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Abstract. The multicovering radii of a code are recent generalizations of the
covering radius of a code. For positive m, the m-covering radius of C is the least
radius t such that every m-tuple of vectors is contained in at least one ball of
radius t centered at some codeword. In this paper upper bounds are found for the
multicovering radii of first order Reed-Muller codes. These bounds generalize the
well-known Norse bounds for the classical covering radii of first order Reed-Muller
codes. They are exact in some cases. These bounds are then used to prove the
existence of secure families of keystreams against a general class of cryptanalytic
attacks. This solves the open question that gave rise to the study of multicovering
radii of codes.
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1. Introduction

In this paper we derive upper bounds on the multicovering radii of
first order Reed-Muller codes. In some cases the bounds are shown to
be exact. We then use these bounds to strengthen an earlier result
concerning the existence of families of stream ciphers that are asymp-
totically secure against a certain very general class of cryptanalytic
attack.

Multicovering radii, which were introduced recently [8], are defined
as follows. We let F2 = {0, 1} denote the field with two elements. We
also denote the Hamming distance between two vectors u and v by
dist(u,v) and the complement of a vector v by v̄. Vectors are indicated
by boldface lower case letters, and the components of the vector v are
v1, v2, · · ·.

DEFINITION 1.1. Let C be a binary code of length n. Let m be a
positive integer. The m-covering radius of C, denoted by tm(C), is the
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smallest integer t such that every m-tuple of vectors in Fn
2 is con-

tained in a ball of radius t around at least one codeword in C. That is,
∀v1, · · · ,vm ∈ Fn

2 : ∃c ∈ C : ∀i = 1, · · · ,m : dist(c,vi) ≤ t.

This is a natural generalization of the classical notion of covering
radius, which is exactly the case when m = 1 [2, 3, 5]. When m > 1, it
is known that there is no code of length m, dimension n, and m-covering
radius t if

t <

⌈
n + blog2(m)c − 1

2

⌉
.

This bound is not in general tight, but no general tight bound is known.
The notion of multi-covering radii first arose in an investigation of

the existence of stream ciphers secure against a large class of attacks.
A stream cipher is a cryptosystem in which the cipher text is the
bitwise exclusive-or of the message with a binary pseudorandom key
sequence. The key sequence is known to the sender and receiver. A
known plaintext attack on a stream cipher reveals precisely those bits
of the key sequence that correspond to the known plaintext bits. Thus
the a stream cipher is not secure if the key sequence can be inferred
from a subsequence (perhaps with some constraints on the resources of
the adversary). Note, however, that the converse is not true: a stream
cipher may be insecure even if its key sequence is hard to infer from a
subsequence.

By a sequence generator we mean a finite automaton with output.
Many of the specific attacks on stream ciphers that have been con-
sidered in the literature have the general form: input a prefix of a
sequence; find a sequence generator (usually in a specified class of gen-
erators) whose output agrees with the prefix. A model for this general
type of attack was recently considered by the second author [7, 9].
Attacks can be deterministic – meaning the output from the generator
found must agree with the original sequence exactly – or probabilistic
– meaning the output from the generator found must agree with the
original sequence in significantly more than half the bits. A class of
sequences can be secure against all attacks infinitely often – meaning
that for each attack, there are infinitely many sequences in the class
that resist the attack – or almost everywhere – meaning that for each
attack all but finitely many sequences in the family resist the attack.
It was shown previously that there are families of sequences that are
secure against all deterministic attacks almost everywhere and there are
families that are secure against all probabilistic attacks infinitely often,
but the existence of families that are secure against all probabilistic
attacks almost everywhere was left open. It was apparent from this
earlier study that an affirmative answer could be proved if tight enough
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bounds on the multicovering radii of Reed-Muller codes could be found.
In fact, it was this question that led to the invention of the notion of
multicovering radii.

In Section 2 we find upper bounds on the multicovering radii of
strength two codes. First order Reed-Muller codes are strength two
codes, so these bounds apply to them. In Section 3 we show that
in some cases these bounds are tight. In Section 4 we improve the
bounds from Section 2 for higher strength codes. In Section 5 we use
the bounds from Section 2 to prove the existence of families of effi-
ciently generated sequences that resist attacks of the above type in the
probabilistic/almost everywhere sense. We emphasize, however, that
this does not mean these sequences provide secure stream ciphers.

2. Norse Bound for Multi-Covering Radius

Let m be a positive integer. Let v ∈ F r
2 and b ∈ F2, and let cv,b be the

vector indexed by F r
2 whose uth coordinate is

cv,b
u = b +

m∑
i=1

uivi = b + v · u.

Then RM(1, r), the rth first order Reed-Muller code, consists of all
vectors cv,b,v ∈ F r

2 , b ∈ F2. Let n = 2r, so RM(1, r) is a [n, r +
1, n/2] code [10]. RM(1, r) is an example of a strength 2 code. That
is, every pair of coordinates in RM(1, r) takes on any fixed pair of
values for exactly one quarter of the codewords. Since cv,0 and cv,1 are
complementary, RM(1, r) is closed under complement as well.

It has long been known [6] that the ordinary covering radius t of
RM(1, r) is bounded by

t1(RM(1, r)) ≤

⌊
2r − 2r/2

2

⌋
.

This bound is known as the Norse Bound and it is this that we gener-
alize. It is further known that equality holds if r is even [12].

THEOREM 2.1. Let C be any strength 2 code of length n. Suppose C
is closed under complement. Then

tm(C) ≤

⌊
n +

√
mn/2

2

⌋
.
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Proof. Let x ∈ Fn
2 . Then

∑
c∈C

(2dist(x, c)− n)2 =
∑
c∈C

 n∑
j=1

(−1)cj+xj

2

=
n∑

j,k=1

(−1)xj+xk
∑
c∈C

(−1)cj+ck

=
n∑

j=1

(−1)xj+xj |C|

= n|C|.

It follows that for any x1, · · · ,xm ∈ Fn
2 ,∑

c∈C

m∑
i=1

(2dist(xi, c)− n)2 = mn|C|.

Therefore there is at least one c ∈ C such that
m∑

i=1

(2di − n)2 ≤ mn,

where di = dist(xi, c). Without loss of generality, assume that

|2d1 − n| ≥ |2d2 − n| ≥ · · · ≥ |2di − n|.

Note that all the values |2dist(x, c)− n| remain the same if we replace
c by its complement. Consequently, by replacing c with its complement
(which is also a codeword) if necessary, we may assume that 2d1−n ≤ 0.
We can then estimate for every i ≥ 2

(2di − n)2 ≤ 1
2
(
(2d1 − n)2 + (2di − n)2

)
≤ 1

2

m∑
j=1

(2dj − n)2

≤ 1
2
mn.

Hence 2di − n ≤
√

mn/2, and therefore for all i ≥ 2

di ≤
1
2

(
n +

√
mn/2

)
.

Because d1 ≤ n/2, this also holds for i = 1, proving our claim.
2
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COROLLARY 2.2. For any r > 0 we have

tm(RM(1, r)) ≤ 2r−1 +
⌊√

m2r−3
⌋

.

Proof. The first order Reed-Muller codes are known to be strength
2 codes.

2

3. Exact Values

In this section we show that the bound in Corollary 2.2 is tight if m is
an odd power of 2 and r is even; and if m is an even power of 2 and r
is odd; and for m = 2 and r ∈ {1, 3, 5}. These results lead to general
lower bounds, although a significant gap between the lower and upper
bounds remains.

THEOREM 3.1. Assume that C is a binary self-complementary code
and has strength two. If C has covering radius 1

2(n−
√

n) then t2(C) =
1
2(n +

√
n).

Proof. In the proof of Theorem 2.1 we saw that∑
c∈C

(2dist(x, c)− n)2 = n|C|. (1)

If the covering radius of C equals 1
2(n−

√
n), we know that there exists

a vector x ∈ Fn
2 such that

dist(x, c) ≥ 1
2
(n−

√
n) (2)

for all c ∈ C. Since C is self-complementary, the complement c of every
codeword c ∈ C also belongs to C, and so by (2),

dist(x, c) = n− dist(x, c)

≤ n− 1
2
(n−

√
n)

=
1
2
(n +

√
n).

In other words,
|2dist(x, c)− n| ≤

√
n. (3)

Together with (1) this implies that in fact equality holds for all c ∈ C
in (3), i.e.,

dist(x, c) ∈
{

1
2
(n−

√
n),

1
2
(n +

√
n)
}

.
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Let us now take x1 = x and x2 = x, the complement of x. Then for
all c ∈ C we have dist(c,x1) = 1

2(n +
√

n) or dist(c,x2) = 1
2(n +

√
n),

proving that t2(C) ≥ 1
2(n +

√
n).

2

Since the first-order Reed-Muller codes of even order satisfy the
second Norse bound with equality, we obtain the following corollary,

COROLLARY 3.2. For all s,

t2(RM(1, 2s)) = 22s−1 + 2s−1.

Now consider larger values of m.

THEOREM 3.3. If C is self-complementary, then tm(C) = n for all
m ≥ |C|.

Proof. This is trivial, because thanks to the condition m ≥ |C| we
can choose x1, · · · ,xm to include all the codewords of C.

2

In particular, when C is a first-order Reed-Muller code this means
that tm(RM(1, r)) = n whenever m ≥ 2r+1.

THEOREM 3.4. Assume that m = 22t+1. Then for all s ≥ t ≥ 0,

tm(RM(1, 2s)) =
n +

√
mn/2

2
= 22s−1 + 2s+t−1.

Proof. We keep m fixed and prove the result by induction on s. In fact
we prove the stronger result that there also exists a self-complementary
set T of vectors y1, · · · ,ym such that

max
1≤i≤m

dist(yi, c) ≥ tm(RM(1, 2s))

for every c ∈ RM(1, 2s).
When s = t we have m = 2n = |RM(1, 2s)|. By Theorem 3.4,

tm(RM(1, 2s)) = n (4)

=
n +

√
mn/2

2
. (5)

Furthermore, we can take T = RM(1, 2s).
Assume then that the formula is known to be correct for s− 1 and

that furthermore we know there is a self-complementary set of vectors
y1, · · · ,ym such that

max
1≤i≤m

dist(yi, c) ≥ tm(RM(1, 2(s− 1))) (6)
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for every c ∈ RM(1, 2(s− 1)). We show that the same is true for s.
Using the recursive property

RM(1, r) = {(u,u + v) | u ∈ RM(1, r − 1),v ∈ RM(0, r − 1)}

twice, we see that all the codewords of RM(1, 2s) are of one of the
types

(u,u,u,u), (u,u,u,u), (u,u,u,u), (u,u,u,u) (7)

where u ∈ RM(1, 2(s− 1)). We now take

xi = (yi,yi,yi,yi)

for i = 1, · · · ,m. The vectors y1, · · · ,ym form a self-complementary set,
so the same is true of the vectors x1, · · · ,xm. Consider the distances
dist(xi, c) for c ∈ RM(1, 2s). If c is of the first type in (7), then

dist(xi, c) = dist((yi,yi,yi,yi), (u,u,u,u))
= 3dist(yi,u) + (n/4− dist(yi,u))
= 2dist(yi,u) + n/4,

where n = 22s. By (4),

max
1≤i≤m

dist(xi, c) ≥ 2tm(RM(1, 2(s− 1))) + n/4.

The same is true also if c is of the type (u,u,u,u) or of the type
(u,u,u,u). Assume finally that c = (u,u,u,u). Because RM(1, 2(s−
1)) is self-complementary, we know that u ∈ RM(1, 2(s−1)). Applying
(4) to u we get

min
1≤i≤m

dist(yi,u) = n/4− max
1≤i≤m

dist(yi,u)

≤ n/4− tm(RM(1, 2(s− 1))),

which together with

dist(xi, c) = dist((yi,yi,yi,yi), (u,u,u,u))
= dist(yi,u) + 3(n/4− dist(yi,u))
= 3n/4− 2dist(yi,u)

implies that also in this case

max
1≤i≤m

dist(xi, c) ≥ 3n/4− 2(n/4− tm(RM(1, 2(s− 1)))

= 2tm(RM(1, 2(s− 1))) + n/4.
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Consequently,

tm(RM(1, 2s)) ≥ 2
n/4 +

√
m(n/4)/2
2

+
n

4

=
n +

√
mn/2

2
,

and the claim follows from Theorem 2.1.
2

In exactly the same way we obtain the following result for the codes
RM(1, 2s + 1).

THEOREM 3.5. Assume that m = 22t with t > 0. Then for all s ≥ t−1

tm(RM(1, 2s + 1)) =
n +

√
mn/2

2
= 22s + 2s+t−1.

Finally, we consider odd values of r in the case m = 2. For r = 1,
RM(1, r) is the set of all length 2 vectors. This code is known to have
2-covering radius equal to 1 (Proposition 3, [8]).

In general, RM(r − 2, r) is the extended hamming code Ĥr. In
particular, RM(1, 3) = Ĥ3. The unextended Hamming codes with
r ≥ 3 are known to have 2-covering radius equal to 2r−1 (Proposition 5,
[8]). Furthermore, extending a code by adding an overall parity check
increases the m-covering radius by 1 (Corollary 1, [8]). Therefore

t2(Ĥr) = t2(RM(r − 2, r))
= 2r−1 + 1.

In particular, t2(RM(1, 3)) = 5.

THEOREM 3.6.
t2(RM(1, 5)) = 18.

Proof. By Theorem 2.1, t2(RM(1, 5)) ≤ 18. We show that also
t2(RM(1, 5)) ≥ 18.

We know that

RM(1, 5) = {(c, c), (c, c) | c ∈ RM(1, 4)}. (8)

The code RM(1, 4) has covering radius 6 and 2-covering radius 10. Let
y1 be any point at distance 6 from RM(1, 4) and y2 its complement.
Without loss of generality, y1 has weight 6 and y2 has weight 10. By
the proof of Theorem 3.1, we know that dist(y1, c),dist(y2, c) ∈ {6, 10}
for all c ∈ RM(1, 4). Now take

x1 = (y1,0), x2 = (y2,1),
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where 0 and 1 are the all-zero and all-one words of length 16. The
codewords (0,0), (1,0) ∈ RM(1, 4) are at least distance 6 + 16 from
x2; and the codewords (0,1), (1,1) ∈ RM(1, 4) are at least distance
6 + 16 from x1. It therefore suffices to consider the other codewords
(c, c), (c, c) ∈ RM(1, 4), where c 6= 0,1, i.e., c and c each has weight
8. However,

dist((c, c), (y1,0)) = dist(c,y1) + 8

and
dist((c, c), (y2,1)) = dist(c,y2) + 8,

so that one of these distances always equals 18 and the other 14.
2

In exactly the same way we can prove the following more general
result. For s = 1 and s = 2 the lower and upper bounds coincide, but
already for s = 3 we only get 68 ≤ t2(RM(1, 7)) ≤ 69.

THEOREM 3.7.

22s + 2s−1 ≤ t2(RM(1, 2s + 1)) ≤ 22s +
√

2 · 2s−1.

The previous results and the monotonicity of tm(C) in m can be
used to give lower and upper bounds for tm(RM(1, r)) in the general
case. Together Theorems 2.1, 3.4, and 3.5 give the following immediate
corollary.

THEOREM 3.8. For all m ≥ 2 and r ≥ blog2(m)c − 2,

2r−1 +
√

m2r−5 =
n +

√
mn/8

2
≤ tm(RM(1, r))

≤
n +

√
mn/2

2
= 2r−1 +

√
m2r−3.

4. Higher Strength Codes

In this section we consider a strength t code C. This means that if we fix
any t-tuple of indices in the codewords, then every binary t-tuple occurs
the same number of times in these positions as we let the codewords
vary. As it turns out, only the case when the strength is even leads to
useful bounds.
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THEOREM 4.1. Let C be any strength 2s code of length n. Then

tm(C) ≤ n

2
+
(

(2s)!m
2s+1s!

)1/2s√
n.

Proof. Let x ∈ Fn
2 . Let

Γx =
∑
c∈C

(2dist(x, c)− n)2s.

Then

Γx =
∑
c∈C

(
n∑

i=1

(−1)ci+xi

)2s

=
∑

i1,···,i2s

(−1)
P2s

j=1 xij

∑
c∈C

(−1)
P2s

j=1 cij .

For any vector i = (i1, · · · , i2s) with 1 ≤ ij ≤ n and index k, let τk(i)
be the number j such that ij = k. Then

Γx =
∑

i

(−1)
Pn

k=1 τk(i)xk
∑
c∈C

(−1)
Pn

k=1 τk(i)ck .

For a given i, if any τk(i) is odd, then the inner sum is zero (since C has
strength 2s). Otherwise the inner sum equals |C|. We want to bound
the number of vectors i such that τk(i) is even for all k. All such i can be
obtained in the following way: partition the set {1, 2, · · · , 2s} of indices
into a union of s 2-element subsets and for each subset assign one of
the values 1, 2, · · · , n. Since the partitioning can be done in exactly
(2s)!/(2ss!) ways, there are at most

(2s)!
2ss!

ns

such vectors i. Consequently,

Γx ≤ |C|(2s)!
2ss!

ns.

Now suppose we are given any m vectors x1, · · · ,xm. Then
m∑

j=1

Γxj ≤ m|C|(2s)!
2ss!

ns

It follows that for some c ∈ C,
m∑

j=1

(2dist(xj , c)− n)2s ≤ m
(2s)!
2ss!

ns.
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The theorem follows using the same argument as in the proof of The-
orem 2.1.

2

Using Stirling’s approximation, we see that for large s,(
(2s)!
2ss!

)1/2s

∼
√

s.

Of course, trivially,
(2s)!
2ss!

≤ ss,

which proves the following corollary

COROLLARY 4.2. Let C be any strength 2s code of length n. Then

tm(C) ≤ n

2
+ 2s√m/2

√
sn.

5. Unpapproximability of Keystreams

Consider an algorithm which, given a large enough prefix of a sequence,
outputs an efficient generator of the sequence. If the required prefix is
small, then the sequence is not secure for use in a stream cipher. Several
cryptanalytic attacks (the Berlekamp-Massey algorithm [11], the 2-adic
rational approximation algorithm [7]) take just this form. In this section
we consider the existence of families of efficiently generated sequences
that resist all such attacks.

In earlier work [7, 9] it was shown that such families exist in two
senses. First we considered attacks that produce a generator whose
output agrees precisely with the given sequence. We exhibited a family
of sequences B1, B2, · · · such that any such attack produces large (hence
inefficient) generators for all sequences Bi with i large enough. Second,
we considered weaker attacks that are only required to produce a gen-
erator whose output agrees with the given sequence on substantially
more than half its bits. We exhibited a family of sequences C1, C2, · · ·
such that any such attack produces large (hence inefficient) generators
for infinitely many sequences Ci, but any particular sequence might
only resist attack by a single algorithm. The latter result used known
facts about the ordinary covering radii of Reed Muller codes.

We were unable, however, to combine the results and produces se-
quences that resist the weaker attacks for all large enough i. It was,
in fact, this question that motivated the study of multicovering radii.
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In this section we use the bounds on the multicovering radii of Reed
Muller codes from the preceeding sections to prove such a strengthened
result.

We stress, however, that the sequences described here should not be
construed to be secure. They simply resist these types of attacks. In
fact, it is easy to see that the first halves of the sequences described
here are easily precisely predicted from short prefixes. Nonetheless,
it is important to see that resistence to general classes of attacks is
possible. Unfortunately, in practice sequences are often touted as secure
when they can only be shown to have some nice statistical properties
and resist a single attack of this form, usually the Berlekamp-Massey
algorithm.

The link between unpredictability and multicovering radii is this. We
want security against a set of m cryptanalytic attacks that have access
to a prefix of a keystream. The periodic parts of the set of sequences
predicted by the attacks is a set of m vectors in Fn

2 for some n. We
choose a code with low m-covering radius. Then there is some codeword
c that is not far from any of the predicted sequences. It follows that
the complement of c is not close to any of the predicted sequences. Our
keystream is the complement of c.

We recall some of the definitions used previously to study the exis-
tence of secure stream ciphers [9].

DEFINITION 5.1.
A keystream generator (or simply generator) is a 4-tuple (S, F, g, s0)

such that

1. S is a finite set (the states);

2. F : S → S is a function (the state change function);

3. g : S → {0, 1} is a function (the output function); and

4. s0 is an element of S (the initial state).

A keystream generator outputs an infinite eventually periodic binary
sequence by iterating the output and state change operations:

g(s0), g(F (s0)), g(F (F (s0))), · · · .

The length of a generator is dlog(|S|)e, the number of bits required to
represent the states. We often use generators whose state space S is a
set of n bit vectors x = (x0, · · · , xn−1) for some n, whence the length is
n. We further generally use generators whose output functions are of the
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form g(x) = x0. In this case the generator is completely determined by
F and s0, and we often abuse the notation by identifying the generator
with F . Any generator can be replaced by one of this form by possibly
increasing the length by one.

The state change and output functions of our generators are de-
scribed as circuits using binary gates. Such circuits can be encoded as
binary strings [1]. The size of a generator F is the minimum number
of gates in a circuit that computes the function F . This corresponds to
evaluation time in a software implementation. The depth is the depth
of the minimum depth circuit that computes F . This corresponds to
evaluation time in a hardware implementation.

A family of (keystream) generators, F , is an infinite collection of
keystream generators. If B is an infinite eventually periodic binary
sequence with eventual period period(B) and 0 < r ≤ period(B), then
a generator (F, s) with output sequence B′ is said to r-approximate B
if for any k,

|{i, k ≤ i ≤ k + period(B)− 1 : bi = b′i}| ≥ r.

If 0 < r(p) ≤ p is any function, then the (F , r)-span of B is the least
integer n such that B can be r(period(B))-approximated by a generator
in Fn (or ∞ if there is no such n). The (F , r)-span of B is denoted by
λF ,r(B).

Let δ(n) be the maximum over all length n generators F in F of the
depth of F . We say F is

1. fast if δ(n) ∈ O(log(n)).

2. short if whenever F ∈ F generates sequence B, then λF ,m(B) is
O(log(period(B))).

DEFINITION 5.2. Let T be an algorithm, let F be a family of gen-
erators, and let 0 < r(p) ≤ p. We say that T is an r-effective F-
synthesizing algorithm if

1. it runs in polynomial time;

2. when given the input b0, · · · , bk−1, T outputs the encoding of a gen-
erator (F, s) ∈ F such that the first k output bits of F with initial
state s are b0, · · · , bk−1; and

3. there is a polynomial g(n) such that if B is any eventually periodic
sequence and n = λF ,r(B), then on input b0, · · · , bk−1 with k ≥
g(n), T outputs F ∈ F of length n that r-approximates B.
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THEOREM 5.3. Let h(n) be subexponential (in the sense that h ∈
O(an) for every a > 1), let 1/2 < ε < 1, and let

r(p) = min(
p

2
+ pε, p).

There exists a collection B of sequences such that

1. B can be generated by a family of fast short generators, F ; and

2. for every r-effective register synthesizing algorithm T generating
a family of registers, F ′, and for all but finitely many sequences
B ∈ B

λF ′,r(B) ≥ h(log(period(B))).
Proof. Let T1, T2, · · · be an enumeration of the r-effective synthesiz-

ing algorithms. We construct the sequence B in stages. At the mth stage
we construct Bm which simultaneously has large Hamming distance
from every sequence generated by T1, · · · , Tm with input a large enough
prefix of Bm. We do so using Reed-Muller codes and our bounds on
their multi-covering radii.

Recall that a linear feedback shift register (LFSR) of length k is a
keystream generator with state set F k

2 , state change function of the
form

F (x1, · · · , xk) = (x2, · · · , xk, f(x1, · · · , xk))

for some linear function f , and with output function

g(x1, · · · , xk) = x1.

The function f can be computed in depth log(k). For every k there are
LFSRs whose output sequence has period 2k − 1. Such sequences are
known as m-sequences.

The output from the generators we construct consists of an m-
sequence of period 2k − 1 followed by a RM(n, 1) codeword c for some
k and n. The first step is to see that it is possible to construct a fast
short generator that outputs such a sequence. The generator consists
of two parts: an LFSR that generates the m-sequence, and a generator
that outputs c. The overall generator can be made to output the m-
sequence, then switch to the generator of c. This is accomplished by
detecting the last state of the LFSR with an AND of k bits. This takes
depth log(k). When c has been output, the generator switches back to
the LFSR similarly.

Let c = cv,b ∈ RM(1, n), v ∈ Fn
2 , b ∈ F2. We can construct a

generator such that one period is c by modifying a maximum period
LFSR. We first modify a LFSR of period 2n−1 so it enters the all zero
state after the state (1, 0, · · · , 0) and enters the state (0, · · · , 0, 1) after
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the all zero state. This requires at most depth log(n) and one extra bit
of state. Now c can be generated by the output function

g(x1, · · · , xn) =
n∑

i=1

vixi + b.

This function can be computed by a circuit of depth O(log(n)).
The combined sequence, one period of which is the m-sequence of

period 2k − 1 followed by c, has period 2n + 2k − 1 and is generated by
a generator of length n + k + 3 (two extra bits are used for output and
for switching between the two modes of operation) and depth

O(log(n) + log(k)) = O(log(n + k + 3)).

Furthermore,

n + k + 3 ≤ 3 max(n, k)
≤ 3 log(2n + 2k − 1),

so this is a fast short generator.
We want sequences that are far from given sequences, but in the

Hamming metric, if c is close to b, then the complement c of c is far
from b: dist(c,b) = 2n − dist(c,b) if the length of the code is 2n.
The first order Reed-Muller code is closed under complementation, so
by Theorem 2.1, there is a first order Reed-Muller codeword whose
distance from every element of any given set of m sequences of length
2n is at least

2n

2
−
√

2m2n

4
.

For each r-synthesis algorithm Ti, let F i be the family of generators
that is output by Ti. We assume that T i is successful when given

gi(λF i,r(B))

bits of any sequence B, with gi a polynomial. At the mth stage of the
diagonalization we want to find a fast generator Fm, as described above,
with output Bm so that λF i,r(Bm) is large for every i = 1, · · · ,m.

Let gi(x) < x` for i = 1, · · · ,m. Let

a(k) = max
(

k

ε
,
log(m)
2ε− 1

)
.

Let k′ = a(k) + k be large enough that

h(k′) < (2k − 1)1/`
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and
p = 2k + 2a(k) − 1,

is larger than the period of any sequence Bj , j = 1, · · · ,m − 1 and
large enough that r(p) = p/2 + pε. Let n = a(k). Thus the generator
constructed above first generates an m-sequence of period

2k − 1 > h(a(k) + k)`

> gi(h(a(k) + k))

≥ gi(h(log(2k + 2a(k) − 1)))
= gi(h(log(p))).

It follows that if a sequence B of period p satisfies

λF i,r(B) < h(log(p)),

i = 1, · · · ,m, and agrees with the given m-sequence on its first 2k − 1
bits, then the sequence generated by the output of T i, i = 1, · · · ,m,
must agree with B on at least r(p) bits.

We choose a first order Reed-Muller codeword c ∈ RM(n, 1) so that
whatever sequence T i outputs given the 2k − 1 bits of the initial m-
sequence, i = 1, · · · ,m, the last 2n bits disagree with the codeword on
at least

2n

2
− (2m2n)1/2

4
bits. Thus the output of T i is correct on at most

2k − 1 +
2n

2
+

(2m2n)1/2

4
< r(2n + 2k − 1)

bits by the choice of n and k. Let Bm be the sequence one of whose
periods is the m-sequence followed by the codeword c. Then

λF i,r(B
m) > h

(
log
(

2n + 2k − 1
2

))
> h(log(period(Bm)))

for i = 1, · · · ,m.
2

6. Conclusions

We have given bounds on the multi-covering radii of first order Reed-
Muller codes and have shown that these bounds are tight in some cases.
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Even in the cases where they are not tight, we have lower bounds
whose difference from the upper bounds is small enough that tightening
the upper bounds would not lead to an asymptotic improvement in
Theorem 5.3. Any improvement would require reducing the 2n/2 term
in the bounds. This may be possible using bounds on the multi-covering
radii of the dth order Reed-Muller codes, d > 1. Thus we leave finding
such bounds as an interesting open problem.
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