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Abstract

For a binary pseudorandom sequence {Si} with period N , the partial period auto-
correlation function AS(τ, k, D) is defined by correlating the portion of the sequence
within a window of size D, and start position k, with the portion in another window
of the same size but starting τ steps later in the sequence. A distribution of possible
partial period autocorrelation values is obtained by allowing the start position k to
vary over all possible values 0 ≤ k < N . The expectation value is proportional to
the periodic autocorrelation function AS(τ). In this paper the variance in the partial
period autocorrelation values is estimated for a large class of binary pseudorandom se-
quences, the so-called “geometric sequences ”. An estimate is given for the minimum
window size D which is needed in order to guarantee (with probability of error less
than ε), that a signal has been synchronized, based on measurement of a single partial
period autocorrelation value.
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1 Introduction

During the last 30 years, a number of efforts have been made at understanding partial period
correlation properties of binary pseudorandom sequences. Even today, explicit results are
known for only a limited collection of sequences, and these have been difficult to arrive at.
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(See [9] and [5] for surveys of known results up to 1985.) In this paper we formulate explicit
partial period autocorrelation estimates for a large class of binary pseudorandom sequences,
the so-called geometric sequences. These are obtained by starting with a linear recurrence
sequence (or “linear feedback shift register sequence”) with values in a finite field GF (q), and
filtering the output through a nonlinear “feedforward function” f : GF (q) → GF (2) which
takes binary values. This large class of pseudorandom sequences includes m-sequences [3],
GMW sequences [4, 17], Bent sequences [15, 18], cascaded GMW sequences [7], the Chan-
Games stream cipher [1] and many others. Because they are readily generated using shift
register hardware, may have enormous linear span ([7], [1], [16]), and optimally low periodic
autocorrelation values ([7]), the geometric sequences are natural candidates for use in secure
spread spectrum applications. Knowledge of their partial period correlation properties is
desired for demodulation, synchronization, and evaluation of their cryptographic security
(see [16] , [18], and [1] ).

It is well known ([18], [9]) that the expected value of the partial period autocorrelation
values for a periodic sequence is proportional to the periodic autocorrelation values, which
have recently been computed for geometric sequences in general [2]. Thus, if the geometric
sequence is chosen so as to have low periodic autocorrelation, the same will be true for the
averaged partial period autocorrelation values. However, this information is of little value
without further knowledge of the spread of possible values of the partial period autocorre-
lations. In this paper we compute the expected value and the variance (or second moment)
of these partial period values, in a manner analogous to that of [18], where the case of m-
sequences was studied. We will show that, for geometric sequences, the variance in partial
period autocorrelation values is very small, by giving an estimate on the variance which does
not involve any knowledge of the parameters in the feedforward function f .

If {S1,S2, . . .} is a periodic binary pseudorandom sequence, a partial period autocorre-
lation value is obtained by correlating the portion of the sequence which appears within a
“window” of size D, which starts at position k, with the portion of the sequence appearing
in another window of the same size, but shifted τ steps later in the sequence. In this paper,
“expectation values” are obtained by averaging these values over all possible start positions
k. Several authors who have studied similar questions average these correlation values over
all possible start positions and all possible shifts τ . The double averaging results in a some-
what easier expression to evaluate but the resulting information may be less valuable than
that which is derived here.

The authors would like to thank Agnes Chan for indicating to us the importance of these
questions and W. Casselman for useful conversations.
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2 Geometric Sequences and Correlations

In this section we recall the definition of geometric sequences and some of their basic prop-
erties, and the definition of full and partial period autocorrelation functions of periodic
sequences. Geometric sequences are based on algebra over finite fields, and we recall first
some of the basic concepts we will use. See Lidl and Niederreiter’s or McEliece’s book [11, 12]
for a more detailed treatment of finite fields.

Let q be a fixed power of a prime number, and let GF (q) denote the Galois field with
q elements. We consider this to be a “base” field. For any n ≥ 1, we denote the trace
function from GF (qn) to GF (q) by Trqn

q , defined by Trqn

q (x) =
∑n−1

i=0 xqi
. Then Trqn

q is a
GF (q)-linear function, and every GF (q)- linear function f from GF (qn) to GF (q) can be
written in the form f(x) = Trqn

q (Ax), for some A ∈ GF (qn). For any m ≥ 1 we have,

Trqnm

q (x) = Trqn

q (Trqnm

qn (x)).
Let α be a primitive element of GF (qn). This means that every nonzero element of

GF (qn) is some power of α. The infinite periodic sequence U whose ith term is Ui =
Trqn

q (αi) ∈ GF (q) is known as an m-sequence over GF (q) of span n [11]. (The familiar case
of a binary m-sequence is obtained by taking q = 2.) We may also consider the sequence
whose ith term is Trqn

q (Aαi) for some fixed element A of GF (qn). This amounts to a cyclic
shift of the first sequence, so we do not consider it to be a distinct sequence here. Note,
however, that changing the primitive element α may result in a completely different m-
sequence. It is well known that every m-sequence can be generated by a “linear recurrence”,
or a linear feedback shift register of length n over GF (q). It has period qn−1, the maximum
possible period for a sequence generated by a linear feedback shift register of length n over
GF (q). Moreover, every maximal period linear recurrence sequence is (a shift of) an m-
sequence [11, pp. 394-410].

Throughout this paper we fix a prime power q, an integer n, a primitive element α ∈
GF (qn), and a (possibly nonlinear) “feedforward function” f : GF (q) → GF (2).

Definition 2.1 (Chan and Games [1]) The binary sequence S whose ith term is

Si = f(Trqn

q (αi)).

is the geometric sequence based on the primitive element α and feedforward function f .

Such a geometric sequence is a binary periodic sequence whose period divides qn−1. Geo-
metric sequences with q even have been suggested for use in spread spectrum communication
systems, due to their (in some cases) optimal autocorrelations, excellent cross-correlation
values, and relatively high linear complexities. Geometric sequences with q odd have been
used in applications where easily generated sequences with large linear complexities are
needed. The geometric sequence S is easy to generate if the feedforward function f is easy
to compute.
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Definition 2.2 The periodic autocorrelation function AS(τ) of S is the function whose value
at τ is the correlation of the τ -shift of S with itself.

AS(τ) =
qn−1∑
i=1

(−1)Si+τ (−1)Si

We next recall a result due to Chan, Goresky, and Klapper [2] regarding the autocor-
relation of a geometric sequence. We use the following notation: F (x) = (−1)f(x) (for
x ∈ GF (q)), I(f) =

∑
x∈GF (q) F (x), the imbalance1 of f , and ∆a(f) =

∑
x∈GF (q) F (ax)F (x),

the short autocorrelation function2 of f . Set ν = (qn − 1)/(q− 1). Then ατ ∈ GF (qn) lies in
the subfield GF (q) ⇐⇒ τ is a multiple of ν.

Theorem 2.3 The values for the periodic autocorrelation (with shift τ 6= 0) of the geometric
sequence S are:

1. AS(τ) = qn−2I(f)2 − 1, if τ is not a multiple of ν.

2. AS(τ) = qn−1∆ατ (f)− 1, if ν divides τ .

Corollary 2.4 Assume the geometric sequence S is as balanced as possible, i.e. I(f) = ±1
if q is odd, and I(f) = 0 if q is even. Then for a shift τ that is not a multiple of ν, the
periodic autocorrelation of S is

AS(τ) = qn−2 − 1

if q is odd, and
AS(τ) = −1

if q is even. Furthermore, for q even it is possible to choose f so that ∆ατ (f) = 0 when
τ 6= 0 and ν|τ [7]. For such an f , AS(τ) = −1 whenever τ 6= 0.

Thus, if q is odd, the autocorrelations are high. This fact, together with the submaximal
linear complexity, has been exploited in a cryptologic attack on geometric sequences – the
high autocorrelation is used to determine q with high probability [8]. In fact, a more powerful
attack can be launched using imbalance properties of these sequences [6]. When q is even,
the feedforward function f can be chosen to be balanced, and the shifted autocorrelations
are optimal for certain applications.

The partial period autocorrelation of a sequence is defined by limiting the range of values
in the sum defining the periodic autocorrelation to a fixed window. It is parametrized by
the start position k and length D of the window, as well as the shift τ .

1The imbalance of f is equal to the number of x for which f(x) = 0 minus the number of x for which
f(x) = 1.

2If γ is a primitive element of GF (q), and a = γσ, then ∆a(f)− 1 is the autocorrelation with shift σ of
the sequence whose ith term is f(γi).
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Definition 2.5 The partial period autocorrelation function of a periodic sequence S is de-
fined to be

AS(τ, k, D) =
D+k−1∑

i=k

(−1)Si+τ (−1)Si

It is often hopeless to expect a precise expression for the partial period autocorrelation.
We will show, however, that the expected partial period autocorrelation (averaged over the
starting position k of the window) is closely related to the full period autocorrelation. We
will also show that for certain window sizes the variance of the partial period autocorrelation
(with fixed shift τ and window size D, but varying start position k) is low. Thus Chebyshev’s
inequality tells us that, with high probability, the partial period autocorrelations are low,
as described in Section VII.

3 Statement of Results

We denote the expectation of a random variable X by E[X]. All expectations are taken for
fixed window size D and shift τ , assuming a uniform distribution on all start positions k. The
variance V (X) of a random variable X is given by V (X) = E[(X−E[X])2] = E[X2]−E[X]2.

Theorem 3.1 Suppose the geometric sequence S is as balanced as possible, i.e. I(f) = ±1
if q is odd, and I(f) = 0 if q is even. Then for a shift τ that is not a multiple of ν, the
expected partial period autocorrelation of S is

E[AS(τ, k, D)] = D(qn−2 − 1)/(qn − 1)

if q is odd, and
E[AS(τ, k, D)] = −D/(qn − 1)

if q is even. In this case, if f is chosen so that ∆ατ (f) = 0 whenever τ is a nonzero multiple
of ν, then E[AS(τ, k, D)] = −D/(qn − 1) whenever τ 6= 0.

Theorem 3.2 For any τ , the variance of the partial period autocorrelation of a geometric
sequence with shift τ and window size D is bounded above by

qnD

qn − 1

⌈
(q − 1)D

qn − 1

⌉
(q2 + q + 1).

If q is even and f is balanced, the variance is bounded by

qnD

qn − 1

⌈
(q − 1)D

qn − 1

⌉
(q2 + q + 2)

2
.
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These results allow us to detect phase shifts between a transmitter and a receiver using
geometric sequences by computing partial period autocorrelations.

Theorem 3.3 A shifted geometric sequence S with shift τ can be distinguished from an
unshifted sequence with probability at least 1 − ε by using a partial period autocorrelation
with window size D satisfying

ν > D >
(q2 + q + 1)(qn − 1)qn

ε(qn − 1− |AS(τ)|)2
.

If q is even and f is balanced, this can be improved to

ν > D >
(q2 + q + 2)(qn − 1)qn

2ε(qn − 1− |AS(τ)|)2
.

Note that if ε is chosen less than

(q3 + q − 2)qn

2(qn − 1− |AS(τ)|)2
,

then it is impossible to pick D in this range. It is tempting to expect that increasing D
above ν will allow ε to be chosen smaller. While we believe this to be true asymptotically
(as D approaches qn − 1), it is quite possible that the probability of error may increase as
D becomes slightly larger than ν.

If we choose f balanced and such that ∆ατ (f) = 0, then AS(τ) = −1 for all τ 6= 0 and
the error probability is approximately (q2 + q +2)/(2D) (see Corollary 2.4). More generally,
if f is balanced, the error probability will be approximately (q2 + q + 2)/(2D) when ν 6 |τ ,
but will be higher when ν|τ . However, if AS(τ) is approximately qn/2 for such τ , then the
error probability will be only slightly higher.

4 First Steps

Theorem 3.1 is straightforward and holds in greater generality: if R is any periodic binary
sequence with period, say, N then we have:

Theorem 4.1 The expectation of the partial period autocorrelation is given by

E[AR(τ, k, D)] =
D

N
AR(τ).
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Proof:

E[AR(τ, k, D)] =
1

N

N−1∑
k=0

AR(τ, k, D)

=
1

N

N−1∑
k=0

k+D−1∑
i=k

(−1)si+τ+si

=
1

N

N−1∑
i=0

i∑
k=i−D+1

(−1)si+τ+si

=
1

N

N−1∑
i=0

D(−1)si+τ+si

=
D

N
AR(τ).

2

We next consider the variance of the partial period autocorrelation. Recall that the
variance of a random variable X is defined to be E[(X − E[X])2] = E[X2] − E[X]2, so we
must determine the second moment E[AS(τ, k, D)2] of the partial period autocorrelation.
The field GF (qn) is an n−dimensional vector space over the base field GF (q). For any
s ∈ GF (q) and A 6= 0 ∈ GF (qn), the set

Hs
A = {x ∈ GF (qn) : Trqn

q (Ax) = s}

is an affine hyperplane in GF (qn), i.e. a translate of an n − 1-dimensional subspace. The
second moment of the partial period autocorrelation can be expressed in terms of the car-
dinalities of certain fourfold intersections of these hyperplanes, as follows.

Lemma 4.2 If S is a geometric sequence, then

E[AS(τ, k, D)2] =
1

qn − 1

D−1∑
i,j=0

(
∑

s,t,u,v∈GF (q)

Ni,j,τ (s, t, u, v)F (s)F (t)F (u)F (v)− 1) (1)

where
Ni,j,τ (s, t, u, v) = |Hs

αi ∩H t
αi+τ ∩Hu

αj ∩Hv
αj+τ |.

Proof:

E[AS(τ, k, D)2] =
1

qn − 1

qn−2∑
k=0

AS(τ, k, D)2
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=
1

qn − 1

qn−2∑
k=0

(
k+D−1∑

i=k

F (Trqn

q (αi+τ ))F (Trqn

q (αi)))2

=
1

qn − 1

qn−2∑
k=0

k+D−1∑
i,j=k

F (Trqn

q (αi+τ ))F (Trqn

q (αi))F (Trqn

q (αj+τ ))F (Trqn

q (αj))

=
1

qn − 1

qn−2∑
k=0

D−1∑
i,j=0

F (Trqn

q (αi+k+τ ))F (Trqn

q (αi+k))F (Trqn

q (αj+k+τ ))F (Trqn

q (αj+k))

=
1

qn − 1

D−1∑
i,j=0

qn−2∑
k=0

F (Trqn

q (αi+k+τ ))F (Trqn

q (αi+k))F (Trqn

q (αj+k+τ ))F (Trqn

q (αj+k))

Set x = αk to obtain

E[AS(τ, k, D)2] =

1

qn − 1

D−1∑
i,j=0

∑
x 6=0∈GF (qn)

F (Trqn

q (αi+τx))F (Trqn

q (αix))F (Trqn

q (αj+τx))F (Trqn

q (αjx)).

Set s = Trqn

q (αix), t = Trqn

q (αi+τx), u = Trqn

q (αjx), and v = Trqn

q (αj+τx). Then the sum
may be rewritten

E[AS(τ, k, D)2] =
1

qn − 1

D−1∑
i,j=0

(
∑

s,t,u,v∈GF (q)

Ni,j,τ (s, t, u, v)F (s)F (t)F (u)F (v)− 1).

2

Our derivation of the bound on the second moment, and therefore the variance (described
in Theorem 3.2), proceeds as follows. In Proposition 5.1 we determine, for each i, j, and
τ , the number of times that Ni,j,τ (s, t, u, v) is nonzero. We next determine the values of
Ni,j,τ (s, t, u, v) (depending on i, j, and τ) in Theorem 5.2. We find that there are three
cases depending on whether ατ ∈ GF (q), ατ ∈ GF (q2)−GF (q), or ατ ∈ GF (qn)−GF (q2).
Finally, in Section VI, for each of these three cases we count the number of times each value
of Ni,j,τ (s, t, u, v) occurs. This allows us to decompose the sum in Equation (1) according to
the values of Ni,j,τ (s, t, u, v).

5 Intersections of Hyperplanes

Throughout this section we fix i, j, τ , with 0 ≤ i, j < D, 0 ≤ τ ≤ qn − 2, and let A = αi,
B = αj, C = ατ ∈ GF (qn). For any s, t, u, v ∈ GF (q), define the affine linear subspace

Z(s, t, u, v) = Hs
A ∩H t

AC ∩Hu
B ∩Hv

BC .
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Then Ni,j,τ (s, t, u, v) = |Z(s, t, u, v)|. There are five possible values for Ni,j,τ (s, t, u, v): qn−4,
qn−3, qn−2, qn−1, and 0, depending on the dimension of Z(s, t, u, v). Let r be the dimension of
the GF (q)-vector space spanned by the elements {A, AC,B,BC} when we think of GF (qn)
as a vector space over GF (q).

Proposition 5.1 If there exist a, b, c, d ∈ GF (q) such that aA + bAC + cB + dBC =
0, and as + bt + cu + dv 6= 0, then Z(s, t, u, v) = ∅ so Ni,j,τ (s, t, u, v) = 0. Otherwise,
dim Z(s, t, u, v) = n−r so Ni,j,τ (s, t, u, v) = qn−r. There are qr values of (s, t, u, v) such that
Ni,j,τ (s, t, u, v) = qn−r.

Proof: Define L : GF (qn) → GF (q)4 by x 7→ (Trqn

q (Ax), T rqn

q (ACx), T rqn

q (Bx), T rqn

q (BCx)).
Then L is linear and Z(s, t, u, v) = L−1(s, t, u, v). First, consider the case (s, t, u, v) =
(0, 0, 0, 0). Then Z(0, 0, 0, 0) = ker(L) so |Z(0, 0, 0, 0)| = qn−rank(L). Let us associate to any
E ∈ GF (qn) the linear function Φ(E) which is given by Φ(E)(x) = Trqn

q (Ex). Then Φ is a
linear isomorphism,

Φ : GF (qn) → HomGF (q)(GF (qn), GF (q))

and the four functions {Trqn

q (Ax), T rqn

q (ACx), T rqn

q (Bx), T rqn

q (BCx)} which define L are
given by {Φ(A), Φ(AC), Φ(B), Φ(BC)}. Therefore,

rank(L) = dim{Φ(A), Φ(AC), Φ(B), Φ(BC)} = dim{A, AC,B,BC} = r

which proves that dim Z(0, 0, 0, 0) = n− r so N(0, 0, 0, 0) = qn−r.
Now consider the case of general (s, t, u, v). If (s, t, u, v) ∈ GF (q)4 is in the image of L,

then Z(s, t, u, v) = L−1(s, t, u, v) is a translate of Z(0, 0, 0, 0) so their cardinalities are the
same, namely qn−r. If (s, t, u, v) /∈ image(L) then Z(s, t, u, v) = ∅. Let us determine when
this happens.

Whenever {A, AC,B,BC} satisfies a linear equation,

aA + bAC + cB + dBC = 0 (2)

the functions {Φ(A), Φ(AC), Φ(B), Φ(BC)} will satisfy the same equation. For any x ∈
GF (qn), the elements {s = Trqn

q (Ax), t = Trqn

q (ACx), u = Trqn

q (Bx), v = Trqn

q (BCx)} will
also satisfy the same equation, so every point (s, t, u, v) ∈ image(L) satisfies equation (2).
Thus, if (s, t, u, v) do not satisfy this equation then this point is not in the image of L, and
Ni,j,τ (s, t, u, v) = 0. 2

We proceed to determine whether r = 1, 2, 3, or 4. We consider r = 4 to be the general
case and determine, for each i, j, τ , conditions under which each of the other cases occurs.

There is an action of the general linear group over GF (q) of rank two, G = GL2(GF (q)),
on GF (qn) which we shall make use of. Recall that this group is the multiplicative group of
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two by two matrices with nonzero determinant and with entries in GF (q). The group acts
by fractional linear transformations. That is, the matrix

M =

(
a b
c d

)

acts on the element C ∈ GF (qn) by

C 7→ aC + b

cC + d
= M(C).

It is straightforward to check that if M, N ∈ GL2(GF (q)), then (MN)(C) = M(N(C)).
Recall that when a group G acts on a set W , the G-orbit of an element x ∈ W is the set
orbit(x) = {M(x) : M ∈ G}.

If C /∈ GF (q) then an equation of linear dependence (2),

aAC + bA + cBC + dB = 0

may be interpreted as an equation B/A = −M(C), where M =

(
a b
c d

)
. If ad − bc 6= 0,

then M ∈ Gl2(GF (q)), in other words, B/A ∈ orbit(C). If ad− bc = 0 then B/A ∈ GF (q).

Theorem 5.2 1. Suppose C = ατ ∈ GF (q). Then:

(a) If B/A = αj−i ∈ GF (q), then r = 1 (so Ni,j,τ (0, 0, 0, 0) = qn−1);

(b) otherwise r = 2 (so Ni,j,τ (0, 0, 0, 0) = qn−2);

2. Suppose C = ατ ∈ GF (q2)−GF (q). Then:

(a) If B/A = αj−i ∈ GF (q), then r = 2 (so Ni,j,τ (0, 0, 0, 0) = qn−2);

(b) if αj−i ∈ orbit(ατ ), then r = 2 (so Ni,j,τ (0, 0, 0, 0) = qn−2);

(c) otherwise r = 4 (so Ni,j,τ (0, 0, 0, 0) = qn−4);

3. Suppose C = ατ ∈ GF (qn)−GF (q2). Then:

(a) If B/A = αj−i ∈ GF (q), then r = 2 (so Ni,j,τ (0, 0, 0, 0) = qn−2);

(b) if B/A = αj−i ∈ orbit(ατ ), then r = 3 (so Ni,j,τ (0, 0, 0, 0) = qn−3);

(c) otherwise r = 4 (so Ni,j,τ (0, 0, 0, 0) = qn−4).
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Proof: The proof will proceed by considering the different cases for r = dim{A, AC,B,BC}.
Case r = 1: This occurs when every element of {A, AC,B,BC} is a GF (q) multiple of
every other element. Thus ατ , αj−i ∈ GF (q), which gives part 1(a) of Theorem 5.2.

Case r = 2: This occurs if AC, A,BC,B satisfy two linearly independent equations, say

aAC + bA + cBC + dB = 0 (3)

eAC + fA + gBC + hB = 0,

where a, b, c, d, e, f, g, h ∈ GF (q) and (a, b, c, d) and (e, f, g, h) are independent vectors.
If C ∈ GF (q), then the span of {AC, A,BC,B} equals the span of {A, B}. We have

dim{A, AC,B,BC} equal to two if B/A = αj−i is not in GF (q), (giving part 1(b) of Theorem
5.2, and one otherwise (which gives part 1(a)).

If C is not in GF (q), then we can use each of these equations to write B/A as the result
of applying to C a fractional linear transformation with coefficients in GF (q):

B

A
= −aC + b

cC + d
= −eC + f

gC + h
.

We can use the second equation to find a quadratic equation over GF (q) satisfied by C.
This equation is degenerate if and only if B/A ∈ GF (q) (which gives parts 2(a) and 3(a)
of Theorem 5.2). If B/A = αj−i is not in GF (q), then C = ατ is in GF (q2) − GF (q) and
αj−i ∈ orbit(ατ ) (which gives part 2(b)).

Case r = 3: We have a single equation

aAC + bA + cBC + dB = 0,

or, equivalently,

B =
aC + b

cC + d
A.

As before, (aC + b)/(cC + d) is in GF (q) (and hence dim{A, AC,B,BC} is two) if and only
if ad − bc = 0. If C ∈ GF (q2), then the quadratic equation satisfied by C can be used to
produce a second, independent linear equation. Thus r = 3 if and only if αj−i ∈ orbit(ατ )
and ατ /∈ GF (q2). This gives part 3(b). We remark that this case gives the leading term for
all the estimates of the variance. 2

6 Variance of Partial Period Correlations

Return to the computation of the variance of the partial period correlation of geometric
sequences, Equation (1). We break down our analysis depending upon whether ατ is in
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GF (q), GF (q2)−GF (q), or GF (qn)−GF (q2), corresponding to the three cases of Theorem
5.2. We remark that, if n is odd, then GF (q2) is not a subfield of GF (qn), so the middle
case will not occur. In order to use parts 2(b) and 3(b) of Theorem 5.2 it will be necessary
to determine, for given 0 ≤ i, j < D, whether αi−j ∈ orbit(ατ ).

6.1 ατ ∈ GF (q)

This section refers to Theorem 5.2 part (1). In this case Ni,j,τ (0, 0, 0, 0) = qn−2 if αi−j 6∈
GF (q), Ni,j,τ (0, 0, 0, 0) = qn−1 if αi−j ∈ GF (q). We have αi−j ∈ GF (q) if and only if ν
divides i− j. Thus for a given i, 0 ≤ i < D, the number of j, 0 ≤ j < D, such that the i, j
term contributes to the sum is the number of j in this range such that ν divides i− j. This
number is ⌊

D − i− 1

ν

⌋
+
⌊

i

ν

⌋
+ 1 ≤ D − 1

ν
+ 1.

Since the number of such j is an integer, we also have that it is at most dD/νe. By breaking
up the sum according to parts 1(a) and 1(b) of Theorem 5.2,we can bound the second
moment as follows

E[AS(τ, k, D)2] =
1

qn − 1

D−1∑
i,j=0

 ∑
s,u∈GF (q)

Ni,j,τ (s, α
τs, u, ατu)F (ατ t)F (t)F (ατv)F (v)− 1


=

1

qn − 1

D−1∑
i,j=0

 ∑
s,u∈GF (q)

qn−2F (s)F (ατs)F (u)F (ατu)− 1


+

∑
0≤i,j<D

ν|(i−j)

 ∑
u∈GF (q)

qn−1F (αi−ju)F (ατ+i−ju)F (u)F (ατu)

−
∑

s,u∈GF (q)

qn−2F (s)F (ατs)F (u)F (ατu)


≤ D2

qn − 1
(qn−2∆ατ (f)2 − 1) +

D

qn − 1
(
D − 1

ν
+ 1)qn.

The expectation in this case is

D

qn − 1
(qn−1∆ατ (f)− 1).

Therefore the variance is

V (AS(τ, k, D)) = E[AS(τ, k, D)2]− E[AS(τ, k, D)]2

12



≤ D2

qn − 1
(qn−2∆ατ (f)2 − 1) +

D

qn − 1
(
D − 1

ν
+ 1)qn

− D2

(qn − 1)2
(qn−1∆ατ (f)− 1)2

=
qnD

qn − 1
((

D − 1

ν
+ 1)− D

qn − 1
(q −∆ατ (f))2)

≤ qnD

qn − 1
(
D − 1

ν
+ 1).

This is approximately D2/qn−1 + D.

6.2 ατ ∈ GF (q2)−GF (q)

This section refers to Theorem 5.2 part (2). If x ∈ GF (q2), and M ∈ G, then M(x) ∈
GF (q2). If, moreover, x 6∈ GF (q), then x is a generator for GF (q2) over GF (q), that is, every
element of GF (q2) can be written in the form (ax+b)/(cx+d) for some a, b, c, d ∈ GF (q). It
follows that Ni,j,τ (0, 0, 0, 0) is qn−2 if αi−j ∈ GF (q2), i.e., if ν2 = (qn−1)/(q2−1) divides i−j.
Moreover, for ατ ∈ GF (q2), Ni,j,τ (s, t, u, v) = qn−2 if (s, t, u, v) is in the image of L = Li,j,τ

(where L is as defined in the proof of Theorem 5.2). In all other cases, Ni,j,τ (s, t, u, v) = qn−4.
As above, by breaking up the sum according to parts 2(a), 2(b), and 2(c) of Theorem 5.2,
we can bound the second moment as follows

E[AS(τ, k, D)2] =
1

qn − 1

D−1∑
i,j=0

 ∑
s,t,u,v∈GF (q)

Ni,j,τ (s, t, u, v)F (s)F (t)F (u)F (v)− 1


=

1

qn − 1

D−1∑
i,j=0

 ∑
s,t,u,v∈GF (q)

qn−4F (s)F (t)F (u)F (v)− 1



+
∑

0≤i,j<D

ν2|(i−j)

 ∑
s,t,u,v∈

image(Li,j,τ )

qn−2F (s)F (t)F (u)F (v)

−
∑

s,t,u,v∈GF (q)

qn−4F (s)F (t)F (u)F (v)


≤ D2

qn − 1
(qn−4I(f)4 − 1) +

D

qn − 1
(
D − 1

ν2

+ 1)(qn − qn−4I(f)4).

The expectation in this case is

D

qn − 1
(qn−2I(f)2 − 1).

13



Therefore the variance is bounded by:

V (AS(τ, k, D)) = E[AS(τ, k, D)2]− E[AS(τ, k, D)]2

≤ D2

qn − 1
(qn−4I(f)4 − 1) +

D

qn − 1
(
D − 1

ν2

+ 1)(qn − qn−4I(f)4)

− D2

(qn − 1)2
(qn−1I(f)2 − 1)2

=
qn−4D

qn − 1
((

D − 1

ν2

+ 1)(q4 − I(f)4)− D

qn − 1
(q2 − I(f)2)2)

≤ qnD

qn − 1
(
D − 1

ν2

+ 1).

In particular, if D ≤ ν, then the variance is bounded above by (q + 1)qnD/(qn − 1).

6.3 ατ ∈ GF (qn)−GF (q2)

This section refers to Theorem 5.2 part (3). Case 3(b) of this calculation gives rise to the lead-
ing term in our estimate for the variance. In general, the G-orbit is not uniformly distributed
in GF (qn), so for a fixed i, the number of j in a window with dim{αi+τ , αi, αj+τ , αj} = 3 is
not proportional to the size of the window. We settle here for a cruder estimate, based on
the structure of the group G. We first determine the size of the G-orbit of ατ .

Lemma 6.1 If x ∈ GF (qn)−GF (q), then the G-orbit of x has cardinality q3 − q.

Proof: An element of G is a matrix

M =

(
a b
c d

)

over GF (q) with nonzero determinant. There are (q2 − 1)(q2 − q) such matrices. Two such
matrices define the same transformation if they differ by a nonzero multiple, so the cardi-
nality of G is q3 − q. Recall that the stabilizer of an element x is the set of transformations
M such that M(x) = x. In general, when a group acts on a set, the cardinality of the orbit
of x is the cardinality of the group divided by the cardinality of the stabilizer of x. Here M
is in the stabilizer if (ax + b)/(cx + d) = x, i.e., ax + b = cx2 + dx. If x 6∈ GF (q2), then we
must have c = b = 0, and a = d. That is, the stabilizer of x consists only of the identity
transformation. The lemma follows. 2

We will next decompose the elements of G into the composition of certain simple types of
matrices with scalar multiplication. Since scalar multiplication by elements of GF (q) moves
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elements large distances, this will allow us to bound the number of elements in an orbit that
are in a given small window.

For matrices M and N , we write M ∼ N if M and N define the same transformation
(i.e., the matrices differ by a scalar multiple). Let

M =

(
a b
c d

)

be an element of G, so δ = ad− bc 6= 0. First suppose a 6= 0. Then

M ∼
(

1 b/a
c/a d/a

)

=

(
1 0
0 δ/a2

)(
1 b/a

ac/δ bc/δ + 1

)

∼
(

a2/δ 0
0 1

)(
1 b/a

ac/δ bc/δ + 1

)
.

Letting Sx = {(x + b)/(cx + bc + 1)}, we have shown that M(x) is a scalar multiple of an
element of Sx.

On the other hand, suppose a = 0. Then b 6= 0 and c 6= 0, so

M ∼
(

0 b/c
1 d/c

)

=

(
b/c 0
0 1

)(
0 1
1 d/c

)
.

Let Tx = {1/(x+d)}. Then in this case M(x) is a scalar multiple of some element of Tx. We
have shown that an arbitrary element of the orbit of x is a scalar multiple of some element
of Sx ∪ Tx.

Consider a window of size ν. If y is any element of GF (qn), then there is a unique
a ∈ GF (q) such that ay is in the given window. Therefore, for each element y of Sx ∪ Tx,
there is a unique scalar multiple of y, i.e., a unique element of the orbit of x, in the given
window.

Proposition 6.2 If x ∈ GF (qn) − GF (q2), then the intersection of the orbit of x with a
window of size at most ν has cardinality at most |Sx ∪ Tx| = q2 + q.

Furthermore, we can write a window of arbitrary size D as the disjoint union of dD/νe
subwindows of size at most ν, and apply the preceding proposition to each subwindow. This
gives us an upper bound in the general case.
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Proposition 6.3 The intersection of the orbit of x with a window of size D, D arbitrary,
has cardinality at least bD/νc (q2 + q) and at most dD/νe (q2 + q).

It follows that the number of i, j such that 0 ≤ i, j < D and Ni,j,τ (0, 0, 0, 0) = qn−3

is at most D dD/νe (q2 + q). (Another obvious estimate for this number of pairs i, j is
D2. If D < q2 + q then this is even a better estimate. However we have not made use
of this improvement since it would make the statement of the result quite complicated.)
By Theorem 5.2, for such i, j, the number of s, t, u, v for which Ni,j,τ (s, t, u, v) = qn−3 is q3.
Moreover, when ν|(i−j), Ni,j,τ (s, t, α

j−is, αj−it) = qn−2, and Ni,j,τ (s, t, u, v) = 0 if u 6= αj−is
or u 6= αj−it. In all other cases Ni,j,τ (s, t, u, v) = qn−4.

Lemma 6.4 If q is even and f is balanced, then for any D and τ such that ατ /∈ GF (q2),

∑
0≤i,j<D

αj−i∈orbit(ατ )

∑
s,t,u,v∈

image(Li,j,τ )

F (s)F (t)F (u)F (v) ≤ D dD/νe (q2 + q)

2
q3.

Proof Sketch: The naive bound on the inner sum is q3 since there is one linear constraint
on (s, t, u, v). This would give a total bound of D dD/νe (q2+q)q3. We can do slightly better.
For each j in the outer sum, letting i vary, we have a window j, j + 1, · · · , j + D − 1 of size
D. It is possible to pair the orbit elements in such a window so that half their terms in the
inner sums cancel, giving the improved bound. 2

Thus we can bound the second moment as follows

E[AS(τ, k, D)2] =
1

qn − 1

D−1∑
i,j=0

 ∑
s,t,u,v∈GF (q)

Ni,j,τ (s, t, u, v)F (s)F (t)F (u)F (v)− 1


≤ 1

qn − 1

D−1∑
i,j=0

 ∑
s,t,u,v∈GF (q)

qn−4F (s)F (t)F (u)F (v)− 1



+
∑

0≤i,j<D

αj−i∈orbit(ατ )

 ∑
s,t,u,v∈

image(Li,j,τ )

qn−3F (s)F (t)F (u)F (v)

−
∑

s,t,u,v∈GF (q)

qn−4F (s)F (t)F (u)F (v)



+
∑

0≤i,j<D

ν|(i−j)

 ∑
s,t,u,v∈

image(Li,j,τ )

qn−2F (s)F (t)F (u)F (v)
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−
∑

s,t,u,v∈GF (q)

qn−4F (s)F (t)F (u)F (v)


≤ D2

qn − 1
(qn−4I(f)4 − 1) +

D dD/νe
qn − 1

(q2 + q + 1)(qn − qn−4I(f)4).

The expectation in this case is

D

qn − 1
(qn−2I(f)2 − 1).

Therefore the variance is

V (AS(τ, k, D)) = E[AS(τ, k, D)2]− E[AS(τ, k, D)]2

≤ D2

qn − 1
(qn−4I(f)4 − 1) +

D dD/νe
qn − 1

(q2 + q + 1)(qn − qn−4I(f)4)

− D2

(qn − 1)2
(qn−2I(f)2 − 1)2

=
qn−4D dD/νe

qn − 1
(q2 + q + 1)(q4 − I(f)4)− Dqn−4

(qn − 1)2
(q2 − I(f)2)2

≤ qnD

qn − 1

⌈
(q − 1)D

qn − 1

⌉
(q2 + q + 1).

6.4 Summary

We have now developed the estimates which are needed in order to prove:

Theorem 3.2 For any τ , the variance of the partial period autocorrelation of a geometric
sequence with shift τ and window size D is bounded above by

qnD

qn − 1

⌈
(q − 1)D

qn − 1

⌉
(q2 + q + 1). (4)

If q is even and f is balanced, then

qnD

qn − 1

⌈
(q − 1)D

qn − 1

⌉
(q2 + q + 2)

2
. (5)

Proof: For any τ one of the three preceeding subsections applies. In each case the bound
we have found for the variance of the partial period autocorrelation is less than or equal to
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the quantity in equation (4). The reduction by a factor of almost one half that occurs in
equation (5) follows from Lemma 6.4. 2

This value has a bound of approximately D2/(2qn−3) + q2D/2. For large D, this is
dominated by the first term.

7 Application to the Detection of Phase Shifts

In this section we show how, by computing a partial period autocorrelation, these results,
together with Chebyshev’s inequality, can be used to detect phase shifts between a transmit-
ter and a receiver using the same geometric sequence. Chebyshev’s inequality gives bounds
in terms of the variance on the probability that a random variable is far from its expectation.
Specifically, if X is any random variable, and ε > 0 is any real number, then

Prob(|X − E[X]| > ε) < V (X)/ε2.

Noting that a partial period autocorrelation with window size D is at most D, we may ask
how likely it is that the partial period autocorrelation is less than a fixed fraction 1/δ of D.
By Theorem 4.1, E[AS(τ, k, D)] = DAS(τ)/(qn − 1), so |AS(τ, k, D)| < D/δ whenever

|AS(τ, k, D)− E[AS(τ, k, D)]| < D

(
1

δ
+
|AS(τ)|
qn − 1

)
= D

qn − 1− δ|AS(τ)|
δ(qn − 1)

.

Consequently

Prob(|AS(τ, k, D)| < D/δ)

≥ Prob(|AS(τ, k, D)− E[AS(τ, k, D)]| < D
qn − 1− δ|AS(τ)|

δ(qn − 1)
)

= 1− Prob(|AS(τ, k, D)− E[AS(τ, k, D)]| > D
qn − 1− δ|AS(τ)|

δ(qn − 1)
)

> 1− V (AS(τ, k, D))(qn − 1)2δ2

D2(qn − 1− δ|AS(τ)|)2

> 1− qnD

qn − 1

⌈
(q − 1)D

qn − 1

⌉
(q2 + q + 1)(qn − 1)2δ2

D2(qn − 1− δ|AS(τ)|)2

= 1−
⌈
(q − 1)D

qn − 1

⌉
(q2 + q + 1)(qn − 1)qnδ2

D(qn − 1− δ|AS(τ)|)2
.

In case D < ν, this is

Prob(|AS(τ, k, D)| < D/δ) ≥ 1− (q2 + q + 1)(qn − 1)qnδ2

D(qn − 1− δ|AS(τ)|)2
.
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Thus, for large enough period, AS(τ, k, D) is close to its expectation with high probability.
Again, if q is even and f is balanced, this improves by nearly one half.

These results can be used to distinguish between a shifted and an unshifted signal by
computing a partial period autocorrelation with a small window size D. An unshifted
partial period autocorrelation with window size D always equals D. A shifted partial period
autocorrelation can be distinguished from an unshifted partial period autocorrelation if its
absolute value is less than D. Thus we want to know that Prob(|AS(τ, k, D)| < D) is large.
By the results of the preceeding paragraph with δ = 1,

Prob(|AS(τ, k, D)| < D) > 1−
⌈
(q − 1)D

qn − 1

⌉
(q2 + q + 1)(qn − 1)qn

D(qn − 1− |AS(τ)|)2
.

For D < ν this reduces to

Prob(|AS(τ, k, D)| < D) > 1− (q2 + q + 1)(qn − 1)qn

D(qn − 1− |AS(τ)|)2
.

This proves the following theorem.

Theorem 3.3 A shifted geometric sequence S with shift τ can be distinguished from an
unshifted sequence with probability at least 1 − ε by using a partial period autocorrelation
with window size D satisfying

qn − 1

q − 1
> D >

(q2 + q + 1)(qn − 1)qn

ε(qn − 1− |AS(τ)|)2
.

If q is even and f is balanced, this can be improved to

qn − 1

q − 1
> D >

(q2 + q + 2)(qn − 1)qn

2ε(qn − 1− |AS(τ)|)2
.

8 Conclusions

We have shown that the expectation of the partial period autocorrelations of geometric
sequences (for even q) is low, and that for all q, the variance is bounded by approximately
D2/qn−3+q2D. To put this in some perspective, observe that for a sequence of period qn−1,
with no restrictions at all, the variance of the partial period autocorrelations could be as
high as D2(qn − 1). In fact, even for the balanced sequence consisting of d(qn − 1)/2e ones
followed by b(qn − 1)/2c zeros, the variance with shift τ = 1 is D2(qn − 5) + 4D. Thus our
bound for geometric sequences is quite far from the maximum.
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In the case of an m-sequence, one can do better. Here the variance can be computed
precisely as

D

(
1 +

1

qn − 1

)(
1− D

qn − 1

)
< D

as is shown in [18].
The bound in case of a general geometric sequence is not too far off from this. It would

be interesting to find other special cases of geometric sequences in which one can do better
than the bound proven here with the linear complexity larger than that of an m-sequence.

A critical part of the calculation of the bound on the variance involves understanding
how uniformly each orbit of the action of GL2(GF (q)) on GF (qn) by fractional linear trans-
formations is distributed in GF (qn). In sections VI-B and VI-C we make estimates that we
expect can be improved, thus sharpening the bounds. We have evidence, based on simula-
tions in the case in which q is even, that for small D the bound on the size of the intersection
of an orbit of this group action with a range of powers of a primitive element of GF (qn) may
be too high. The estimate we have made does not vary for D < ν. We believe, however,
that the size of the intersection of orbit(x) with a window of size D is approximately pro-
portional to D. Proving this depends on a better understanding of this group action, and
is an interesting algebraic question. We make the following conjecture:

Conjecture 8.1 There is a constant c, independent of q, n, and D, such that for any τ
the variance of the partial period autocorrelation of a geometric sequence with shift τ and
window D < ν is bounded above by

cD

⌈
D

qn−3

⌉
.

Moreover, there is evidence based on computer searches that the sums of the form in
Lemma 6.4 are, in fact, far smaller than our estimates. Consider, for example, the case
q = 16. Based on bounds on these sums computed for all balanced functions from GF (16)
to GF (2), we can reduce our estimate of the variance by factors depending on D as given
in Table I. These results apply for all n. We believe that similar reductions are possible for
all q.
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