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Abstract

The algebraic nonlinearity of an n-bit boolean function is defined as the degree
of the polynomial f(X) ∈ Z2[x1, x2, . . . , xn] that represents f . We prove that the
average degree of an ANF polynomial for an n-bit function is n + o(1). Further
for a balanced n-bit function, any subfunction obtained by holding less than n −
dlog ne − 1 bits constant is also expected to be nonaffine. A function is partially
linear if f(X) has some indeterminates that only occur in terms bounded by degree
1. Boolean functions which can be mapped to partially linear functions via a linear
transformation are said to have a linear structures, and are a potentially weak class
of functions for cryptography. We prove that the number of n-bit functions that
have a linear structure is asymptotic (2n − 1) · 22n−1+1.
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1 Introduction

Encryption mappings, particularly product ciphers, are often designed to satisfy a set of
chosen criteria which have been established either formally or empirically as essential to
the security of the cipher [25]. Two basic criteria are due to Shannon [29] who suggested
that a product cipher should be constructed using the notions of diffusion and confusion.
Diffusion refers to the dissipation of the statistical properties of the plaintext, while
confusion refers to the internal operations of the cipher that produce complex relations
between the plaintext, key and ciphertext.

More recently these notions have been refined by modeling product ciphers, and com-
ponents thereof, using boolean functions. For example, if a ciphertext bit ci is described
by the boolean function fi then it is generally accepted [1, 6, 14, 17, 20, 21] that each fi

should possess a combination of the following properties: balance, nonlinearity [14], non-
degeneracy/completeness [10, 11], correlation immunity [28], satisfy the strict avalanche
criterion [31], or be bent [23]. These properties may be collectively referred to as nonlin-
earity criteria [14, 25] and can be extended in several natural ways. Consider defining a
class P of boolean functions which are known to have a cryptographic weakness, and then
selecting functions which are optimized to be maximally ‘dissimilar’ from every function
in P . One measure of dissimilarity is to interpret an n-bit function as a vector with 2n

coordinates, and use the Hamming distance metric. Then for example, functions may
be chosen so that they achieve a maximum distance from all functions that are affine
[14] or have linear structures [4] (defined below). Also we may consider a nonlinearity
criterion to be robust if it is invariant under certain simple mappings such as affine trans-
formations. Meier and Staffelbach [14] have shown that the distance to the set of linear
functions, and the nonlinear order of a function [26] are both invariant under nonsingular
linear transformation.

A property P , such as nonlinearity, in a function may be considered stronger in the
function if P is still retained when certain subsets of the input bits are held constant. This
has been referred to as the higher order characteristics of property P , and for example,
has been considered in extending the notions of correlation immunity [28] and the strict
avalanche criterion [7]. Here we may assume that an assignment to a subset of the input
bits represents any partial knowledge that a cryptanalyst may have about the key or
plaintext, and if the property P is preserved under this assignment, the characteristics
of the function are not biased by this partial knowledge.

For product ciphers, nonlinearity criteria are typically applied to the construction of
the S-boxes to be used in the round function [1, 6, 17, 20]. The nonlinearity of a product
cipher depends directly on the selection of these S-boxes since, typically, the S-boxes are
the only nonaffine component of the cipher; in particular, if the S-boxes are affine then
the entire mapping is then affine (as is the case for DES). In 1985 Reeds and Manferdelli
[22] devised an attack they called cryptosystem factorization. The idea is that there
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may exist separate affine functions for the plaintext, ciphertext and key such that in the
mapped domains the dimensionality of the keyspace has been reduced (that is, in the
mapped domain certain key bits are degenerate). If this was the case then the cost of
exhaustive search of the keyspace would be reduced. For DES, Reeds and Manferdelli
[22] showed that no such factorization of the round mapping exists.

Generalizing these ideas, Chaum and Evertse [4] defined linear structures and devised
an attack on DES which is less costly than exhaustive search when DES is restricted to
fewer than 8 rounds. An n-bit function f : Zn

2 → Z2 is said to have a linear structure
b 6= 0 ∈ Zn

2 if and only if f(X)⊕f(X +b) is independent of X. Subsequently Lai [13] has
shown that if f has k linearly independent vectors b1, b2, . . . , bk that are linear structures,
then f can be mapped to g via a linear transformation where

g = x1m1 + x2m2 + · · ·+ xkmk + g′(xk+1, xk+2, . . . , xn). (1)

The cryptanalyst may be able to take advantage of the linear structures in f if some of
the mi in equation (1) are zero, thus eliminating the influence of some variables (possibly
key bits) on the ciphertext. Meier and Staffelbach [14] have shown that for even n the
bent functions attain the maximum distance from the class of n-bit functions that have
linear structures.

Differential cryptanalysis [3] can be seen as an extension of the ideas of attacks based
on the presence of linear structures [18]. We may alternately state that b 6= 0 ∈ Zn

2 is a
linear structure of an n-bit function f if and only if∑

X∈Zn
2

f̂(X) · f̂(X + b) = ±2n

where f̂(X) = (−1)f(X). Thus inputs of difference b result in an output of difference zero
or one with probability 1. In differential cryptanalysis, it is only required that inputs of
difference ∆X lead to a known difference ∆Y with high probability, or with a probability
that noticeably exceeds the mean. Evertse [5] defined a function f as having a 50%-linear
structure with respect to b 6= 0 if∑

X∈Zn
2

f̂(X) · f̂(X + b) = 0.

Evertse was sceptical that S-boxes could be designed which satisfied this property for
each b ∈ Zn

2 , and for each output bit of an S-box. Meier and Staffelbach [14] later defined
a function f as being perfect nonlinear if for all b 6= 0 ∈ Zn

2 , b is a 50%-linear structure
for f . Equivalently, we say that f has maximum distance to the class of linear structures.
If an n-bit function f is perfect nonlinear, then given f̂(X) · f̂(X + b), all b 6= 0 ∈ Zn

2

are equally likely to have produced the output difference. This suggests that perfect
nonlinear linear functions are a useful class of functions for constructing mappings that
are resistant to differential attacks.
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1.1 Results

As most functions are nonlinear we may then consider methods of ranking functions ac-
cording to their nonlinearity, which will requires a measure of nonlinearity. There are two
accepted measures of nonlinearity, interpreted as an algebraic measure and a functional
measure. It is well-known that any n-bit boolean function f can be expressed as a poly-
nomial in Z2[x1, x2, . . . , xn] whose degree in each variable is at most one. This polynomial
is known as the algebraic normal form (ANF) of f . We shall abuse notation slightly and
use the name of a function to denote its ANF. The algebraic measure of nonlinearity of
a function is simply the degree of its ANF; on the other hand, the functional measure of
nonlinearity is the minimal distance from the function to the set of all affine functions
[14, 20].

We begin by proving (Theorem 2.1) that the average degree of an ANF polynomial
is n + o(1), which implies that a randomly selected function will have high algebraic
nonlinearity. Even though a function may have a low probability of being affine it may
be possible to induce affinity by holding constant a subset of the input bits. We will prove
(Theorem 2.3) that for a balanced function (typically, the boolean functions that are used
cryptographically are balanced), at least n − dlog ne − 1 bits must be assigned before
any affine subfunction is expected to exist. Thus a function tends to remain nonaffine
even when a large number of input variables are assigned. This result has implications
for ciphertext-only attacks. For any fixed key K the boolean equations which describe
the ciphertext in terms of the plaintext are balanced, since the encryption function is
invertible. Then if the block length is n, on average n−dlog ne−1 bits must be determined
before the remaining unknown plaintext bits exhibit degenerate relations.

A natural extension of algebraic nonlinearity is to consider partial linearity . A func-
tion f will be said to be partially linear if there exists an indeterminate xi which only
occurs as a linear term in the ANF of f . From equation (1) we see that if f has k
linearly independent structures then f can be mapped linearly to a function g that is
partially linear in k variables. Linear structures encompass a very broad notion of al-
gebraic linearity, since a function f with no linear structures cannot be mapped to a
partially linear function via a linear transformation. In §3 we use the Möbius inversion
formula, applied to the lattice of vector subspaces of a vector space, to enumerate the
set of n-bit functions that possess linear structures. We prove (Theorem 3.1) that the
number of functions with a linear structure approaches (2n − 1) · 22n−1+1. For example,
the probability that a randomly selected 6-bit function has a linear structure is less than
10−7.
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2 Properties of ANF polynomials

There are several normal forms for boolean functions [10, 27] and of special interest
to cryptography is the Algebraic Normal Form (ANF) [26, p.130], also known as the
Ring Sum Expansion (RSE) [27, p.19]. The set of all ANFs of functions, denoted by
ZA

2 [x1, x2, . . . , xn], is given as

ZA
2 [x1, x2, . . . , xn] =

 ∑
S⊆[n]

aS

∏
j∈S

xj

 ,

where aS ∈ Z2, [n] = {1, 2, . . . , n}. The set of n-bit affine functions An is exactly those
functions for which the total degree of f is bounded by 1. Let deg(f, n) be the degree of
f . The main result of this section is that the expected degree of f is larger than 1, even
when a significant number of indeterminates are assigned values.

Theorem 2.1 Assuming the uniform distribution on ZA
2 [x1, x2, . . . , xn]

E[deg(f, n)] = n− 1

2
+ Θ

(
1

2n

)
Var[deg(f, n)] =

1

4
+ Θ

(
1

2n

)
.

Proof. Let B(m, k) =
∑

0≤j≤k

(
m
j

)
be the sum of the first k + 1 binomial coefficients,

0 ≤ k ≤ m. Observe that
2B(n,n−2) = 22n−n−1,

from which it follows that

22n−n−1 ≤
n−2∑
i=0

2B(n,i)

≤ 22n−n−1 +
n−3∑
i=0

2B(n,n−3)

= 22n−n−1 + (n− 3) · 22n−n(n+1)
2

−1

= 22n−n−1 ·
(
1 + (n− 3) · 2−

n(n−1)
2

)
≤ 22n−n

for n sufficiently large. Therefore

E[deg(f, n)] =
∑

0≤i≤n

i · Pr(f has degree i )
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=
∑

0≤i≤n

i · 2B(n,i−1) · (2(n
i) − 1)

22n

= 2−2n ·
[ n∑

i=1

i · 2B(n,i) − i · 2B(n,i−1)
]

= 2−2n ·
[

n · 22n − 22n−1 −
n−2∑
i=0

2B(n,i)
]

= n− 1

2
+ Θ

(
1

2n

)
.

Similarly, the variance Var[deg(f, n)] may be computed as

Var[deg(f, n)] = 2−2n ·
[ n∑

i=1

i2 · 2B(n,i) − i2 · 2B(n,i−1)
]
− E[deg(f, n)]2

= 2−2n ·
[

n2 · 22n −
n−1∑
i=0

(2i + 1) · 2B(n,i)
]
− E[deg(f, n)]2

= n2 − 2n− 1

2
− 2−2n ·

n−2∑
i=0

(2i + 1) · 2B(n,i) −
(
n− 1

2
− 2−2n

n−2∑
i=0

2B(n,i)

)2

=
1

4
− 2−2n ·

n−2∑
i=0

(2i + 1) · 2B(n,i) + (2n− 1) · 2−2n
n−2∑
i=0

2B(n,i)

−2−2n+1 ·
(

n−2∑
i=0

2B(n,i)

)2

=
1

4
+ 21−2n ·

n−2∑
i=0

(n− i− 1) · 2B(n,i) − 2−2n+1 ·
(

n−2∑
i=0

2B(n,i)

)2

. (2)

To estimate the second expression in equation (2), we have

22n−n−1 ≤
n−2∑
i=0

(n− i− 1) · 2B(n,i)

= 2B(n,n−2) +
n−3∑
i=0

(n− i− 1) · 2B(n,i)

≤ 22n−n−1 + (n− 2)2 · 2B(n,n−3)

= 22n−n−1 + (n− 2)2 · 22n−n(n+1)
2

−1

= 22n−n−1 ·
(
1 + (n− 2)2 · 2

n(n−1)
2

)
≤ 22n−n.
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To estimate the last expression in equation (2), we have

2−2n+1 ·
(

n−2∑
i=0

2B(n,i)

)2

= Θ

(
22n−n

22n+1

)
= Θ

(
1

22n+n

)
.

It follows that

Var[deg(f, n)] =
1

4
+ Θ

(
1

2n

)
.

2

It can also be shown using the binomial theorem that the expected number of terms
in (the ANF of) f is 2n−1 with a variance of 2n−2. Even though a function may have
a low probability of being affine, it may be possible to induce affiness by holding con-
stant a subset of the plaintext bits. An order d subfunction f ′, 0 ≤ d ≤ n, of an
n-bit function f , is any (n − d)-bit function obtained by holding d inputs of f con-
stant. Let g ∈ ZA

2 [y1, y2, . . . , yn−d] be an (n − d)-bit function where 0 ≤ d ≤ n and
{y1, y2, . . . , yn−d} ⊆ {x1, x2, . . . , xn}. We say that f has g as a subfunction if there exists
an order d subfunction f ′ of f such that f ′ = g. We show that for a balanced function f ,
on average n − dlog ne − 1 bits must be assigned (known) before any affine subfunction
is induced, assuming all balanced functions f are equally likely.

The proof of the next theorem is similar to the work of Mileto and Putzolu [15, 16]
on determining the average number of prime implicants in a boolean function. Observe
that a prime implicant of a boolean function f corresponds to a constant subfunction of
f . Let the weight of an n-bit function f be defined as |{X : f(X) = 1, X ∈ Zn

2 }|. Thus

f is balanced if its weight is 2n−1. Also define
(

m
k

)
= 0 if k < 0.

Theorem 2.2 Let f be an n-bit function of weight k, 0 ≤ k ≤ 2n. Let f have Hn
k (f, r)

affine subfunctions of order n−r, 0 ≤ r < n. Assuming all weight k functions are equally
likely, we have

E[Hn
k (f, r)] =

(
n
r

)
· 2n−r(
2n

k

) ·
[

(2r+1 − 2) ·
(

2n − 2r

k − 2r−1

)
+

(
2n − 2r

k

)
+

(
2n − 2r

k − 2r

) ]
. (3)

Proof. For F (n, k) =
(

2n

k

)
, let f1, f2, . . . , fF (n,k) be the n-bit functions of weight k. Also,

for a given n-bit function f let f ′1, f
′
2, . . . , f

′
C(n,r) be the C(n, r) order (n−r) subfunctions

of f where C(n, r) =
(

n
r

)
· 2n−r. Let Ar = { gr

i | 1 ≤ i ≤ 2r+1 } be an arbitrary explicit
enumeration. By definition we have that

Hn
k (f, r) =

C(n,r)∑
c=1

2r+1∑
i=1

[gr
i = f ′c],
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where [·] is a boolean predicate evaluating to 0 or 1. It then follows that

E[Hn
k (f, r)] =

1

F (n, k)
·

F (n,k)∑
j=1

Hn
k (fj, r)

=
1

F (n, k)
·

F (n,k)∑
j=1

C(n,r)∑
c=1

2r+1∑
i=1

[gr
i = f ′j,c]

=
1

F (n, k)
·

2r+1∑
i=1

C(n,r)∑
c=1

F (n,k)∑
j=1

[gr
i = f ′j,c]. (4)

The inner summations (over c and j) of equation (4) give the number of functions that
have the affine function gr

i as a fixed order (n − r) subfunction. We want to find the
average number of times a function of weight k contains a fixed gr

i of weight w as a
subfunction. This can be computed as the total number of instances of gr

i occuring
as a subfunction of any weight k function, divided by the number F (n, k) of weight k
functions.

To realize gr
i as a subfunction of a function f , we first choose {y1, · · · , yr} ⊆ {x1, · · · , xn}

for the r bits of gr
i , and values for the remaining n− r bits of f . There are

(
n
r

)
· 2n−r =

C(n, r) ways of making these choices. We require that f induce gr
i when these values

are assigned, and this determines the value of f on 2r points. To determine f on the
remaining 2n − 2r points, and guarantee that f has weight k, we must pick the k − w
points where f will take the value one. There are(

2n − 2r

k − w

)

such choices. This gives

C(n, r) ·
(

2n − 2r

k − w

)
ways of realizing gr

i as a subfunction of a weight k function. Thus the average number
of times a function of weight k contains gr

i as a subfunction is

C(n, r)

F (n, k)
·
(

2n − 2r

k − w

)
.

It follows that

E[Hn
k (f, r)] =

C(n, r)

F (n, k)
·
[

(2r+1 − 2)

(
2n − 2r

k − 2r−1

)
+

(
2n − 2r

k

)
+

(
2n − 2r

k − 2r

) ]

where the 3 binomial coefficients correspond to the (2r+1 − 2) balanced affine functions,
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and the 2 constant affine functions, respectively. 2

Consider the set Γn of all n-bit functions, with the uniform distribution on this set.
Let Ln(f) : Γn → {0, 1, . . . , n− 1} be a random variable, such that if Ln(f) = d then to
induce an affine subfunction in f it is necessary and sufficient to assign d variables. That
is, if a function f depends on the variables V = {x1, x2, . . . , xn }, then Pr(Ln(f) = d) is
the probability that there exists a set V ′ ⊆ V, |V ′| = d, such that it is possible to induce
affiness in a subfunction of f by making an assignment to the variables of V ′, and there
is no smaller set with this property. Observe that Ln(f) ≤ n− 1 since all order (n− 1)
subfunctions must be affine.

It follows that E[Ln(f)] =
∑n−1

d=0 d ·Pr(Ln(f) = d) gives the expected number of vari-
ables that must be assigned before an affine subfunction is induced, where the expectation
is taken over all possible n-bit functions.

Theorem 2.3 For large n, assuming all balanced functions are equally likely, E[Ln(f)] ≥
n− dlog ne − 1 + o(1). Moreover, Var[Ln(f)] ≤ (dlog ne+ 1)2/4 + o(1).

Proof. To simplify notation, we let r = n − d. Observe that for balanced functions
Pr[Ln(f) = n − r] ≤ E[Hn

2n−1(f, r)]. We begin by obtaining an asymptotic estimate of
E[Hn

2n−1(f, r)]. From equation (3) we have that

Pr(Ln(f) = n− r) ≤ E[Hn
2n−1(f, r)] <

(
n
r

)
· 2n+1 ·

(
2n−2r

2n−1−2r−1

)
(

2n

2n−1

) . (5)

We prove that E[Hn
2n−1(f, r)] << 1 for r > dlog ne + 1. Using a sharp form of Stirling’s

formula, such as that found in Knuth, vol. 1 [12, p. 111], one sees that

√
2πm

(
m

e

)m

≤ m! ≤ 2
√

πm
(

m

e

)m

,

for any m. It follows that we can estimate the central binomial coefficient by(
1

πm

)1/2

22m−1 <

(
2m

m

)
<
(

2

πm

)1/2

22m.

Therefore

E[Hn
2n−1(f, r)] <

(
n
r

)
· 2n+1 ·

(
1

π·(2n−2r)

) 1
2 · 22n−2r+1(

2
π·2n

) 1
2 · 22n−1

=

(
n
r

)
· 2n+n

2
+ 5

2

22r · (2n − 2r)
1
2

.
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When r ≥ dlog ne+ 2 we have

E[Hn
2n−1(f, r)] <

(
n
r

)
· 2n+n

2
+ 5

2

22dlog ne+2 · (2n − 4n)
1
2

<

(
n
r

)
· 2 3n

2

24n

<

(
n

r

)
· 2−2n

for n sufficiently large. Then observe that

n∑
r=dlog ne+2

r · Pr(Ln(f) = n− r) ≤
n∑

r=dlog ne+2

r · E[Hn
2n−1(f, r)]

<
n∑

r=dlog ne+2

r ·
(
n

r

)
· 2−2n

≤
n∑

r=0

n ·
(
n

r

)
· 2−2n

= n · 2n · 2−2n

= o(1).

It follows that for large n (recalling that d = n− r)

E[Ln(f)] =
n−1∑
d=0

d · Pr(Ln(f) = d)

= n−
n∑

r=1

r · Pr(Ln(f) = n− r)

= n + o(1)−
dlog ne+1∑

r=1

r · Pr(Ln(f) = n− r)

≥ n− dlog ne − 1 + o(1).

Next we consider the variance:

Var[Ln(f)] = E[Ln(f)2]− E[Ln(f)]2

=
n−1∑
d=0

d2 · Pr(Ln(f) = d)−
(

n−1∑
d=0

d · Pr(Ln(f) = d)

)2

=
n∑

r=1

(n2 − 2nr + r2) · Pr(Ln(f) = n− r)−
(
n−

n∑
r=1

r · Pr(Ln(f) = n− r)

)2
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=
n∑

r=1

r2 · Pr(Ln(f) = n− r)−
(

n∑
r=1

r · Pr(Ln(f) = n− r)

)2

=
dlog ne+1∑

r=1

r2 · Pr(Ln(f) = n− r)−

dlog ne+1∑
r=1

r · Pr(Ln(f) = n− r)

2

+ o(1).

An expression of the form
∑k

r=1 r2xr−(
∑k

r=1 rxr)
2 is maximized when x1 = · · · = xk−1 = 0

and xk = 1/2, and its value at this point is k2/4. Thus the variance is bounded above
by (dlog ne+ 1)2 + o(1).

This completes the proof of the theorem. 2

Thus at least n−dlog ne−1 bits must set before an affine subfunction is expected to be in-
duced in a balanced function. Table 1 shows bounds on

∑
r≥dlog ne+2(n−r) ·Pr(Ln(f) = r)

as computed from equation (5). It is clear that the tail of the expectation E[Ln(f)] be-
yond r = dlog ne+ 2 is approaching zero rapidly.

n dlog ne+ 2 E[Hn
2n−1(f, dlog ne+ 2))]

∑
r≥dlog ne+2(n− r) · E[Hn

2n−1(f, r)]

6 5 0.25189× 10−6 0.25189× 10−6

7 5 0.14443× 10−5 0.28887× 10−5

8 5 0.71356× 10−5 0.21406× 10−4

9 6 0.49845× 10−14 0.14953× 10−13

10 6 0.24078× 10−13 0.96315× 10−13

Table 1: Bounds on the tail of E[Lf (n)] for n = 6, 7, . . . , 10

3 Partial linearity

Functions that exhibit properties common to linear functions are also considered to be
cryptographically weak. Observe that the simultaneous complementation of a subset
of the input variables causes the value of a linear function to always change (from the
original value before complementation) or to never change. If such a subset of the input
parameters exists for an arbitrary function, then the function is said to be partially linear.
The class of functions that possess linear structures are exactly those functions that can
be mapped to a partially linear function via a linear transformation (see Theorem 3.1).

We may identify partial linearity as a property of the ANF for a function. Let f be
an n-bit function. Then f is said to be partially linear, or p-linear, if there exists a subset
Y = {xi1 , xi2 , . . . , xik}, 1 ≤ k ≤ n, of the variables such that

f(X) = g(x′1, x
′
2, . . . , x

′
n−k) +

∑
1≤j≤k

mjxij (6)
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where {x′1, x′2, . . . , x′n−k} = {x1, x2, . . . , xn} − Y , mj ∈ Z2, 1 ≤ j ≤ k. These functions
were previously studied by Beale and Monaghan [2], where they were called linear-in
functions. For X = (x1, x2, . . . , xn) ∈ Zn

2 , X + ei complements the ith coordinate of X,
where ei is the ith unit vector. Then when an n-bit function f is considered as f : Zn

2 →
Z2, f is p-linear in k variables if and only if there exists a set B = {b1, b2, . . . , bk} ⊆
{e1, e2, . . . , en} such that for each bi ∈ B, f(X)⊕ f(X + bi) is independent of X.

Linear structures are a natural extension of p-linearity, where the set B is an arbitrary
subset of Zn

2 . If f(x1, x2, x3) = x1 x2x3 + x1x2 x3, it can be verified that f(x1, x2, x3) =
f(x1, x2, x3) for all values of x1, x2, x3. In other words, f(X + 101) ⊕ f(X) is invariant,
and b = 101 is said to be a linear structure of f . It can be shown (see Lemma 3.1) that
if f has a linear structure, then there is a linear transformation M that maps f onto a
partially linear function.

Let PLn be the set of n-bit p-linear functions, and let LSn be the set of n-bit functions
that have linear structures. It follows from our previous discussion that An ⊂ PLn ⊂
LSn. We observe that the set of n-bit degenerate functions [10, 19] is contained in PLn

as degeneracy is a special case of p-linearity (a subset of the mi in equation (6) are zero).
The cryptanalytic value of linear structures lies in their potential to map a nonlinear
function to a degenerate function via a linear transformation, which may reduce the
size of the keyspace. Linear structures were introduced by Chaum and Evertse [4] who
cryptanalyzed a version of DES restricted to fewer than 8 rounds.

Linear structures encompass a very broad notion of algebraic linearity, and we are
interested in determining the probability that a function has a linear structure. If f 6∈
LSn then f cannot be mapped to a p-linear function via a linear transformation, and is
considered strongly nonlinear by the algebraic measure of nonlinearity. The set of p-linear
functions PLn was enumerated by Beale and Monaghan [2] using the inclusion-exclusion
principle [9]:

|PLn| =
n∑

k=1

(−1)k+1 ·
(
n

k

)
· 2k · 22n−k

.

In §3 we will use the Möbius inversion formula applied to the lattice of vector subspaces
of a vector space to enumerate the set of n-bit functions that possess linear structures,
and prove (Theorem 3.1) that |LSn| ∼ (2n − 1) · 22n−1+1.

3.1 The number of functions with linear structures

The relation between p-linearity and linear structures is given in the next lemma.

Lemma 3.1 (Lai [13]) Let b1, b2, . . . , bk be a set of linearly independent linear struc-
tures for the n-bit function f, 1 ≤ k ≤ n. There exists a nonsingular n × n matrix
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M with coefficients over Z2 such that if g(x1, x2, . . . , xn) = f((x1, x2, . . . , xn)M) then in
ANF g(x1, x2, . . . , xn) is given as

g(X) = x1m1 + x2m2 + · · ·+ xkmk + g′(xk+1, xk+2, . . . , xn) (7)

where mi = f(bi)⊕ f(0) ∈ Z2, 1 ≤ i ≤ k. 2

Corollary 3.1 Let b1, b2, . . . , bk be a set of linearly independent vectors. There are
22n−k+k n-bit functions for which b1, b2, . . . , bk are linear structures.

Proof. By Lemma 3.1 let bi = ei, 1 ≤ i ≤ k, without loss of generality. However it follows
from equation (7) that there are 2k ways to choose the mi, and 22n−k

ways to choose the
(n− k)-bit function g. 2

Thus if f is a function that has linear structures b1, b2, . . . , bk, an appropriate basis
change for Zn

2 transforms f into a p-linear function.

Example 3.1 The 4-bit function f has b = 1110 as a linear structure where

f(X) = x2 + x1x2 + x1x3 + x2x3 + x3x4 + x1x2x4 + x1x3x4 + x2x3x4.

Define M as the matrix

M =


1 1 1 0
1 0 0 1
1 1 0 1
0 0 1 0

 .

If we have that g(x1, x2, . . . , xn) = f((x1, x2, . . . , xn)M), then

g(X) = x3 + x2x4 + x3x4 + x2x3x4.

As the first column of M is b, then e1 is a linear structure in g, and g is degenerate in x1

as f(b) = f(0) = 0. 2

The next lemma is easily proven.

Lemma 3.2 Let f be an n-bit function such that b1 and b2 are linear structures for f .
Then b = b1 + b2 is also a linear structure for f . 2

Consider counting the number of functions f for which all b ∈ B = {b1, b2, . . . , bk}
are nonzero linear structures. Let the rank d of B be defined as the smallest integer
where there exist d vectors b′1, b

′
2, . . . , b

′
d ∈ B, such that b ∈ B can be written as linear

combination of these vectors. Equivalently, d is the dimension of the space spanned by
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B. Observe that d is bound as dlog(k + 1)e ≤ d ≤ k since k − d ≤ 2d − d − 1. From
Lemma 3.2, if the b′i are linear structures for a function f , then every b ∈ B is a linear
structure of f . Thus our problem reduces to counting the number of functions for which
b′1, b

′
2, . . . , b

′
d are linear structures. Without loss of generality we may assume that b′i = ei,

1 ≤ i ≤ d. Corollary 3.1 indicates that the number of linear structures is an exponentially
decreasing function of d, the rank. We will use this observation to bound |LSn| via the
Möbius inversion formula.

Theorem 3.1 limn→∞ |LSn|/((2n − 1) · 22n−1+1) = 1.

Proof. For b 6= 0 ∈ Zn
2 , let P (b) be the set functions that have b as a linear structure.

Also, for a vector subspace V ⊆ Zn
2 , let P (V ) = ∩b∈V P (b); that is, P (V ) is the set of

functions f for which all v ∈ V are linear structures.
It follows from the Möbius inversion formula (which can be thought of as generalizing

the inclusion-exclusion principle), applied to the lattice of vector subspaces of a vector
space, that

|LSn| =
n∑

k=1

2
k(k−1)

2

∑
V⊆Zn

2
dim(V )=k

|P (V )| · (−1)k+1. (8)

Details can be found in Stanley’s excellent book [30, p.116-7]. The coefficients 2k(k−1)/2

are certain values of the Möbius function for this lattice, and are calculated in Stanley’s
book [30, p.126-7]. The number of subspaces of dimension k is precisely

∏k−1
i=0 (2n −

2i)/
∏k−1

i=0 (2k − 2i), so we have

2
k(k−1)

2

∑
V⊆Zn

2
dim(V )=k

|P (V )| · (−1)k+1 = 22n−k+
k(k+1)

2 ·
∏k−1

i=0 (2n − 2i)∏k−1
i=0 (2k − 2i)

. (9)

which is strictly decreasing as k increases when n is sufficiently large. Therefore, the
expansion for |LSn| in equation (8) is dominated by its first term as n becomes large. We
will bound |LSn| by determining the first two terms of its inclusion-exclusion expansion.
Using Corollary 3.1 it follows that∑

V⊆Zn
2

dim(V )=1

|P (V )| = (2n − 1) · 22n−1+1 def
= Un

2 ·
∑

V⊆Zn
2

dim(V )=2

|P (V )| =
(2n − 1)(2n − 2)

3
· 22n−2+2 def

= Ln.

We have Un − Ln < |LSn| < Un, and therefore

1− 2n+1

3 · 22n−2 <
|LSn|
Un

< 1. (10)
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It follows that |LSn|/Un = 1 + o(1), completing the proof of the theorem. 2

For n = 1, 2, 3, 4 we have that |LSn| is 4, 8, 128 and 4992, respectively [24]. For larger
n the bounds Ln and Un from Theorem 3.1 may be used to yield accurate estimates of
|LSn|. Table 2 shows bounds on |LSn|, and it is clear that Un is a good estimate of the
number of linear structures for n ≥ 6.

n Un Ln Ln/Un

5 4063232 317440 0.078125
6 .54117 ×1012 .34131 ×109 0.63070 ×10−4

7 .46855 ×1022 .91637 ×1011 0.19558 ×10−9

8 .17354 ×1042 .15931 ×1025 0.91798 ×10−16

Table 2: Bounds on |LSn| for n = 5, 6, 7, 8.

4 Conclusion

In this paper we have provided a probabilistic analysis of algebraic nonlinearity. We have
shown that a boolean function is expected to have a large algebraic nonlinearity, even
when a significant number of the input variables are held constant. Linear structures
characterize a property that is common to both linear and certain nonlinear functions,
namely, invariance under translation of the input. It is known that if a function f has
a linear structure then f can be mapped to a function for which a certain subset of the
input variables may only occur in terms bounded by order 1 (partial linearity). We may
enquire if there is any value in considering higher order structures, or functions that have
linear transformations which map a certain set of the input variables into terms bounded
by order k, 1 ≤ k ≤ n. For example, an n-bit function f would have a quadratic structure
if it could be mapped linearly to a function g for which there exist a subset of the variables
Y = {xi1 , xi2 , . . . , xik}, 1 ≤ k ≤ n, such that

f(X) = g(x′1, x
′
2, . . . , x

′
n−k) +

∑
1≤j≤k

mjxij +
∑

1≤i<j≤k

mijxixj

where {x′1, x′2 . . . , x′n−k} = {x1, x2, . . . , xn} − Y , mj, mij ∈ Z2, 1 ≤ i < j ≤ k. The
cryptanalyst can take advantage of functions in this form if there is degeneracy in the
equations. Otherwise it is known that solving equations over Z2 with degree bounded by
2 is NP-hard [8].
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