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Abstract

A new method of cryptologic attack on binary sequences is given, using their linear
complexities relative to odd prime numbers. We show that, relative to a particular
prime number p, the linear complexity of a binary geometric sequences is low. It is
also shown that the prime p, can be determined with high probability by a randomized
algorithm if a number of bits much smaller than the linear complexity is known. This
determination is made by exploiting the imbalance in the number of zeros and ones in
the sequences in question, and uses a new statistical measure, the partial imbalance.
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1 Introduction

In several applications in modern communication systems, periodic binary sequences are
employed that must be difficult for an adversary to determine when a short partial sequence
(that is, a subset consisting of consecutive elements of the sequence) is known, and must be
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easy to generate given a secret key. This is true both in stream cipher systems, in which
the binary sequence is used as a pseudo-one-time-pad [16], and in secure spread spectrum
systems, in which the sequence is used to spread a signal over a large range of frequencies
[14]. While theorists have long argued that such security can only be achieved by sequences
satisfying very general statistical test such as Yao’s [17] and Blum and Micali’s [2] next bit
test, practitioners are often satisfied to find sequences that have large linear complexities,
thus ensuring resistance to attack by the Berlekamp-Massey algorithm [12]. Linear feedback
shift registers are devices that can easily generate sequences with exponentially larger period
than the size of their seeds [5], though with small linear complexity. Thus, much effort has
gone into finding ways of modifying linear feedback shift registers, typically by adding some
nonlinearity, so that the sequences they generate have large linear complexities.

The purpose of this paper is twofold. First, to argue that high linear complexity is
inadequate for security, even when one is only concerned with attacks using the Berlekamp-
Massey algorithm. To this end, we will exhibit binary sequences, i.e., sequences of elements
of the field GF (2), with high linear complexity, but which have low linear complexity when
considered as sequences (whose elements happen to only be zero or one) over a larger finite
field. Our second purpose is to demonstrate that a particular class of sequences, geometric
sequences based on m-sequences over fields of odd characteristic, are insecure for stream
cipher systems. We will do so by first proving that for a particular prime p, these sequences
have low linear complexity when considered as sequences over GF (p), and then giving an
algorithm which inputs a relatively small partial sequence and determines p with high prob-
ability (the probabilities are over the set of partial sequences of a fixed size). This is made
possible by the fact that these sequences are imbalanced.

In Section 2 we recall the definitions of linear complexity and geometric sequences, and
some of the basic results concerning them. In Section 3 we derive an upper bound for
the linear complexity of the geometric sequences in question. In Section 4 we exhibit an
algorithm for finding the characteristic of the field of definition for the m-sequence on which
a geometric sequence is based. This algorithm is based on computing the partial imbalance
of a sequence (the imbalance of a partial sequence). Its success depends on bounding the
variance of the partial imbalance. This is a similar approach to one taken in an earlier
paper by the author and Mark Goresky based on the partial period autocorrelation [9], but
requires far fewer bits for success.
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2 Definitions

A sequence S = (Si) over a field F is linearly recurrent if it satisfies a recurrence of length
n,

n∑
i=0

ciSk−i = 0, (1)

with ci ∈ F not all zero. The linear complexity of S over F is the smallest n such that S
satisfies a linear recurrence of length n. Equivalently, the linear complexity of S is the length
of the smallest linear feedback shift register over F which generates S. We denote the linear
complexity of S over F by λF (S). It is well known [12] that 2λF (S) consecutive elements
of S suffice to determine the smallest linear recurrence satisfied by S (or, equivalently, to
synthesize a linear feedback shift register which generates S). Moreover, the algorithm for
this determination is highly efficient. Thus for purposes of security, sequences must be found
which have large linear complexity.

Now consider a binary sequence S. While it is perhaps most natural to think of S as a
sequence of elements of GF (2), and thus concern ourselves only with the linear complexity
over GF (2), we can in fact think of S as a sequence over any prime field GF (p). When
S is a binary sequence, we will denote the linear complexity of S over GF (p) by λp(S).
It is our purpose to show that, despite the fact that λ2(S) is large, λp(S) may be small
for some computable p. This is not the case for all sequences. For example, the sequence
0n−110n−11 · · · has λp(S) = n for all p. Of course this sequence has other undesirable
properties such as a lack of balance.

The sequences we consider are known as geometric sequences and have been considered by
several authors with respect to their linear complexity and correlation properties [3, 4, 6, 7,
8, 18]. In particular, Chan and Games showed that for q odd, geometric sequences can have
high linear complexities (over GF (2)) [4]. For this reason, these sequences are candidates
for applications that require easily generated sequences that resist chosen plaintext attacks.
Geometric sequences are based on algebra over finite fields, and we recall first some of the
basic concepts. See Lidl and Niederreiter’s or McEliece’s book [10, 13] for a more detailed
treatment of finite fields.

Let p be a prime integer, let q = pe be a fixed power of p, and let GF (q) denote the
Galois field with q elements. For any n ≥ 1, we denote the trace function from GF (qn) to
GF (q) by Trqn

q , defined by

Trqn

q (x) =
n−1∑
i=0

xqi

.

T rqn

q is a GF (q)-linear function, and every GF (q)-linear function f from GF (qn) to GF (q)
can be written in the form f(x) = Trqn

q (Ax), for some A ∈ GF (qn). For any m ≥ 1,

Trqnm

q (x) = Trqn

q (Trqnm

qn (x)).
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Let α be a primitive element of GF (qn), that is GF (qn) consists of zero and the powers
of α. The infinite periodic sequence U whose ith term is Ui = Trqn

q (αi) is known as an
m-sequence over GF (q) of span n [10]. More generally, we can consider the sequence whose
ith term is Trqn

q (Aαi) for some fixed element A of GF (qn). This amounts to a cyclic shift of
the sequence U, so we do not consider it to be a distinct sequence here. It is well known that
every m-sequence of span n can be generated by a linear feedback shift register of length n
over GF (q). It has period qn − 1, the maximum possible period for a sequence generated
by a linear feedback shift register of length n over GF (q). Moreover, every such maximal
period sequence is (a shift of) an m-sequence [10, pp. 394-410].

Definition 2.1 Let n be a positive integer and let α be a primitive element of GF (qn). Let
g be a (possibly nonlinear) function from GF (q) to GF (2). The binary sequence S whose
ith term is

Si = g(Trqn

q (αi)).

is called the geometric sequence based on the primitive element α and feedforward function
g.

Note that if p is odd, then in general a function from a field of odd characteristic to
a field of characteristic two cannot be defined algebraically. We can, however, think of g
as simply dividing GF (q) into two subsets (or as the characteristic function of a subset of
GF (q).) Alternatively, we can think of g as a function into {0, 1} ⊆ GF (r) for any prime
integer r. If r = p, then g(x) can be expressed as a polynomial in x with coefficients in
GF (q).

The geometric sequence S is easy to generate if the feedforward function g is easy to
compute. This is always the case, for example, if q is small. Such a geometric sequence is a
binary sequence of period dividing qn − 1. Geometric sequences with q odd have been used
in applications where easily generated sequences with large linear complexities are needed,
due to the following theorem of Chan and Games [4], in which we let ν = (qn − 1)/(q − 1).

Theorem 2.2 (Chan and Games) Let S be a geometric sequence, Si = g(Trqn

q (αi)) and
suppose g(0) = 0. Let T be the sequence Ti = g(αiν) (note that αν is a primitive element of
GF (q)). Then

λ2(S) = νλ2(T).

Thus, if g is chosen to maximize λ2(T) at q− 1, then λ2(S) will be qn− 1, i.e., maximal.
It is straightforward to generalize this theorem to the linear complexity λr over an arbitrary
prime number r 6= p. The details are left to the reader.
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Theorem 2.3 Let S be a geometric sequence, Si = g(Trqn

q (αi)) and suppose g(0) = 0. Let
T be the sequence Ti = g(αiν). Let r be a prime number, r 6= p. Then

λr(S) = νλr(T).

In particular, as long as g(x) 6= 0 for some x ∈ GF (q), then λr(S) ≥ (qn − 1)/(q− 1) for
all primes r 6= p. Thus the only prime over which S can have small linear complexity is p,
and we show in the next section that this is indeed the case.

3 Bounding λp

In this section we show that if S a geometric sequence based on an m-sequence over a finite
field of characteristic p, then λp(S) is far from maximal. Our results follow from the work
by Zierler and Mills [18], Herlestam [6, 7] and Brynielsson [3] on the linear complexity of
algebraic combinations of periodic sequences over fields. What amounts to a special case of
these results was proved by MacWilliams and Mann [11], and Smith [15] in the context of
measuring the rank of the incidence matrix of points and hyperplanes in a finite geometry.

3.1 Preliminaries

If F is a field, then the set of infinite sequences over F is an algebra, with addition and mul-
tiplication defined componentwise. The set of polynomials in one variable t with coefficients
in F acts on infinite sequences over F , with t acting as the shift operator:

t(S0,S1,S2, · · ·) = (S1,S2,S3, · · ·).

Moreover, this is an F -linear action of the algebra of polynomials with coefficients in F on
the vector space of infinite sequences over F . The condition in equation (1) is equivalent to
f(t)S = 0, where f(t) =

∑n
i=0 cit

i. If fS(t) is the smallest degree nonzero polynomial such
that fS(t)S = 0, and g(t) is another polynomial such that g(t)S = 0, then fS(t) divides g(t).
The polynomial fS is known variously as the connection or feedback polynomial of S. Its
degree is λF (S).

The following is a consequence of the work of Zierler and Mills [18]. If f and g are
polynomials over F , let f ∨g be the monic polynomial whose roots are the distinct elements
of the form γδ where γ is a root of f and δ is a root of g (over an algebraic closure of F ).
By Galois theory, f ∨ g is defined over F .

Proposition 3.1 Let S and T be linearly recurrent sequences over F . Then
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1. fS+T divides the l.c.m. of fS and fT, and λF (S + T) ≤ λF (S) + λF (T). If fS and fT

have no common roots, then fS+T = fSfT and λF (S + T) = λF (S) + λF (T).

2. fST divides fS∨fT and λF (ST) ≤ λF (S)λF (T) = the number of distinct root products
γδ, γ a root of fS, δ a root of fT. If all the root products from fS and fT are distinct,
then fST = fS ∨ fT and λF (ST) = λF (S)λF (T).

We will also need the following well known lemma.

Lemma 3.2 The distinct roots of fS are {γj, j = 1, · · · , n} if and only if S can be written
uniquely as Si =

∑n
j=1 cjγ

i
j. (The γj may lie in an extension field of F . The cj will lie in

F [γ1, · · · , γn].)

3.2 Geometric Sequences

In our situation, we have an m-sequence U of period qn − 1 over GF (q), hence of linear
complexity n over GF (q). To this sequence we apply a feedforward function g : GF (q) →
GF (q). For now g is arbitrary, but we eventually specialize to the case where the image of
g is in {0, 1}. We can express g as a polynomial

g(x) =
pe−1∑
i=0

aix
i

with ai ∈ GF (q) (recall q = pe). The resulting sequence S can be thought of as a sum of
constant multiples of powers of the original sequence U. Herlestam [7] derived a formula for
the linear complexity of such sequences in the case where g contains a single term. He also
gave formulas relating the linear complexities of sequences to the linear complexities of their
sums and products. However, he stopped short of considering a fully general feedforward
function g applied to an m-sequence, and this is our situation. We will use the results of
the preceding subsection to express the linear complexity of S in terms of p, e, n, and {ai}.
Note that the connection polynomial fU of U is the minimal polynomial of α over GF (q),
and α is a primitive element of GF (qn). Hence fU has distinct roots

α, αq, · · · , αqn−1

.

Moreover, the representation of S as in Lemma 3.2 is

Si = Trqn

q (αi) =
n−1∑
j=0

αqji.
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Theorem 3.3 Suppose g(x) =
∑pe−1

k=0 akx
k. For each k, let k =

∑e−1
i=0 bk,ip

i where 0 ≤ bk,i <
p. Then the linear complexity of S is

∑
ak 6=0

e−1∏
i=0

(
n + bk,i − 1

bk,i

)
.

Proof: We find λp(S) and roots of fS for g(x) = xk in four steps.

1. Suppose g(x) = xpi
. The minimal length recurrence for S is the minimal length recurrence

for U with its coefficients raised to the pith power. Thus fS is fU with its coefficients raised
to the pith power. Therefore λp(S) = n and fS has roots

αpi

, αpiq, · · · , αpiqn−1

.

2. Suppose g(x) = xbpi
, where 1 ≤ b < p. Then S is a b-fold product of the sequence in the

preceding case with itself. By Proposition 3.1.2, the set of roots of fS is a subset of the set
of b-fold products of elements αpiqj

, 0 ≤ j < n. Not all root products are distinct, so we
cannot simply apply Proposition 3.1.2 to get λp(S) precisely. Nonetheless,

Sk = (
n−1∑
j=0

αkpiqj

)b (2)

=
∑
r̄

b!

r0!r1! · · · rn−1!
αkpi

∑n−1

j=0
rjqj

(3)

where the sum is taken over {r̄ = (r0, r1, · · · , rn−1) : rj ≥ 0 and
∑n−1

j=0 rj = b}. The expo-
nents of α are distinct, and the coefficients of the powers of α are nonzero since 1 ≤ b < p.
By Lemma 3.2, the roots of fS are the powers of α appearing in equation (3). Thus

λp(S) =

(
n + b− 1

b

)

and fS has roots

{αpim : where m =
n−1∑
j=0

rjq
j,

n−1∑
j=0

rj = b, and ∀j : rj ≥ 0}.

3. Suppose g(x) = xk, k =
∑e−1

i=0 pibi, where 0 ≤ bi < p. S is an e-fold product of sequences
in the preceding case, with distinct i’s. The roots of fS are the distinct products of the roots
of the connection polynomials of these sequences, one from each connection polynomial. All
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root products are distinct by the uniqueness of base p representations and the fact that
pi < q when i < e. Thus by Proposition 3.1.2,

λp(S) =
e−1∏
i=0

(
n + bi − 1

bi

)
,

and fS has roots

{α
∑e−1

i=0
pi
∑n−1

j=0
ri,jqj

:
∑

ri,j = bi and ∀j : ri,j ≥ 0}.

4. In the general case, S is a sum of sequences of the form considered in the previous case.
Due to the uniqueness of base p representations, and the constraints on {ri,j}, all roots of
all the connection polynomials of the summands are distinct. The theorem follows from
Proposition 3.1.1. 2

Corollary 3.4 If, for all x ∈ GF (q), g(x) ∈ GF (p), then

λp(S) =
∑

ak 6=0

e−1∏
i=0

(
n + bk,i − 1

bk,i

)
.

Proof: In general, if S is a sequence over a field F , and F is a subfield of E, then the
linear complexity of S over F equals its linear complexity over E. To see this, observe that
any linear recurrence over F is also a linear recurrence over E, so the linear complexity
over E is at most the linear complexity over F . On the other hand, there is a basis for E
over F containing 1. Any linear recurrence over E produces one over F by expressing the
coefficients in such a basis and considering the component of 1 in all expressions. 2

Corollary 3.5 The linear complexity of S (over GF (q) or GF (p)) is at most(
n + p− 1

p− 1

)e

.

Proof: The maximum occurs when all ak are nonzero. In that case the linear complexity is

pe−1∑
k=0

e−1∏
i=0

(
n + bk,i − 1

bk,i

)
=

p−1∑
b0=0

· · ·
p−1∑

be−1=0

e−1∏
i=0

(
n + bi − 1

bi

)

=

p−1∑
b=0

(
n + b− 1

b

)e

=

(
n + p− 1

p− 1

)e

.
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To see the last equality, we show by induction on t that for any t and n

t∑
b=0

(
n + b− 1

b

)
=

(
n + t

t

)
. (4)

When t = 0 both sides equal 1. Suppose equation (4) is true for t replaced by t− 1. Then

t∑
b=0

(
n + b− 1

b

)
=

t−1∑
b=0

(
n + b− 1

b

)
+

(
n + t− 1

t

)

=

(
n + t− 1

t− 1

)
+

(
n + t− 1

t

)

=

(
n + t

t

)
which proves the corollary. 2

For a given period pr − 1, we can choose any factorization of r, r = en, to produce
a geometric sequence of that period. This sequence will be based on an m-sequence of
span n over GF (q), q = pe. A natural question is which factorization maximizes the linear
complexity, answered by the following proposition.

Proposition 3.6 If ne = mf , n 6= m, and n divides m (so f divides e), then for any t,(
m + t

t

)f

<

(
n + t

t

)e

.

Proof: We may divide e by f and thus assume f = 1, m = ne. For every i we have

(n + i)e = ie + eie−1n + · · ·
> ie + eie−1n

= (ne + i)ie−1.

Therefore
t∏

i=1

(n + i)e >
t∏

i=1

(ne + i)(t!)e−1,

which implies (
n + t

t

)e

=

∏t
i=1(n + i)e

(t!)e

>

∏t
i=1(ne + i)

t!

=

(
ne + t

t

)
.
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2

It follows that λp(S) is maximized by taking e = r and n = 1. Unfortunately, this
means that the feedforward function g completely defines the sequence, and is defined on an
enormous set (of size equal to the period). We’ve done away with the m-sequence and have
an arbitrary binary sequence of period pr − 1.

A more typical use of geometric sequences is to divide the computational work evenly
between g and the m-sequence by choosing n approximately equal to q = pe. Then we can
generate a sequence of period qq − 1 with a relatively easily defined feedforward function
on q elements and a q stage linear feedback shift register over GF (q). We must take care,
however, that g(x) cannot be written as g(x) = h(Trpe

pf (x)) for some f dividing e and
h : GF (pe) → {0, 1}. With relatively small q we can obtain sequences of enormous period
that are easily generated. The maximum linear complexity we can achieve with such a
sequence is

λp(S) =

(
pe + p− 1

p− 1

)e

.

This expression will be largest if e is small. Thus choosing q to be a larger prime rather than
a power of a small prime will give a larger linear complexity. For example, with p = 3 and
q = 27, we will have a sequence of period approximately 1.4x2128, while the largest linear
complexity we can achieve is less than 226. For p = 5 and q = 25, the period is approximately
1.1x2116, while the linear complexity is less than 1.1x229. On the other hand, if p = q = 17,
the period is only 1.4x269, but the linear complexity can be made greater than 230. Even for
the latter sequence, however, if bits are generated at the rate of one bit per microsecond,
then enough bits to crack the sequence are generated in approximately one hour.

One might just as well map {0, 1} to an arbitrary pair of elements of GF (p) to consider
binary sequences as sequences over GF (p). Let σ : {0, 1} → GF (p) be an arbitrary one
to one function. We denote by σ(S) the result of applying σ to each term of the binary
sequence S. By observing that for any a 6= b ∈ GF (p), there is a linear transformation of
GF (p) mapping (0, 1) onto (a, b), we see

Proposition 3.7 Let σ : {0, 1} → GF (p). Then |λp(σ(S))− λp(S)| ≤ 1.

4 Finding p

The fact that λp(S) is low is of no use to a cryptanalyst unless p is known. In this section
we describe an algorithm that determines p with high probability. We actually determine q
with high probability. For purposes of cryptanalysis, however, we only need p.

It was recently shown that, for a geometric sequence S based on an m-sequence over
GF (q), q can be determined with high probability if at least 2q8 bits of S are known [9].
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This attack is based on the calculation of a partial period autocorrelation function. More
available bits give a higher probability of success.

We will show that, in fact, the same information can be obtained with far fewer bits
of the sequence available – approximately q4 bits – using a simpler statistical measure, the
partial imbalance (the imbalance of a sequence is the difference between the number of zeros
and the number of ones).

An attack on a system using geometric sequences proceeds in two stages. First, use the
partial imbalance to determine q (with high probability). Knowing q tells us p, and this
then allows us to use the Berlekamp-Massey algorithm to synthesize a linear feedback shift
register over GF (p) that generates S. The number of bits needed for this last stage to work
is determined by the linear complexity calculation in Section 3.

Suppose a small partial sequence of S of length D is known. We show that the imbalance
of the partial sequence is close to D/q when q is odd. More specifically, we show that for
odd q the expected imbalance (letting the starting point of the partial sequence vary and
keeping the size of the partial sequence fixed) is approximately D/q, and that the variance is
sufficiently small that the partial imbalance is close to its expectation with high probability
(this is a consequence of Chebyshev’s inequality [1]). One way to view our results is that
we have introduced a new statistical test that a sequence must satisfy in order to be secure
– the variance of the partial imbalance must be high for small partial sequences if the
imbalance is high. To simplify notation, we will sometimes transform sequences of 0’s and
1’s into sequences of +1’s and −1’s. In the case of geometric sequences, we will write
G(x) = (−1)g(x) to accomplish this.

4.1 The Imbalance and Partial Imbalance

Definition 4.1

1. The imbalance of a binary sequence S of period N is

IS =
N∑

i=1

(−1)Si

= |{i : Si = 0}| − |{i : Si = 1}|
= 2|{i : Si = 0}| −N.

2. The imbalance of a function g : GF (q) → GF (2) is

Ig =
∑

x∈GF (q)

G(x)
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= |{x : g(x) = 0}| − |{x : g(x) = 1}|
= 2|{x : g(x) = 0}| − q.

Thus we have

Proposition 4.2 The imbalance of a geometric sequence S of period qn−1 with feedforward
function g : GF (q) → GF (2) is

IS = qn−1Ig −G(0).

Proof: This follows from the fact that each element of GF (q) is the image under Trqn

q of
exactly qn−1 elements of GF (qn), and that Trqn

q (0) = 0. 2

If q is even, then the feedforward function g can be chosen so that Ig = 0. It follows
that IS = ±1, and we can learn nothing about S by computing its imbalance. If, however,
q is odd, then the smallest imbalance of g that we can achieve is ±1. In this case we have

IS = ±qn−1 ± 1.

Thus for such a sequence we can hope to determine qn−1 if we can compute IS. Such a
computation is, unfortunately, hopeless – we would need to know the entire sequence S to
compute IS. We can ask, however, how much can be learned about a sequence if only a
partial sequence is known. This leads to the following definition.

Definition 4.3 The partial imbalance of a sequence is defined by limiting the range of values
in the sum defining the imbalance to a fixed window. It is parametrized by the start position
k and length D of the window:

IS(k,D) =
D+k−1∑

i=k

(−1)Si .

If an adversary to a stream cipher system knows D consecutive bits of a sequence, then
she can compute a partial imbalance with window size D. The start position k will be
unknown to the adversary. If the partial imbalance is sufficiently well behaved for small
enough windows and varying k, then the adversary can get useful information. It is hopeless
to expect a precise expression for the partial imbalance. We will show, however, that the
expected partial imbalance (averaged over the starting position of the window) is closely
related to the full imbalance. We will also show that for certain window sizes the variance of
the partial imbalance (with fixed window size D, but varying start position k) is low enough
that an adversary has high probability of discovering q. This is a consequence of Chebyshev’s
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inequality [1] which implies that a bound on the variance implies a bound on the probability
that a particular partial imbalance is far from the expected partial imbalance.

We begin by showing that the expected partial imbalance of any sequence can be deter-
mined from its full imbalance. We denote the expectation of a random variable X by E[X].
All expectations are taken for fixed window size D, assuming a uniform distribution on all
start positions k.

Theorem 4.4 Let S be a periodic binary sequences with period N . Then the expectation of
the partial imbalance of S is given by

E[IS(k,D)] =
D

N
IS.

Proof: Follows by an interchange of summations and a shift of indices to make the double
sums independent. 2

In the case of interest, we have

Corollary 4.5 Suppose S is a geometric sequence based on an m-sequence of span n with
elements in GF (q), with feedforward function g : GF (q) → GF (2). Assume that S is as
balanced as possible, i.e., |Ig| ≤ 1. Then the expected partial imbalance of S is

E[IS(k, D)] = D(±qn−1 ± 1)/(qn − 1)

if q is odd, and
E[IS(k, D)] = ±D/(qn − 1)

if q is even.

4.2 The Algorithm

If q is even, then the expected partial imbalance is too small to hope to recover useful infor-
mation. If q is odd, then the expected partial imbalance is approximately D/q, and we can
hope to learn q from it. If the partial imbalances (for varying k) lie close to the expected
partial imbalance, then we can compute a partial imbalance (with q and k unknown), deter-
mine which expected partial imbalance D(±qn−1± 1)/(qn − 1) the result lies closest to, and
conclude that q was used to generate the sequence. That is, we use the following algorithm:

Algorithm for Finding q:

1. Establish disjoint intervals U3, U5, · · · in the positive real line (one for each power of
an odd prime, or, for simplicity, one for each odd integer).
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2. Input a partial sequence Sk,Sk+1, · · · ,Sk+D−1 of S (Determined, say, by a known
plaintext attack on a stream cipher system. The value k is unknown).

3. Compute x =
∑k+D−1

i=k (−1)Si (= IS(k,D)).

4. Find q such that |x| ∈ Uq.

5. Output q.

Is this algorithm likely to be successful? Only if we can choose disjoint intervals Uq

so that IS(k,D) is in Uq with high probability whenever q was used as the parameter
for generating S. If we can show that the partial imbalances do not deviate too much from
their expectations, then it will be possible to choose the intervals Uq. Chebyshev’s inequality
bounds the deviation of a random variable from its expectation in terms of its variance.

Proposition 4.6 (Chebyshev’s Inequality [1]) If X is a random variable with expecta-
tion E[X] and variance V (X), then for any ε > 0,

Prob{|X − E[X]| > ε} < V (X)/ε2.

As it turns out, the algorithm needs at least q4 bits for success, more than are available
if n < 4, so we will assume n ≥ 4. If q is an odd prime power, then for n ≥ 4

D(q3 − 1)

q4 − 1
≤ |E[IS(k,D)]| ≤ D(q3 + 1)

q4 − 1
.

The interval Uq should contain all these points. For each odd q, we will pick a positive real
number εq, such that

D(q3 + 1)

q4 − 1
+ εq =

D((q − 2)3 − 1)

(q − 2)4 − 1
− εq−2.

We then let Uq be the interval from D(q3 − 1)/(q4 − 1) − εq to D(q3 + 1)/(q4 − 1) + εq. If
we can choose the εq so that

V (IS(k, D))

ε2
q

<
1

2

whenever S is a geometric sequence of period qn − 1 based on a feedforward function g :
GF (q) → GF (2), and n ≥ 4, then Chebyshev’s inequality can be applied to show that
the algorithm is successful with probability at least 1/2. In the next section we show that
this is the case if enough bits are available, i.e., if D is large enough. Moreover, both
V (IS(k, D)) and εq will be proportional to D, so the more bits that are available, the higher
the probability of success.
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4.3 The Variance of the Partial Imbalance

We next consider the variance of the partial imbalance. This section will consist of a proof
of the following bound, which implies, for example, that 2q4 bits of a geometric sequence
with balanced feedforward function and odd q are sufficient to determine q with probability
at least one half. The probability of success goes up if more bits of S are known. We let
ν = (qn − 1)/(q − 1).

Theorem 4.7 For any τ , if D ≤ ν, then the variance of the partial imbalance of a geometric
sequence with window D is bounded above by D.

Proof: Recall that the variance of a random variable X is defined to be E[(X −E[X])2] =
E[X2]−E[X]2, so we must determine the second moment E[IS(k,D)2] of the partial imbal-
ance. We can reduce this determination to the determination of the cardinalities of certain
sets, as stated in the following proposition. By identifying GF (qn) with n-dimensional affine
space over GF (q), these sets are identified with intersections of hyperplanes. If s ∈ GF (q),
and A ∈ GF (qn), then we denote by Hs

A the hyperplane {x : Trqn

q (Ax) = s}.

Proposition 4.8 If S is a geometric sequence, then

E[IS(k,D)2] =
1

qn − 1

D−1∑
i,j=0

(
∑

s,t∈GF (q)

Ni,j(s, t)G(s)G(t)− 1)

where
Ni,j(s, t) = |Hs

αi ∩H t
αj |.

Proof:

E[IS(k,D)2] =
1

qn − 1

qn−2∑
k=0

IS(k, D)2

=
1

qn − 1

qn−2∑
k=0

(
k+D−1∑

i=k

G(αi))2

=
1

qn − 1

qn−2∑
k=0

k+D−1∑
i,j=k

G(αi)G(αj)

=
1

qn − 1

qn−2∑
k=0

D−1∑
i,j=0

G(αi+k)G(αj+k)

=
1

qn − 1

D−1∑
i,j=0

qn−2∑
k=0

G(αi+k)G(αj+k)
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=
1

qn − 1

D−1∑
i,j=0

∑
x6=0∈

GF (qn)

G(αix)G(αjx)

=
1

qn − 1

D−1∑
i,j=0

(
∑

s,t∈GF (q)

Ni,j(s, t)G(s)G(t)− 1).

2

Thus we must determine the values of Ni,j(s, t), which can be qn−1, qn−2, or 0. We next
analyse the circumstances under which each of these values occurs.

Proposition 4.9 For any 0 ≤ i, j ≤ qn − 2, and s, t ∈ GF (q),

1. If αi−j 6∈ GF (q), then Ni,j(s, t) = qn−1.

2. If αi−j ∈ GF (q) (i.e, there is an integer m such that i − j = m(qn − 1)/(q − 1)) and
αit = αjs, then Ni,j(s, t) = qn−2.

3. If αi−j ∈ GF (q) and αit 6= αjs, then Ni,j(s, t) = 0.

Proof: Two hyperplanes in GF (qn) are either (1) parallel, in which case they coincide or
their intersection is empty, or (2) in general position, in which case their intersection has
cardinality qn−2.

Suppose that αi−j ∈ GF (q). Then Trqn

q (αjx) = t if and only if

Trqn

q (αix) = Trqn

q (αi−jαjx) = αi−jTrqn

q (αjx) = αi−jt.

Thus
Hs

αi ∩H t
αj = Hs

αi ∩Hαi−jt
αi .

This set is empty if αjs 6= αit, otherwise it consists of a single hyperplane. In particular,
Hs

αi and H t
αj are parallel.

Conversely, suppose Hs
αi and H t

αj are parallel. Any hyperplane Hu
A is parallel to H0

A

– for any fixed y ∈ GF (qn) such that Trqn

q (Ay) = u, Hu
A is the translation of H0

A by
y. It follows that H0

αi and H0
αj are parallel. Since x = 0 lies on both hyperplanes, they

must coincide. That is, Trqn

q (αix) = 0 if and only if Trqn

q (αjx) = 0. This implies that
the GF (q)-linear functions Trqn

q (αix) and Trqn

q (αjx) agree on n − 1 linearly independent
vectors z1, · · · , zn−1 ∈ GF (qn). Let zn be a point of GF (qn) which is not in H0

αi , and let
u = Trqn

q (αizn) and v = Trqn

q (αjzn). Consider the GF (q)-linear function

f(x) =
u

v
Trqn

q (αjx).
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Then f and Trqn

q (αix) agree on z1, · · · , zn−1 (both functions are zero on these points). More-
over,

f(zn) =
u

v
Trqn

q (αjzn)

=
u

v
v

= u

= Trqn

q (αizn),

so f and Trqn

q (αix) agree on a set of n independent vectors in GF (qn), hence agree every-
where. In other words, for all x,

Trqn

q (αix) = f(x)

=
u

v
Trqn

q (αjx)

= Trqn

q (
u

v
αjx).

It follows that for all x,

Trqn

q ((αi − u

v
αj)x) = 0.

This is only possible if αi−j = u/v ∈ GF (q). 2

We return to our computation of the second moment of the partial imbalance of geometric
sequences with window size D ≤ ν. This implies that Ni,j(s, t) = qn−2 unless i = j, in which
case Ni,j(s, t) = qn−1 if s = t, and Ni,j(s, t) = 0 otherwise. We have

E[IS(k,D)2] =
1

qn − 1

D−1∑
i,j=0

(
∑

s,t∈GF (q)

Ni,j(s, t)G(s)G(t)− 1)

=
1

qn − 1
(

∑
0≤i6=j<D

(
∑

s,t∈GF (q)

qn−2G(s)G(t)− 1) +
D−1∑
i=0

(
∑

s∈GF (q)

qn−1G(s)2 − 1))

=
1

qn − 1
(

∑
0≤i6=j<D

(qn−2I2
g − 1) +

D−1∑
i=0

(qn − 1))

=
(D2 −D)(qn−2I2

g − 1)

qn − 1
+ D.

It follows that
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V (IS(k, D)) = E[IS(k, D)2]− E[IS(k,D)]2

=
(D2 −D)(qn−2I2

g − 1)

qn − 1
+ D − (

D(qn−1Ig ± 1)

qn − 1
)2

= D(1−
(qn−2I2

g − 1)

qn − 1
) +

D2

(qn − 1)2
((qn − 1)(qn−2Ig − 1)− (qn−1Ig ± 1)2)

= D(1−
(qn−2I2

g − 1)

qn − 1
)− D2qn−2(q ± Ig)

2

(qn − 1)2

< D.

This proves the theorem on the variance of partial imbalance. 2

4.4 Choosing the Intervals

In this section we describe how the intervals Uq can be chosen so that the results of the
previous section, combined with Chebyshev’s inequality, imply that the algorithm for finding
q is successful with high probability. We assume q is odd and that g is as balanced as possible
(that is, I(f) = ±1). This will make the sequence as statistically random as possible.

As explained in Subsection 4.2, we will find a positive number εq for each odd q. It would
suffice to do so for each odd prime power q. However, to avoid the difficulty of recognizing
prime powers, we simply do so for each odd prime. In any case, in the sequence of odd
prime powers there will be consecutive odd numbers – e.g., 25 and 27 – so the worst case
complexity cannot be improved by restricting q to be an odd prime power.

Proposition 4.10 Let

εq =
q2 − 3

q4 − 1
.

Let

Uq = [
q3 − 1

q4 − 1
− εq,

q3 + 1

q4 − 1
+ εq]

= [
q3 − q2 + 2

q4 − 1
,
q3 + q2 − 2

q4 − 1
].

Then {Uq} are pairwise disjoint intervals in the real line. If S is a geometric sequence based
on an m-sequence over GF (q) of span at least 4, then the interval of radius εq centered at
E[IS(k, D)] is contained in Uq.
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Proof: The first assertion is straightforward. The second assertion holds because, as was
shown in Subsection 4.2,

q3 − 1

q4 − 1
≤ E[IS(k, D)] ≤ q3 + 1

q4 − 1

for the geometric sequences in question. 2

We can now combine this with Chebyshev’s inequality and our results on the variance
of the partial imbalance to obtain the following theorem.

Theorem 4.11 Let n ≥ 4, and let S be a geometric sequence based on an m-sequence of span
n over GF (q) and a feedforward function that is as balanced as possible. Then the algorithm
for determining q using partial imbalances with a window D ≤ ν = (qn − 1)/(q − 1) will
succeed with probability at least

1− (q4 − 1)2

D(q2 − 3)2
.

Proof: The probability that the algorithm is successful is the probability that IS(k,D) is
in Uq. We have

Probk{IS(k,D) ∈ Uq} ≥ Probk{|IS(k, D)− E[IS(k,D)]| < εq}

≥ 1− Vk(IS(k,D))

ε2
q

, by Chebyshev’s inequality

≥ 1− D

ε2
q

, by Theorem 4.7

≥ 1− (q4 − 1)2

D(q2 − 3)2
, by the definition of εq.

2

If n = 5 and q ≤ 5, or if n = 4 this probability will be negative for all D, so Chebyshev’s
inequality does not tell us whether the attack has a positive probability of determining q.
However, we have

Corollary 4.12 If n = 5 and q ≥ 7, or n ≥ 6, then using a window of size

D >
(q4 − 1)2

(q2 − 3)2

gives a positive probability of successfully determining q.

For example, if q = 27, then 535,841 bits suffice to determine q with positive probability.
Of course we want to determine q with high probability.
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Corollary 4.13 The probability that the algorithm is successful is greater than δ if we use
a window size of

D >
(q4 − 1)2

(1− δ)(q2 − 3)2
.

This is possible if n is large enough that

qn − 1

q − 1
>

(q4 − 1)2

(1− δ)(q2 − 3)2
.

For example, if q = 27 and n ≥ 6, then we can determine q with probability at least 1/2
if 1,071,682 bits are known, a relatively small number.

5 Conclusions

Perhaps the most important aspect of this paper is the consideration, for a binary sequence,
of linear complexity relative to an odd prime number. We have demonstrated that this
linear complexity can be far smaller than the period of the sequence, even when the usual
linear complexity is quite large. This can be exploited in a cryptologic attack. The belief
that high linear complexity gives a degree of security is fallacious. At the very least, the
linear complexity must be high relative to all small primes.

We have shown that geometric sequences based on m-sequences over a finite field GF (q)
of odd characteristic p can be cracked if enough bits are known. By finding upper bounds
on the linear complexity relative to p we show that these sequences are vulnerable to a
Berlekamp-Massey type attack. The number of bits required depends on the parameters of
the sequence (not simply the period). If geometric sequences of this type continue to be used,
this dependence and considerations of efficiency should influence the choice of parameters.
It seems that it is best to choose p fairly large and generate a sequence of period pp−1. This
gives an easily generated sequence with linear complexity relative to p as large as possible
for geometric sequences with approximately this period.

We have also shown that if p is not known, then it can be discovered with high probability
if enough bits are known. The algorithm for determining p exploits the lack of balance in
geometric sequences and uses a new statistical measure, the partial imbalance. In general far
fewer bits are required to determine p than are required for the Berlekamp-Massey attack.
For example, if we use a geometric sequence S based on an m-sequence of span 17 over
GF (17), so n = p = q = 17, then λ17(S) is approximately 1.1x230. The period of the
sequence is approximately 1.4x269. Thus with 2.2x230 bits available we can determine p
with probability at least 1 − 2−14, and then determine a linear feedback shift register over
GF (17) that outputs S. The drawback is that if λ17(S) is close to 230, then this feedback
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register will have span close to 230 and will generate the sequence much more slowly than
the original device using comparable hardware. It is an interesting question whether the
information we have acquired can be used to synthesize a faster device for generating the
sequence – such as the original device.

It is, of course, dangerous to rely on linear complexity as a measure of cryptographic
security. There are many other statistical tests a sequence must pass – in this paper we have
shown that the linear complexity relative to primes other than two must be high and the
variance of the partial imbalance must be high if the imbalance is large.
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