

consistent together imply now the shifting theorem of [MPT99].
The requirement in Theorem 6.4 that ψ preserves conflation is essential. If it is not the

case, the statement of the theorem may not hold as illustrated by the following example.

Example 6.5 Let T = T{p,q,r} with the de Morgan complement defined as follows:

{} = {p, q, r}, {p} = {p, r}, {q} = {q, r}, {r} = {p, q},

{p, q, r} = {}, {p, r} = {p}, {q, r} = {q}, {p, q} = {r}.

Let ψ be order isomorphism on T such that ψ({p}) = {p}, ψ({q}) = {r}, and ψ({r}) = {q}.
Clearly, ψ does not preserve conflation, because

ψ(−〈{p}, {}〉) = ψ(〈{p, q, r}, {p, r}〉) = 〈{p, q, r}, {p, q}〉, but

−ψ(〈{p}, {}〉) = −〈{p}, {}〉 = 〈{p, q, r}, {p, r}〉.

Let an annotated program be the following:

P : a : 〈{p}, {}〉 ←

It determines the necessary change C(a) = 〈{p}, {}〉.
Then, −C(a) = 〈{p, q, r}, {p, r}〉. Let BI(a) = 〈{}, {r}〉. The P -justified revision of BI is

BR(a) = (〈{}, {r}〉 ⊗ 〈{p, q, r}, {p, r}〉)⊕ 〈{p}, {}〉 = 〈{p}, {r}〉.
The annotated program ψ(P) is the same as P . We have ψ(BI)(a) = 〈{}, {q}〉, ψ(BR)(a) =

〈{p}, {q}〉. The reduct (ψ(P))ψ(BR)|ψ(BI) = ψ(P) = P . The necessary change determined by
the reduct is C. However,

((ψ(BI)⊗−C)⊕ C)(a) = 〈{p}, {}〉 6= ψ(BR)(a).

Therefore, ψ(BR) is not a ψ(P)-justified revision of ψ(BI).

7 Conclusions and further research

The main contribution of our paper is a new definition of the reduct (and hence of a justified
revision) for annotated programs considered by Fitting in [Fit95]. This new definition elimi-
nates some anomalies arising in the approach by Fitting. Specifically, in Fitting’s approach,
justified revisions are not, in general, models of a program. In addition, they do not satisfy the
invariance-under-join property. In our approach, both properties hold. Moreover, as we show

21

in Sections 5 and 6, many key properties of ordinary revision programs extend to the case of
annotated revision programs under our definition of justified revisions.

Several research topics need to be further pursued. First, the concepts of an annotated
revision program and of a justified revision can be generalized to the disjunctive case, where a
program may have “nonstandard disjunctions” in the head. One can show that this extension
indeed reduces back to the ordinary concept of annotated revision programming, as discussed
here, if no rule of a program contains a disjunction in its head. However, an in-depth study of
annotated disjunctive revision programming has yet to be conducted.

Second, in this paper we focused on the case when the lattice of annotations is distributive.
This assumption can be dropped and a reasonable notion of a justified revision can still be
defined. However, the corresponding theory is so far less understood and it seems to be much
less regular than the one studied in this paper.

Finally, we did not study here the complexity of reasoning tasks for annotated revision
programs. Assuming that the lattice is finite and fixed (is not part of the input), the complexity
results obtained in [MT98] can be extended to the annotated case. The complexity of reasoning
tasks when the lattice of annotations is a part of an input still needs to be studied. Clearly,
any such study would have to take into account the complexity of evaluating lattice operations.

8 Acknowledgments

This work was partially supported by the NSF grants CDA-9502645 and IRI-9619233.

References

[ALP+98] J.J. Alferes, J.A. Leite, L.M. Pereira, H. Przymusinska, and T.C. Przymusinski.
Dynamic logic programming. In Proceedings of KR’98: Sixth International Conference on
Principles of Knowledge Representation and Reasoning, Trento, Italy, pages 98 – 110. San
Mateo, CA, Morgan Kaufmann, 1998.

[vE86] M.H. van Emden. Quantitative deduction and its fixpoint theory. Journal of Logic
Programming, 3(1):37–53, 1986.

[vEK76] M.H. van Emden and R.A. Kowalski. The semantics of predicate logic as a program-
ming language. Journal of the ACM, 23(4):733–742, 1976.

[Fit95] M. C. Fitting. Annotated revision specification programs. In Logic programming and
nonmonotonic reasoning (Lexington, KY, 1995), volume 928 of Lecture Notes in Computer
Science, pages 143–155. Springer-Verlag, 1995.

[Fit00] M. C. Fitting. Fixpoint semantics for logic programming – a survey. Theoretical
Computer Science, 2000. To appear.

[Gin88] M.L. Ginsberg. Multivalued logics: a uniform approach to reasoning in artificial
intelligence. Computational Intelligence, 4:265–316, 1988.

[KS92] M. Kifer and V.S. Subrahmanian. Theory of generalized annotated logic programs and
its applications. Journal of Logic Programming, 12:335–367, 1992.

22

[LW92] V. Lifschitz and T.Y.C. Woo. Answer sets in general nonmonotonic reasoning. In
Proceedings of the 3rd international conference on principles of knowledge representation
and reasoning, KR ’92, pages 603–614, San Mateo, CA, Morgan Kaufmann, 1992.

[MPT99] W. Marek, I. Pivkina, and M. Truszczyński. Revision programming = logic program-
ming + integrity constraints. In Computer Science Logic, 12th International Workshop,
CSL’98, volume 1584 of Lecture Notes in Computer Science, pages 73–89. Springer-Verlag,
1999.

[MT95] W. Marek and M. Truszczyński. Revision programming, database updates and in-
tegrity constraints. In Proceedings of the 5th International Conference on Database Theory
— ICDT 95, volume 893 of Lecture Notes in Computer Science, pages 368–382. Springer-
Verlag, 1995.

[MT98] W. Marek and M. Truszczyński. Revision programming. Theoretical Computer Sci-
ence, 190(2):241–277, 1998.

[NS94] R. Ng and V.S. Subrahmanian. Stable semantics for probabilistic deductive databases.
Information and Computation, 110(1):42–83, 1994.

[PT97] T. C. Przymusinski and H. Turner. Update by means of inference rules. Journal of
Logic Programming, 30(2):125–143, 1997.

[RS70] H. Rasiowa and R. Sikorski. The Mathematics of Metamathematics. PWN—Polish
Scientific Publishers, Warsaw, 1970.

[Tar56] A. Tarski. Logic, semantics, metamathematics. Oxford at the Clarendon Press, Oxford,
1956.

23

