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Abstract

A new index for convex polytopes is introduced. It is a vector
whose length is the dimension of the linear span of the flag vectors of
polytopes. The existence of this index is equivalent to the generalized
Dehn-Sommerville equations. It can be computed via a shelling of the
polytope. The ranks of the middle perversity intersection homology
of the associated toric variety are computed from the index. This
gives a proof of a result of Kalai on the relationship between the Betti
numbers of a polytope and those of its dual.

1 Introduction

The combinatorial study of convex polytopes was invigorated by the proof of
the characterization of face vectors of simplicial polytopes. The power and
elegance of the techniques used in the simplicial case inspired attempts to
adapt them to the study of arbitrary polytopes. This paper is the result of
one such attempt. We start with a very brief history of the simplicial case,
and then describe the analogy used here.

McMullen [14] in 1970 conjectured that a certain set of conditions char-
acterize the face vectors of simplicial polytopes. Various techniques were
used to prove the necessity of certain subsets or weakenings of these condi-
tions. The milestones were the Dehn-Sommerville equations (Sommerville,
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1927 [15]), the Upper Bound Theorem (McMullen, 1970 [13], Stanley, 1975
[16]), and the Lower Bound Theorem (Barnette, 1973 [1]). Finally, in 1980,
Stanley [18] proved the necessity of the McMullen conditions; the sufficiency
was proved at the same time by Billera and Lee [3].

The various advances towards the proof of the McMullen conditions for
simplicial polytopes proceeded from the discoveries of combinatorial interpre-
tations for the h-vector (the image of the face vector under a certain linear
transformation). The h-vector counts something in a shelling of the poly-
tope [13], in the Stanley-Reisner ring of the polytope [16], and, finally, in the
homology ring of the toric variety of the polytope [18].

In 1983 the affine span of the flag vectors of arbitrary polytopes was de-
termined [2]. At about the same time Stanley introduced to combinatorists a
formula for the “generalized h-vector”, giving the ranks of the middle perver-
sity intersection homology of the toric variety of an arbitrary polytope [19].
The analogy with the simplicial case motivated us to search for a connection
between flag vectors and generalized h-vectors. The generalized h-vector is
too small to incorporate all the flag vector information. The flag vector has
no nice interpretation in terms of shellings or rings. Thus we wanted some
extension of the generalized h-vector or transformation of the flag vector that
could be used easily both to describe the linear relations on flag vectors and
to find the homology ranks for the toric variety. A connection with shellings
of polytopes was also desirable.

Kalai [11] gives one solution to this problem. Another approach uses the
generalized h-vectors of “relative” posets of the polytope [19]. Neither of
these has a shelling interpretation, however. Here we present a different ap-
proach, by introducing the “cd index” of a polytope. This index encapsulates
the linear relations on flag vectors. It can be computed from a shelling of
the polytope. The homology ranks can be calculated from this index. This
calculation enables us to prove a result conjectured by Kalai (who has found
another proof as well [10]).

Beyond their intrinsic interest, the results in this paper are significant as
an example of the use of mathematical experimentation by computer. High
speed computation allowed us to examine enough examples to make evident
the underlying patterns. More discussion of the computation follows the
proof of Theorem 9 in Section 5. The authors hope that our success with
this problem will inspire others to use automated generation of mathematical
examples.

The authors would like to acknowledge the creative contribution of
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Jonathan Fine to this paper; without his ideas much of this work would
never have been done. We would also like to thank the referees for their
helpful suggestions.

2 Definitions

Though we are interested primarily in convex polytopes, some of the proofs
are simplified by considering the broader class of regular CW spheres. A set in
Rn is an open k-cell if it is homeomorphic to the interior of the k-dimensional
unit ball for some k; an open cell is regular if its closure is homeomorphic to
the closed unit ball. A (finite) regular CW complex is a closed subset of Rn

that is partitioned into a finite number of regular open cells, each of whose
closures is the union of some of these open cells. A regular CW sphere is a
regular CW complex that is homeomorphic to a sphere. A polytope is the
convex hull of a finite point set in Rn. We often use the term polytope when
we really mean its boundary, which is a regular CW sphere.

The closure of a regular open k-cell is called a (k-dimensional) face of the
complex. Following [4] we call a finite regular CW complex an (n− 1)-CW-
complex if every face is contained in some (n− 1)-face; the (n− 1)-faces are
called facets. An (n − 1)-CW-complex P (e.g., an n-polytope) has proper
faces of dimension zero through n−1; the empty set is considered an improper
face of dimension −1, with P itself an improper face of dimension n. The
faces, ordered by inclusion, form the face poset of the regular CW complex
P (with least element ∅ and greatest element P ), and this poset is a lattice
when the complex is a polytope. We are primarily interested in these posets
for regular CW spheres, and will blur the distinction between a sphere and
its face poset.

For P an (n− 1)-CW-complex let fi(P ) be the number of i-dimensional
faces of P , and let the f -vector of P be f(P ) = (f0(P ), f1(P ), . . . , fn−1(P )).
(For general information on polytopes and f -vectors, see [9].) A chain of
faces ∅ ⊂ F1 ⊂ F2 · · · ⊂ Fk ⊂ P is called an S-flag, where S = {dimFi : 1 ≤
i ≤ k}. Let fS(P ) be the number of S-flags of P , and let the flag vector or
extended f -vector of P be (fS(P ))S⊆{0,1,...,n−1} ∈ N2n

.
Stanley [17] introduced a transformation of the flag vector, and inter-

preted the new vector in terms of a shelling of the barycentric subdivision of
the sphere. This vector will be denoted by β here, instead of h, as used in
[17] and [2]. Since those papers, h has come to be used for the intersection
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homology Betti numbers, which will be discussed in Section 4. The letter β
has been used in poset theory for the vector we define here.

Definition. Suppose (fS(P ))S⊆{0,1,...,n−1} ∈ N2n
is the flag vector of a

regular CW complex P . The β-vector of P is the vector (βS(P ))S⊆{0,1,...,n−1} ∈
N2n

given by
βS(P ) =

∑
T⊆S

(−1)|S\T |fT (P ).

This transformation is invertible:

fS(P ) =
∑
T⊆S

βT (P ).

We use a generating function in the algebra Q〈a, b〉 of polynomials in the
noncommuting variables a and b. For S ⊆ {0, 1, . . . , n − 1} write wi = a if
i 6∈ S and wi = b if i ∈ S; let wS = w0w1 . . . wn−1. The generating function
for the β-vector is then

β(P ) =
∑

S⊆{0,1,...,n−1}
βS(P )wS.

Definitions of shellings vary a bit. The following one (from [4]) applies to
regular CW complexes. For σ a k-face denote by ∂σ the boundary of σ, a
(k − 1)-sphere.

Definition. An ordering σ1, σ2, . . . , σt of the facets of an (n − 1)-CW-
complex is a shelling if n = 1 or if n > 1 and

i. ∂σ1 has a shelling;

ii. σj ∩ (∪j−1
i=1σi) is an (n− 2)-CW-complex, j = 2, 3, . . . , t; and

iii. ∂σj has a shelling in which the (n−2)-faces of σj ∩ (∪j−1
i=1σi) come first,

j = 2, 3, . . . , t.

A shelling σ1, σ2, . . . , σt of a regular CW complex is reversible if
σt, σt−1, . . . , σ1 is also a shelling. A regular CW complex is shellable if it
has a shelling. All polytopes have reversible shellings. Not all regular CW
spheres are shellable.

Stanley’s computation of the β-vector shows that the βS(P ) are nonneg-
ative, and that for all S ⊆ {0, 1, . . . , n− 1}, βS(P ) = βS̃(P ), where S̃ is the
complement of S. These are not all linear equations satisfied by the β-vectors
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of regular CW spheres. (Stanley was studying a broader class of objects.) A
complete set, called the generalized Dehn-Sommerville equations, is derived
in [2]. The exact form of the equations is not important to us now, but we
will need to know the dimension of the space they define.

Theorem 1 The dimension of the linear span of the β-vectors of regular
CW (n− 1)-spheres is en, where (en) is the Fibonacci sequence initialized by
e0 = e1 = 1.

Our proofs will be facilitated by two constructions on regular CW spheres.
Let Q be a shellable regular CW (n− 1)-sphere. Let XQ be the regular CW
n-sphere obtained by attaching two n-cells, ρ1 and ρ2, each with boundary
Q. Let Y Q be the regular CW (n + 1)-sphere obtained by attaching to Q
three n-cells, ρ1, ρ2 and ρ3, each with boundary Q, and then attaching three
(n+ 1)-cells, τ1, τ2 and τ3, each having two of ρ1, ρ2 and ρ3 in its boundary.
Denote by C be the set of all regular CW spheres obtained by starting with
∅ and applying the X and Y constructions any number of times. Write Cn

for the set of (n− 1)-dimensional spheres in C.

3 The cd index and the generalized Dehn-

Sommerville equations

In this section we give a recursive formula for the β-vector of a regular CW
sphere and derive the cd index. Fix a regular CW sphere P and a reversible
shelling σ1, σ2, . . . , σt. For each j, 1 ≤ j ≤ t, let Uj = σj ∩ (∪i<jσi), Lj =
σj∩(∪i>jσi), and Ej = Uj∩Lj. For 2 ≤ j ≤ t−1, Uj and Lj are (n−2)-balls,
and Ej is an (n−3)-sphere; U1 = Lt = E1 = Et = ∅, L1 = ∂σ1 and Ut = ∂σt.
Theorem 2 gives the generating function β(P ) in terms of β(∂σj) and β(Ej).

Theorem 2 Let P be a regular CW sphere with reversible shelling
σ1, σ2, . . . , σt, and let Uj, Lj and Ej be defined as above. Then

i. β(∂σj) = β(Uj) + β(Lj) + β(Ej)(b− a), for 1 ≤ j ≤ t.

ii. β(P ) =
t∑

j=1

β(∂σj)a+ β(Uj)(b− a).

iii. β(P ) =
1

2

t∑
j=1

β(∂σj)(a+ b) +
t−1∑
j=2

β(Ej)
(
(ab+ ba)− 1

2
(a+ b)(a+ b)

)
.
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Proof. These are straightforward calculations in terms of the flags of the
sphere P .

i. We have βS(∂σj) = βS(Uj) + βS(Lj) − βS(Ej). Observe that if a flag
is contained in both Uj and Lj (that is, in Ej), then its top element has
dimension at most n− 3. If n− 2 ∈ S then

βS(Ej) =
∑
T⊆S

(−1)|S\T |fT (Ej)

=
∑

T⊆S\{n−2}
(−1)|S\T |fT (Ej) = −βS\{n−2}(Ej)

In the generating function we get equation i.
ii. We show that β(∪i≤jσi) = β(∪i<jσi) + β(∂σj)a + β(Uj)(b − a). For

each S, βS(∪i≤jσi) = βS(∪i<jσi) + βS(σj) − βS(Uj). If n − 1 6∈ S, then
βS(σj) = βS(∂σj), so βS(∪i≤jσi) = βS(∪i<jσi)+βS(∂σj)−βS(Uj). If n− 1 ∈
S, then in βS(σj) =

∑
T⊆S(−1)|S\T |fT (σj), each flag of proper faces of σj

cancels with a flag ending in σj itself, so βS(σj) = 0. For this case (as in the
calculation of βS(Ej) in part i) βS(Uj) = −βS\{n−1}(Uj). So for n − 1 ∈ S,
βS(∪i≤jσi) = βS(∪i<jσi) + βS\{n−1}(Uj). In the generating function we get
β(∪i≤jσi) = β(∪i<jσi) + β(∂σj)a + β(Uj)(b − a). So equation ii holds by
induction.

iii. When the shelling is reversed the Uj and Lj are exchanged and the
Ej stay the same. Adding the resulting version of equation ii to the original
and applying equation i give

2β(P ) =
t∑

j=1

2β(∂σj)a+ (β(Uj) + β(Lj)) (b− a)

=
t∑

j=1

2β(∂σj)a+ (β(∂σj)− β(Ej)(b− a)) (b− a)

=
t∑

j=1

β(∂σj)(a+ b) + β(Ej) (2(ab+ ba)− (a+ b)(a+ b)) . 2

According to Stanley’s computation of the β-vector [17], β(P ) ∈ Q〈a, b〉
is symmetric under the action that exchanges a and b. Theorem 2, combined
with initial conditions, gives a stronger condition on β(P ): it is in the sub-
algebra generated by two elements, a + b and ab + ba. We abbreviate these
two elements as c = a+ b, d = ab+ ba, and write Q〈c, d〉 for the subalgebra
they generate. For every regular CW sphere with a reversible shelling the
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β-vector has a generating function in Q〈c, d〉. This is called the cd index of
the sphere; it is written

∑
w βww, where the sum is over all words w in c and

d. The cd index is given recursively in the following corollary.

Corollary 3 Let P be a regular CW (n − 1)-sphere with reversible shelling
σ1, σ2, . . . , σt. For 2 ≤ i ≤ t− 1, let Ei = σi ∩ (∪j<iσj) ∩ (∪j>iσj).

i. If n = 1, then β(P ) = c.

ii. If n = 2 and P has k vertices, then β(P ) = cc+ (k − 2)d.

iii. If n ≥ 3, then β(P ) =
1

2

t∑
j=1

β(∂σj)c+
t−1∑
j=2

β(Ej)(d−
1

2
cc).

In fact the cd index exists even for nonshellable spheres and, more gen-
erally, for all Eulerian posets (for the definition see [2]). That is, as we shall
see, the cd index exists wherever the generalized Dehn-Sommerville equa-
tions hold. Define the weight of a word in c and d to be the degree of its
expansion as a homogeneous polynomial in a and b. Thus if c occurs i times
and d occurs j times in w, then the weight of w is i+ 2j.

We now compute the effect on the cd index of the X and Y constructions
on spheres. For both XQ and Y Q any ordering of the facets (ρi for XQ, τi
for Y Q) is a shelling, so Corollary 3 applies to give

β(XQ) = 1/2 (β(∂ρ1) + β(∂ρ2)) c = β(Q)c

β(Y Q) = 1/2 (β(∂τ1) + β(∂τ2) + β(∂τ3)) c+ β(ρ1 ∩ ρ3)(d− 1/2cc)

= 3/2β(XQ)c+ β(Q)(d− 1/2cc) = β(Q)(cc+ d).

The following was first observed in discussions with Fine (see also [7]).

Theorem 4 Let P be a graded poset. Then P has a cd index with integer
coefficients if and only if the β-vector of P satisfies the generalized Dehn-
Sommerville equations.

Proof. Let E be the subspace of Q〈a, b〉 generated by (the generating func-
tions of) β-vectors satisfying the generalized Dehn-Sommerville equations.
We wish to show that Q〈c, d〉 = E . First note that the two are graded vector
spaces with components the homogeneous polynomials in a and b of fixed
degree. Theorem 1 says that the dimension of the degree n component of
E is en (Fibonacci number). It is the same for Q〈c, d〉. To see this observe
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that there is no algebra relation in Q〈a, b〉 between a + b and ab + ba (see,
for example, [5]). So the dimension of the degree n component of Q〈c, d〉 is
the number of cd words of weight n. An inductive combinatorial argument
easily shows this number is en.

We now give a subset of E that is a basis for Q〈c, d〉. Let β(C) ⊂ E be
the set of polynomials β(P ) (including β(∅) = 1) for the spheres P in C, the
spheres obtained by using the X and Y constructions. We show by induction
on degree that β(C) spans Q〈c, d〉 as a vector space. Suppose w is a degree
n element of Q〈c, d〉, and w =

∑
Q∈Cn

αQβ(Q) for some αQ ∈ Q. Then

wc =
∑

Q∈Cn

αQβ(Q)c =
∑

Q∈Cn

αQβ(XQ)

and

wd =
∑

Q∈Cn

αQβ(Q)d =
∑

Q∈Cn

αQβ(Q)(cc+ d− cc)

=
∑

Q∈Cn

αQ (β(Y Q)− β(XXQ)) .

Since 1 = β(∅), all cd words can be written as linear combinations of elements
of β(C). The same combinatorial argument referred to above shows that Cn

has en elements. Thus β(C) is a vector space basis for Q〈c, d〉, so Q〈c, d〉 = E .
It remains to show that the coefficients of the cd index are integers; this

is not obvious from Corollary 3. Let Mn be the 2n × en matrix that expands
homogeneous cd polynomials of degree n out as ab polynomials. For a cd word
w, let ψ(w) be the lexicographically first ab word occurring in w. The word
ψ(w) is obtained by replacing each c by a and each d by ab; the set of words
arising in this way are those beginning with a and having no two consecutive
bs. If v occurs before w in lexicographic order, then ψ(v) occurs before ψ(w)
in lexicographic order. Thus the rows of Mn indexed by the words ψ(w) form
an en × en lower triangular submatrix of Mn with 0, 1 entries and ones along
the diagonal. So any polynomial in Z〈a, b〉 known to be in Q〈c, d〉 can be
written as an integer combination of cd words. 2

Thus the cd index of a regular CW sphere encodes the numbers of flags in
the most efficient way, i.e., without any redundancy reflected in the general-
ized Dehn-Sommerville equations. Here are the cd indices of low dimensional
spheres in terms of the flag vectors. Note that set brackets have been omitted
from the flag numbers and 1 is written instead of f∅.
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n=2 β(P ) = cc+ (f1 − 2)dc

n=3 β(P ) = ccc+ (f2 − 2)cd+ (f1 − f2)dc

n=4 β(P ) = cccc+ (f3 − 2)ccd+ (f2 − f3)cdc+ (f1 − f2 + f3 − 2)dcc
+ (f13 − 2f1 − 2f3 + 4)dd

The cd index also inherits a nice property from the flag vector. Let P be a
regular CW sphere with a dual sphere P ∗; that is, the face poset of P ∗ is the
dual of the face poset of P . For S = {i1, i2, . . . , ik} ⊆ {0, 1, . . . , n− 1}, write
S∗ = {n−1−ik, n−1−ik−1, . . . , n−1−i1}. Then the flag vector and β-vector
of P ∗ are related to those of P by fS(P ∗) = fS∗(P ) and βS(P ∗) = βS∗(P ).
This implies that the cd index of P ∗ is obtained from the cd index of P by
reversing each cd word.

Fine made the following conjecture for polytopes. It holds for regular
CW spheres of dimension three or less.

Conjecture 5 The coefficients in the cd index of a regular CW sphere are
nonnegative.

4 The generalized h-vector

Much of the study of simplicial polytopes has used the “h-vector” of the
polytope, obtained from the f -vector by a certain linear transformation. In
particular, Stanley’s proof of the necessity of the McMullen conditions for the
f -vector of a simplicial polytope [18] depends on the fact that the h-vector
gives the ranks of the homology groups of the “toric variety” associated with
the polytope. Applying the h-vector transformation to the f -vector of a
nonsimplicial polytope does not give anything meaningful. Furthermore, the
ordinary homology Betti numbers of the toric variety associated with an ar-
bitrary polytope are not determined by the face lattice [12]. However, several
algebraic geometers (J. N. Bernstein, A. G. Khovanskii and R. D. MacPher-
son) independently developed formulas for the (middle perversity) intersec-
tion homology Betti numbers of the varieties associated with arbitrary (not
necessarily simplicial) rational polytopes. For relatively accessible references
on the algebraic geometry see [6, 8, 19, 20]. In [19] Stanley generalized these
Betti number formulas to Eulerian posets and studied the resulting “gener-
alized h-vector” for polytopes. We present the definition in the context of
regular CW spheres.
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Definition. Every regular CW (n − 1)-sphere P has a generalized h-
vector (h0, h1, . . . , hn) ∈ Nn+1, with generating function h(P, t) =

∑n
i=0 hit

i,
and g-vector (g0, g1, . . . , gbn/2c) ∈ Nn+1, with generating function g(P, t) =∑bn/2c

i=0 git
i, related by g0 = h0 and gi = hi − hi−1 for 1 ≤ i ≤ bn/2c. The

generalized h-vector and g-vector are defined by the recursion

i. g(∅, t) = h(∅, t) = 1, and

ii. h(P, t) =
∑

G face of P
G6=P

g(∂G, t)(t− 1)n−1−dim G.

When P is a simplicial n-polytope, this definition gives the h-vector used
in the study of simplicial polytopes; hence it satisfies the McMullen condi-
tions. The g-vector of any regular CW sphere determines the generalized
h-vector, because the generalized h-vector is symmetric [19]. For rational
polytopes the algebraic geometry shows that the generalized h-vector is non-
negative and unimodal, but it is not known whether the other McMullen
conditions hold. Nonnegativity fails for some regular CW spheres, however.
The h-vector of a simplicial polytope depends linearly on the f -vector. In
general, the generalized h-vector depends on the flag vector.

Theorem 6 For any regular CW (n−1)-sphere and any i, 0 ≤ i ≤ n, hi is an
integer linear combination of fS, as S ranges over subsets of {0, 1, . . . , n−1}.

Proof. The proof is by induction on n. Clearly for fixed n if the hi are linear
functions of the fS, then the gi are also. For n = 1 the proposition holds
(using f∅ = 1). Assume the proposition is true for dimensions less than n−1.
Then for an (n− 1)-sphere P , h(P, t) is the sum, over faces of dimension less
than n, of polynomials whose coefficients are integer linear combinations of
the flag numbers of the faces. The linear combinations themselves depend
only on the dimension of the face. So for some integers ak,i,S

h(P, t) =
n−1∑

k=−1

∑
G face of P

dim G=k

n∑
i=0

 ∑
S⊆{0,1,...,k−1}

ak,i,SfS(G)

 ti

=
n−1∑

k=−1

n∑
i=0

∑
S⊆{0,1,...,k−1}

ak,i,S

 ∑
G face of P

dim G=k

fS(G)

 ti.
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But for S ⊆ {0, 1, . . . , k − 1},
∑

G face of P
dim G=k

fS(G) = fS∪{k}(P ). So

h(P, t) =
n−1∑

k=−1

n∑
i=0

∑
S⊆{0,1,...,k−1}

ak,i,SfS∪{k}(P )ti, a polynomial whose coeffi-

cients, h0, h1, . . . , hn, are integer linear combinations of fT , as T ranges over
subsets of {0, 1, . . . , n− 1}. 2

Thus the flag vector, and hence the cd index, of a regular CW sphere
determines its generalized h-vector, but the reverse is clearly not the case.
Kalai [11] has found a set of parameters, containing the generalized h-vector,
which determines the flag vector and is nonnegative for rational polytopes.

The generalized h-vector of a regular CW sphere does not by itself de-
termine the generalized h-vector of a dual sphere. Kalai [10] conjectured
the following relation holds. He later found a proof (unpublished) of this
conjecture; in the next section we show how this result also follows from the
calculation of the generalized h-vector in terms of the cd index.

Theorem 7 For n even and P any n-polytope, gn/2(P ) = gn/2(P
∗).

5 The generalized h-vector in terms of the cd

index

In this section we compute the generalized h-vector of a sphere in terms of
its cd index. First we calculate the effect on the generalized h-vector of the
X and Y constructions.

Proposition 8 For any regular CW (n− 1)-sphere Q

i. β(XQ) = β(Q)c

ii. β(Y Q) = β(Q)(cc+ d)

iii. hi(XQ) =

{
hi(Q)− hi−1(Q), if 0 ≤ i ≤ n

2

hi−1(Q)− hi(Q), if n
2
< i ≤ n+ 1

iv. hi(Y Q)− hi(XXQ) ={
hi−1(Q)− hi−2(Q), if n is even and i = (n+ 2)/2

0, otherwise
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Proof. Equations i and ii were derived in Section 3. For equation iii recall
that the proper faces of XQ are the proper faces of Q and two copies of Q
itself. Thus

h(XQ, t) =
∑

G face of XQ
G6=XQ

g(∂G, t)(t− 1)n−dim G

= (t− 1)
∑

G face of Q
G6=Q

g(∂G, t)(t− 1)n−1−dim G + 2g(Q, t)

= (t− 1)h(Q, t) + 2g(Q, t).

So with the convention h−1(Q) = hn+1(Q) = 0,

n+1∑
i=0

hi(XQ)ti =
n+1∑
i=0

(hi−1(Q)− hi(Q)) ti + 2

bn
2
c∑

i=0

(hi(Q)− hi−1(Q)) ti.

This gives equation iii.
For equation iv note that the faces of Y Q are all isomorphic to faces of

XXQ; the difference between the two face lattices is that Y Q has one more
face of type Q and one more face of type XQ. Thus

h(Y Q, t)− h(XXQ, t) =
∑

G face of Y Q
G not a face of XXQ

G6=Y Q

g(∂G, t)(t− 1)n+1−dim G

= (t− 1)g(Q, t) + g(XQ, t).

This is a polynomial of degree at most bn
2
c + 1. For 0 ≤ i ≤ bn

2
c hi(XQ) =

gi(Q), so the coefficient of ti is

hi(Y Q)− hi(XXQ) = gi−1(Q)− gi(Q) + hi(XQ)− hi−1(XQ) = 0.

If n is even, g(XQ, t) has degree at most n/2, so h(Y Q, t) − h(XXQ, t) =
gn/2(Q)t

n
2
+1. If n is odd, h(n+1)/2(Q) = h(n−1)/2(Q), so the coefficient of

t(n+1)/2 in g(XQ, t) is

g(n+1)/2(XQ) = h(n+1)/2(XQ)− h(n−1)/2(XQ)

=
(
h(n−1)/2(Q)− h(n+1)/2(Q)

)
−

(
h(n−1)/2(Q)− h(n−3)/2(Q)

)
= −g(n−1)/2(Q).

12



Therefore the coefficient of t(n+1)/2 in g(XQ, t) cancels the coefficient of
t(n+1)/2 in (t− 1)g(Q, t). So for n odd h(Y Q, t)− h(XXQ, t) = 0. 2

Recall that the generalized h-vector is obtained from the flag vector (and
hence from the cd index) by a linear transformation. Proposition 8 says
that the matrix of this transformation is determined by the h-vectors and
cd indices of spheres in the set C, i.e., the spheres obtained by successively
applying the X and Y constructions. Write β for the vector of coefficients
βw of the cd index. Let An be the transformation matrix for degree n; so
An ∈ Q(n+1)×en and hT = Anβ

T . The rows of this matrix are indexed by the
set {0, 1, . . . , n}, and the columns are indexed by cd words of weight n. For
w a cd word of weight n, write Aw for the column of An indexed by w, and
ai,w for the ith element of this column.

Theorem 9 Let w be a word of weight n, w = ci0dj0ci1 · · · djk−1cik .

i. If k = 0 and i0 = n ≥ 1, then

Aw = Acn

=



a0,cn−1

a1,cn−1 − a0,cn−1

...
ab(n−1)/2c,cn−1 − ab(n−3)/2c,cn−1

ab(n−1)/2c,cn−1 − ab(n+1)/2c,cn−1

...
an−2,cn−1 − an−1,cn−1

an−1,cn−1


where Ac0 = [1].

ii. If k ≥ 1 and for some r, 0 ≤ r ≤ k − 1, ir is odd, then Aw = 0.

iii. If k ≥ 1 and for all r, 0 ≤ r ≤ k − 1, ir is even, then

Aw =
k−1∏
r=0

pir

 0(k)

Acik

0(k)


where 0(k) is a column of (n − ik)/2 0s, and for any even i, pi =
ai/2,c − a(i−2)/2,c.
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Proof. For Q a regular CW (m − 1)-sphere, Proposition 8 part i gives
[h(XQ)]T = An[β(XQ)]T =

∑
v A

vcβv(Q). Applying part iii of the same
Proposition, we get

∑
v

ai,vcβv(Q) =


∑
v

(ai,v − ai−1,v)βv(Q), if 0 ≤ i ≤ m/2∑
v

(ai−1,v − ai,v)βv(Q), if m/2 < i ≤ m+ 1
.

The βv(Q) are independent functions of Q, so for all words v of weight m,

ai,vc =

{
ai,v − ai−1,v, if 0 ≤ i ≤ m/2
ai−1,v − ai,v, if m/2 < i ≤ m+ 1

. (1)

Similarly, for all words v of weight m,

ai,vd =

{
ai−1,v − ai−2,v, if m is even and i = (m+ 2)/2

0, otherwise
. (2)

Applying equation (1) with v = cn−1 gives part i. By equation (2), if v is
any word of odd length, and w is any word beginning with vd then Aw = 0.
This gives part ii.

Finally we prove part iii by induction on w. Assume part iii holds for v =
ci0dj0ci1 · · · djk−1cik−1; we show it holds for vc. Equation (1) says that Avc =
∂(Av), where ∂ is the “difference operator,” ∂(x0, x1, . . . , xm)T = (x0, x1 −
x0, . . . , xb(m−1)/2c − xb(m−3)/2c, xb(m−1)/2c − xb(m+1)/2c, . . . , xm−1 − xm, xm)T ∈
Qm+2. Clearly for a scalar λ, ∂(λx) = λ∂(x). Also, if x′ = (0, x, 0)T then
∂(x′) = (0, ∂(x), 0)T . So

Avc = ∂(Av) =
k−1∏
r=0

pir

 0(k)

∂(Acik−1
)

0(k)

 =
k−1∏
r=0

pir

 0(k)

Acik

0(k)

 .
So part iii holds for vc.

It remains to show that part iii holds for vd if it holds for v, and if each
string of cs in v is even. Consider first the case v = ci0dj0ci1 · · · djk−2cik−1 ; note
the weight of v is even. Equation (2) says that Avd = γ(Av), where form even
γ(x0, x1, . . . , xm)T = (0, . . . , 0, xm/2 − xm/2−1, 0, . . . , 0)T ∈ Qm+3. As before,
for a scalar λ, γ(λx) = λγ(x), and for x′ = (0, x, 0)T , γ(x′) = (0, γ(x), 0)T .
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So

Avd = γ(Av) =
k−2∏
r=0

pir

 0(k−1)

γ(Acik−1
)

0(k−1)

 =
k−2∏
r=0

pir



0
...
0

pik−1

0
...
0



=
k−1∏
r=0

pir

 0(k)

1
0(k)

 =
k−1∏
r=0

pir

 0(k)

Ac0

0(k)

 .
So for w ending in cd, part iii holds. Now if w = vd, with v itself ending in
d, then part iii for v along with equation (2) show that Avd = [0Av 0]T . So
part iii holds in this case as well. 2

Theorem 9 was discovered by computing the matrix An for small weights
n, using the relations in Proposition 8. As the weight increases, the basis
of cd words grows exponentially, and the time required to compute the ma-
trix soon becomes prohibitive. The formulas in Theorem 9 became evident
only by comparing the generalized h-vectors corresponding to cd words of
weight six, seven and eight. The computation was carried out on a VAX
11/750 in the Pascal programming language using dynamic programming
techniques. Two hours of cpu time were required for the computation for cd
words of weight eight. To perform this calculation by hand would require
a tremendous amount of time, far more than the time it took to write the
program. Moreover, we feel that in such hand calculations the possibility
of undiscovered errors is much greater than in the machine calculation we
performed.

As a corollary we get Kalai’s result on dual spheres.

Corollary 10 For n even and P any (n − 1)-sphere with dual sphere P ∗,
gn/2(P

∗) = gn/2(P ).

Proof. It suffices to show that when n is even

an/2,w − a(n−2)/2,w = an/2,w̄ − a(n−2)/2,w̄ (3)
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for all cd words w of weight n, where w is the reverse of the word w. For
then

gn/2(P
∗) = hn/2(P

∗)− h(n−2)/2(P
∗)

=
∑
w

(an/2,w − a(n−2)/2,w)βw(P ∗) =
∑
w

(an/2,w̄ − a(n−2)/2,w̄)βw̄(P )

=
∑
w

(an/2,w − a(n−2)/2,w)βw(P ) = gn/2(P ).

We show equation (3) by induction on n. It is obviously true for n = 2,
because cc = cc and d = d. So suppose (3) holds for all words of even
weight less than n, and let v be a word of weight n (n even). Since n− ik =∑k−1

r=0(ir + 2jr), and Av = 0 unless each ir, 0 ≤ r ≤ k − 1, is even, Av 6= 0
implies ik is even also. So assume v = ci0dj0ci1 · · · djk−1cik , with all ir even
(0 ≤ r ≤ k).

If ik = 0 write v = wd. By equation (2) an/2,v − a(n−2)/2,v = a(n−2)/2,w −
a(n−4)/2,w, which, by the induction assumption, equals a(n−2)/2,w̄ − a(n−4)/2,w̄.
By Theorem 9 for any cd word z, Adz = [0Az 0]T , so

an/2,v − a(n−2)/2,v = a(n−2)/2,w̄ − a(n−4)/2,w̄ = an/2,dw̄ − a(n−2)/2,dw̄

= an/2,v̄ − a(n−2)/2,v̄.

On the other hand, if ik > 0 then an/2,v − a(n−2)/2,v =
∏k

r=0 pir = an/2,v̄ −
a(n−2)/2,v̄. So equation (3) holds for all words of even weight. 2

The cd index of a polytope is a good way of representing the numeri-
cal combinatorial data of the polytope. There is a simple relation between
the cd indices of dual polytopes, as there is between the flag vectors. The
compelling advantage of the cd index over the flag vector is that it is of the
correct dimension. The cd words precisely parametrize the generalized Dehn-
Sommerville space. Furthermore this index can be computed via a shelling
of the polytope. However, the shelling computation of the cd index involves
subtraction. To show that the index has nonnegative coefficients we would
like to interpret the individual coefficients as measuring the dimension of
some vector space, or counting some geometric objects.

Finally, we mention the connection between the cd index and Kalai’s
parameters for polytopes. Kalai [11] defines for a polytope P a set of pa-
rameters that can be obtained from the Betti numbers of polytopes whose
face lattices occur as intervals in the face lattice of P . These parameters are
again linear functions of the flag vector of the polytope, and hence can be
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computed from the cd index and vice versa. Theorem 9 provides a direct way
of computing a small subset of Kalai’s parameters (those using only the en-
tire face lattice of P ) without first computing the flag vector. By Corollary 3
we can extract from the cd index of a polytope P the sum of the cd indices
of its facets; applying Theorem 9 to this sum enables us to compute more
of Kalai’s parameters. We hope that further study of the cd index and of
Kalai’s parameters will produce a better understanding of the combinatorial
structure of polytopes.
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