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Abstract—Over the past half century various statistical prop-  tests and are not m-sequences. Since 1982 a great many
erties of pseudorandom sequences have played important roles in additional statistical tests for randomness have been studied
a variety of applications. Among these properties are Golomb’s (see, for example, [20] Chapter 3 or [22] Chapter 2). Although

randomness conditions: (R1) balance, (R2) run property, and . . ,
(R3) ideal autocorrelations, as well as the closely related proper- Golomb's list looks rather minimal by today’s standards, there

ties (R4) shift and add, and (R5) de Bruin (uniform distribution of ~ are still only a handful of known techniques for constructing
subblocks). The purpose of this paper is to describe the relations (non-binary) sequences with all three of these properties. In

betweer) these conditions, and to introduce a new method for Section VI of this paper we develop a new technique for the
generating sequences with all these properties, using algebraic oqncstruction of sequences satisfying (R1)-R(3).
feedback shift registers. In modern systems there is often an advantage to using
Index Terms—De Bruijn sequences, feedback shift registers, sequences over a non-binary alphabet, typically of 8izer
function fields, ideal autocorrelation, pseudo-random sequences. ow \wherew is the word size of the architecture in use. It is thus
natural to consider, as we do in this paper, periodic sequences
whose elements are taken from some finite dimensional vector
. INTRODUCTION spacel’ over a (finite) Galois field?. The precise definitions
The purpose of this paper is twofold: to review the basisf (R1)-(R3) in this setting are provided in Section II.
properties of a class of pseudo-random sequences (punctureollowing Golomb, let us consider the additional properties
de Bruijn sequences with the shift and add property) oveR4) shift and add (cf. Section I11-B)

non-prime fields, and to describe their generation by algebrg{gs) punctured de Bruijn (cf. Section 11-A)

feedback shift registers. which are also enjoyed by m-sequences. Golomb showed,
- for binary periodic sequences, that condition (R1) (balance)
A. Generalities on sequences together with condition (R4) (shift-and-add) is sufficient to
Rapidly generated pseudo-random sequences with “goaliarantee condition (R3) (ideal correlation). The same holds,
statistical (randomness) properties are essential componemtd the same proof works, in the non-binary setting (cf. The-
in a wide variety of modern applications including radagQrem 2).
CDMA, error correction, cryptographic systems, and Monte Condition (R5) means: the period dfis |V |¥—1 (for some
Carlo simulations. Acceptable sequences should exhibit hp and every block of lengtlk occurs exactly once in each
statistical bias in the occurrence of individual symbols or smaikriod of A except for the single block consisting bizeroes;
blocks of symbols. With these goals in mind, in his classigee Section II-A. The precise relation between conditions (R4)
book S. Golomb [5] defined pseudonoisesequence to be aand (R5) is very interesting and it is still not completely
periodic binary sequence that passes three statistical testsufaderstood. Even in the binary case, there exist punctured

randomness: de Bruijn sequences that do not satisfy the shift-and-add
(R1) Balance, condition. S. Blackburn [1], extending work of Gong, Di Porto

(R2) Run property, and Wolfowicz [4], characterized the sequences satisfying the
(R3) Ideal autocorrelation, shift-and-add property (R4). Using his result, in Theorem 3

each of which is described below, in Section Il. Goloml/® count the number of (cyclically) distinct shift-and-add

showed that linearly recurrent sequences of maximal periggduences. Moreover we characterize (a) those shift-and-add
9" 1, or binary m-sequencesatisfy all three of these prop- S€duences with ideal autocorrelations and (b) those shift-and-

erties and moreover, such sequences can be rapidly gener@fij Sequences which also have the de Bruijn property (RS).
using linear feedback shift registers (LFSRs). (One such characterization, described in part (4) of Theorem 3

It is still unknown whether there are any binary sequence¥@s suggested to us by an anonymous referee.) Despite these

other than m-sequences, with all three of these properti@dvances, we have not succeeded in counting the number of

However non-binary sequences are known which pass th@g@llcally distinct shift-and-add sequences with the de Bruijn
property.
M. Goresky is with the School of Mathematics, Inst. for Adv. Study,
Princeton N.J. www.math.ias.edugoresky. Research partially supported by
DARPA grant HR0011-04-1-0031. B. The new sequences
A. Klapper is with the Dept. of Computer Science, University of Ken- . .
tucky, WV\?vs.cs.uky.eduLklappepr. Researcrrl)partially supported by I\BI/SF grants Let F' be a (finite) Galois field and leg(x) € Fla] be
CCR-9980429 and CCF-0514660 an irreducible polynomial of degreg Then the quotient ring



TRANSACTIONS ON INFORMATION THEORY 2

F[z]/(q) is a field, isomorphic to the Galois field witff'|¢ or FCSRs, whereS = F; and the memory is an integer.
elements. Each element &f[z]/(q) may be thought of as a The FCSR architecture, reviewed in Section V, and being a
polynomial of degree less than Letr € F[z]/(¢) be a prim- special case of the AFSR, is somewhat easier to understand
itive element. Thus = r(z) € F[z] is a polynomial of degree than the general AFSR architecture, and its discovery predates
less thang, and the various powers(z)'modq € F[r]/(g) the general AFSR. In a sequence of articles [7], [15]-[17] the
(for 0 < @ < |FJ9 — 2) exactly account for the nonzeroauthors have described the generation and analysis of maximal
elements ofF'[z]/(q). We may also consider(z)'modq to period FCSR sequences (which we refer to/aequences):

be a polynomial of degree less thanThere are (at least) two they exhibit many of the desirable randomness properties of

things one might do with such a polynomial. m-sequences. The new AFSR sequences are, in some sense, a
(i) Retain the constant term of the polynomial to obtain afatural outgrowth of this line of investigation.
element In Section VIII we estimate the cost of a software im-
a; = (r'mod ¢)(mod z) € F (1) Pplementation of the AFSR architecture for the generation of

. ) ] the new sequences. But the real merit in having an AFSR
(i) Reduce the polynomial modulp to obtain an element gescription of the sequence, rather than an “exponential”
bi = (r mod q)(mod r) € Flz]/(r). @) ?mplementgtion as in equatipn (2), lies in the possibility of
implementing the generator in high speed hardware.
Let e = deg(r). If the polynomialr(z) is irreducible then  In Section X we show that parametergzr),q(z) giving
Flz]/(r) is a field with| |* elements. In general, all we carrise to the new de Bruijn sequences are plentiful, although we
say isthal’ = F[z]/(r) is a vector space ovéf of dimension have not succeeded in counting the number of distinct such
e. sequences (for given period and symbol alphabet). Finally in

Using procedure (i), the resulting sequenge= ' is an m-  Section XI we work out an example, which may help to clarify

sequence, with periold’|¢—1, and hence it satisfies conditionghe discussions in Sections V and VII.

(R1)-(R5). The new sequences are those obtained from method

(i) when g = deg(q) is a multiple ofe = deg(r). In

Theorem 7 we prove, under these conditions, that t(he sequenclcla' PSEUDORANDOMNESSPROPERTIES OFSEQUENCES
(2) also satisfies conditions (R1)-(R5): it is a punctured de In this section we describe the randomness conditions (R1)-
Bruijn sequence with the shift-and-add property and ide@R5) for non-binary sequences and the relations among them.
autocorrelations. (For technical reasons, in the body of the
paper, we consider the reverse sequemncémod ¢)(modr).)

One might ask whether the sequence (2) is perhaps j&t
an m-sequence “in disguise”. If' denotes the Galois field Throughout this paper we fix a prime numbeand letF,
with the same numbelF|¢, of elements ad” = F[a:l/(r), denote the field withp elements. Lel/ be a vector space of
might there exist a vector space isomorphism betwEeand dimensione over F,,. Throughout this section we assume that
V which converts the sequendg € V' into an m-sequence A is a periodic sequence of elements frémwith period V.
in 2 In Theorem 8 (in Section IX) we prove, in fact, tha{There is no advantage in considerifigto be a finite field
there exists1o set theoretic mapping : V' — F such that the of characteristig, nor is any generality added by considering
sequence)(b;) € F is an m-sequence, provideldg(r) > 1.  vector spaces over non-prime fields.)

Recall that ablock b = (bg, b1, ---,br—1) of lengthk is an
C. Algebraic feedback shift registers ordered sequence af elements,bi € V. An occ.urren.ceof

_ . . the blockb in (a single period of) the sequengeis an index

Although the formula (2) gives a (relatively) explicit way, « N _ 1 such that(as, ait1, - aiin_1) = b. A run of

to generate the sequenkg it is also possible to generate thi§gngih 1 s a block ofk consecutive identical symbols that is
sequence using aalgebraic feedback shift register AFSR. ot contained in a longer block of consecutive symbols. That
An AFSR is an LFSR that has been modified in two Wayg it is ablock(a;_1,a, -, aisx) in A such that; 1 # a; =
(cf. Figure 2): Qig1 = -+ = Gi4h—1 # i+ The sequencel is ade Bruijn
1) The cell contents are allowed to be elements of a (fixesequence of spah if every block of lengthk occurs exactly
finite) commutative ringS. once in (each period ofd. The sequencel is a punctured
2) An additional “memory” or “carry” cell is incorporated de Bruijn sequence (R5) of spanif it is obtained from a
in the feedback architecture. de Bruijn sequence by deleting a singldthe zero vector of
The operation of the general AFSR is explained in detate vector spac&”) from the single occurrence of the block
in Section V. In Section VI we repeat this explanation fo(0,0,---,0) of length% in each period ofd. The period of a
the special case in which the cell contents are elements in thenctured de Bruijn sequence of spais N = |[V|* — 1.
ring S = F[z]/(r) that contains the symbols of equation  Suppose a sequencgkof elements in” has periodV. The
(2). So Section VI describes the AFSR generation of the nesgquence is said to satisfy thalanceproperty (R1) if, for
sequences. some integett, within a single period every elemente V'
The AFSR construction is very general and it includes theecurst times ort — 1 times. Thus we may take= [N/|V]].
case of LFSRs (wher§ = F, and the memory cell is always In particular, if N = |V|*, thent = |V |*~! and every element
0) as well as the case déedback with carry shift registers a € |V| occurst times. Similarly, if N = |V|¥ — 1, then

Distribution of blocks
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t = |[V|¥~1 and every element € |V| except a single element It follows from part (3) of Lemma 2 that the set of shifts of
occurst times. The remaining element occurs- 1 times. a sequencel with the shift and add property, together with the
The sequenced satisfies therun property (R2) if it has all zero sequence, forms a vector space @jgerSuch a vector
period N = |[V|¥ or N = |V|F —1 and if, for eachm < k—1 space has cardinality” for somen. So if A is nonzero, the
the number of runs of length is [V [*=™~1(|V| — 1)2, the number of distinct cyclic shifts, and hence the period, equals
number of runs of lengttk is |V| or |V| — 1, and there are p" —1. In particular a sequence with the shift and add property
no runs of length greater thah It is well known, and is cannot be a de Bruijn sequence, but it might be a punctured
easy to see that these are the closest integer approximatideBruijn sequence.
to the expected number of runs, averaged among all periodicSupposeA is a punctured de Bruijn sequence over
sequences of periodV. The original argument of [5§4.2 (meaning that the symbols in the sequence are elements of
shows: V). Supposel/ is another vector space and that V — V
Lemma 1:Every de Bruijn sequence of spank, and every is a (not necessarily linear) set theoretic mapping. Applying
punctured de Bruijn sequence of splanis balanced and has¢ to each element ofi gives a sequencé(A) over V. The

the run property. sequence)(A) will again be a punctured de Bruijn sequence
In fact, such a sequence satisfies the following strong forifrand only if (a) the vector spacé has the same dimension as
of the balance condition: V, (b) the mappingy is a one-to-one correspondence and (c)

(R1’) foranyt < k and for any block of lengtht, the number it satisfiesp(0) = 0. The next theorem similarly characterizes
of occurrences ob in (a single period of) a de Bruijn those mapping® : V' — V which preserve both the punctured
sequenced of spank is |V|*~t. The same holds for a de Bruijn property and the shift-and-add property.
punctured de Bruijn sequencé except for the single  Theorem 1:Let V' be a vector space oveF, and let
block (0,0, - - -, 0) of lengtht, which occursV|*=* —1 A = (ag,a1,---) be a periodic sequence of elementslin
times. SupposeA is a punctured de Bruijn sequence with the shift-

a) Remark.: A choice of basis forl’ over F, gives a and-add property. Le¥” be another vector space ovEj, and
way of translating each € V into a blocki(a) overF, of let¢:V — V be a set-theoretic mapping. Then the following
length e. Applying ¢ to each symbol of4 gives a sequence conditions are equivalent:

¥(A) over F, whose period isc times the period ofd. If 1) The sequence(A) is a punctured de Bruijn sequence
A has one of the randomness properties described in this \ith the shift and add property.

section, then)(A) does not, in general, have the same property 2y The mappings : V — V is a (linear) isomorphism of
(both because the period is wrong and because the relevant vector spaces.

subblocks do not necessarily align with the ends of Fye Proof: One implication is trivial: if¢ is a linear isomor-
ary representations of elements. phism of vector spaces thef(A) is a punctured de Bruijn
sequence satisfying the shift and add property. Conversely,
B. Shift and add supposep : V — V is an arbitrary mapping such thatA) is
Let V be a vector space ovéf,. Let A = (ag,ay,-- .) a.punctured de Bruijn sequence with Fhe shift and a_dd property.
be a periodic sequence of elements frdmand let A, Since A and¢(A) have the same period, the mappipgnust

(ar,ar41, ) be its shift byr steps. Letd + A, = (ap + be a one-to-one correspondence ahoh(V) = dim(V). In

ar,ai + ar41,---) be the sequence obtained from termW|sBart'CU|ar¢( ) = 0 because0 occurs inA (and in ¢(A))

addition of A and A... fewer times than the other symbols. For every shiff0 <
Definition 1: The sequencel has theshift-and-add prop- 7 < IV — 1) there exists a unique shikt= k(7) such that

erty (R4) if, for any shift 7, either (1) A + A, = 0 (the

all-zeroes sequence) or (2) there exists a shiftuch that P(A+ Ar) = 6(A4) = ¢(Ax(n)- ®)

A+ Ay = A, This follows from the facts thatl is a shift and add sequence

Similarly we can define the shift and subtract property. Mor,
generally, we say thafl satisfies the shift and add propertygnd thatg(4) is a shift and subtract sequence. So for each

with coefficients in the field, if, for any ¢,d € F,, and for , , -

any shift 7, eithercA + dA, i 0 or else there exzists a shift 9(ai + aitr) = $laz) + ola k() )

7/ such thatcA + dA, = A,.. Suppose there exists an indexsuch thatk(r) # 7. Then
Lemma 2:The following statements are equivalent. whenever: satisfiesia;;., = 0 we obtaing(a;;(-)) = 0. In
1) The sequencel has the shift and add property. other words, ifa; = 0 thena, (), = 0.
2) The sequencel has the shift and subtract property. The sequencel contains a unique largest block of zeroes
3) The sequenced has the shift and add property with(with & — 1 zeroes, wheréek is the span of the de Bruijn

coefficients in the field,. sequence). Applying the above implication to each of these

Proof: For anyv € V the equatiompv = 0 says that zeroes gives another (possibly overlapping) blockkof 1
—v =v+v+...+v (p—1 times) so the shift and add propertyzeroes. This is a contradiction unless these two blocks coin-
implies the shift and subtract property and vice versa. Similartyde, meaning thak(7) = 7. This combined with equation
the shift and add property with coefficientshr, follows from (3) proves thatp is linear, and so it is a linear isomorphism
repeated application of the shift and add property. m of vector spaces. ]
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C. Autocorrelations 7/ with

Golomb’s third postulate (R3) is that a sequence should = _
have an ideal aus)correlaticsn f)unction. The gutocorrelation Aax(r) = 2_; x(@i)x(@it7)
function of a sequence is usually defined for sequences whose Jif_l
symbols are taken from a cyclic group, whereas the sequences _ x(a; — aisr)
considered in this paper consist of symbols in some vector Pt
spacel’ over the fieldF,. Before describing the appropriate N—1
notion of ideal autocorrelation in this context, we briefly = Z X(@igr)
review some standard facts about finite Abelian groups. =0

Definition 2: A character of a finite Abelian groupG is N-1
a group homomorphism frond to the multiplicative group = x(a;)

C* = C — {0} of the complex number€. That is, it is a
function x : G — C* such thaty(a + b) = x(a)x(b) for all
a,b e G.

=0

Since A is balanced{l), its period is eithedV|* or [V |F £ 1
and each element € V occurrs the same numbg#/|*~1

.

Such a functiony necessarily takes values in the unit circlegf times, except possibly for one single element. So the

It is said to benontrivial if x(a) # 1 for somea € G.

Lemma 3:Let x : G — C* be a nontrivial character. Then

> gec X(g9) =0.
Proof: Since x is nontrivial, there existas € G with

x(a) # 1. Then

x(a) > x(9) =Y xlag) = Y x(¢)

geG geG g'eG

S0 (1 —x(a)) Xoyeq x(9) = 0. u

Definition 3: Let G be a finite Abelian group and let be
a periodic sequence of elements@f with period V. Let x
be a character ofs. The autocorrelationof A with shift 7,
with respect toy is the complex number

N-1 N-1
A (m) = Z X(ai)x(aitr) = Z x(a; — aitr).
i=0 i=0
The sequencel hasideal autocorrelationsf
(R3) |Aa,(7)|] < 1 for every nontrivial charactey of G and
everyT # 0mod N.

It is customary to consider the autocorrelatidn, , to be a
(periodic) function ofr.

Suppose thal” is a vector space of dimensianover the
field F,, and thaty : V' — C* is a character. Theg satisfies
x(az + by) = x(z)%x(y)® for any z,y € V and anya,b €
{0,1,...,p — 1}. Moreoverx(pz) = x(z)? =1 for any z €
V', so x takes values in the set

Up = {eQ”im/” :0<m<p-1}

of p-th roots of unity.

Theorem 2:If A is a periodic balanced sequence of el

ements taken from the vector spabe (over the fieldF,)
and if A has the shift and add property, theh has ideal
autocorrelations in the sense of Definition 3.

Proof: Let N be the period ofA. Let x : V — C* be

autocorrelation is

VIFEY " x(a) +¢

acV

wheree = 0 if the period N = |V|*; otherwises = £(b) for
a single element € V. By Lemma 3 the first term vanishes,
leaving| A4, (7)| = |e| <1 as claimed. |

IIl. CHARACTERIZATION OF SHIFT AND ADD SEQUENCES

Zierler [24] stated that the sequences over a finite field with
the shift and add property are exactly the m-sequences (see
Section IV for a review of the definition of m-sequences and
related concepts). His proof is valid for sequences over a prime
field Fy,, but it is incorrect for sequences over non-prime fields.
Gong, Di Porto, and Wolfowicz gave the first counterexamples
[4]. Subsequently, Blackburn gave a complete characterization
of shift and add sequences [1]. In this section we describe and
extend Blackburn’s results.

Let V be a vector space of dimensianover F,,. We
consider periodic sequences of perigd— 1 with entries in
V. Let L be the Galois field withp™ elements. Letw € L
be a primitive element and 1&f : L — V be a set-theoretic
mapping that is not identicall§. Let A = (ag, a1, ...) be the
sequence given by; = T'(a?).

We say thatl is balancedif n > e and if the setl'!(a)
contains the same numbef,¢, of elements, for every € V.

If T is balanced, then it is surjective. T is linear overF,,
denote byK = ker(T) the kernel off". If u € L then denote

by
uK={ureLl:ze K}={ureL:T(z)=0}

the translate of this subspace by the action of multiplication

by u. We say thafl" has thekernel propertyif 7' is F,-linear,

if n = ek for somek, and if

k-1
ﬂ a 'K = {0}.

=0

(4)

a nontrivial character and let € Z be a shift. To compute If T has the kernel property thénis surjective (see the proof

the autocorrelatiotd 4 , (7), use Lemma 2 which says that

of part (3) of Theorem 3 in Section XIl). In Theorem 3, we

satisfies the shift-with-subtract property. So there exists a shiftow that properties of the mappirig : L — V give rise
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to properties of the resulting sequende according to the

following table. ar_1 | ap_o ay ao
Properties ofl’ | Properties ofd
F,-linear shift and add e e @ @
balanced ideal autocorrelations
kernel property| de Bruijn @

In part (4) of Theorem 3 below, the kernel property is
expressed in terms of a basis fot. We are grateful to an Fig. 1. A Linear Feedback Shift Register
anonymous referee for suggesting part (4) of this theorem.

In what follows, ¢ denotes Euler's function. We also recall )

that two periodic sequences of the same period are said to8gNS @ basis fol, overF,. , o
cyclically distinctif the second sequence cannot be realized The last statement of part (1) is Blackburn’s characterization
as a shift of the first sequence of sequences with the shift and add property [1]. The proof

Theorem 3:LetT : L — V be a set-theoretic mapping thaOf Theorem 3 appears in Section X”'_
is not identically0, whereV is a vector space of dimension Part (4) can be interpreted as saying that every sequence

e overF, and L is the field withp" elements, as above. FixOVer @ Vector spack’ satisfying the shift-and-add and punc-

a primitive elementy € L. Let A = (ag, a1, ---) denote the tured de Bruijn properties can be obtalqed by sele_cthg an
sequences; = T(a'). Then the following statements hold. M-Sequence anq a set of S'hlf'[S thgt satisfy a certain linear-
(1) The mappingl" is F,-linear if and only if the Sequencemdependence criterion and interlacing the shifted sequences.

g e s . - b) Remark.:If K = ker(T") is preserved under multipli-
A s a Sh'f;[L and-add sequence, and in this case its (mm'murcne%tion by elements from the sub-field = F,. C L then the
period isp™ — 1. There are

kernel condition holds automatically. This occurs, for example,
(P —1) (" —1) if V= F = F, and if T is F-linear, in which case the
pt—1 n resulting sequence is an m-sequence dveklore generally if

cyclically distinct non-zero sequences (of element¥)rwith g € Gal(L/F),) is an element of the Galois group ang{fK)

(minimum) periodp™ — 1 which satisfy the shift and add is preserved by multiplication by elementsfthenT has the

property. Each of these arises from such a pairo) (where kernel property. The kernel property is somewhat mysterious

a € L is primitive andT" : L — V' is F,-linear). and we do not know of a simple method for counting the

(2) Suppose the mapping is F,-linear. ThenT : L — V  number of linear mapping# with this property.

is surjective if and only if it is balanced, which holds if and

only if sequenced has ideal autocorrelations. There are IV. REVIEW OF LFSRs AND M-SEQUENCES

(p" —p)(p™ — p2) -+ (p" — p= Hp(p™ — 1) In th_is section we .revie_w some basic properties of LFSRs
n to motivate the ensuing discussion of AFSRs.

cyclically distinct shift-and-add sequences (of element§’)n Let " be a finite (Galois) field and lah, g, -, g € F.

with ideal autocorrelations and minimal peripti— 1. Each of The linearly recurrent s_,e_q_uencef order & with multl_pllers
these arises from such a péiF, o) (Wherea € L is primitive 9192, 7|q’<. €F aﬁd initial state(ag, ay,---,ax-1) is the
andT : L — V is F,,- linear and balanced). unique solution to the equations

(3) Supposel’ : L — V is Fy-linear and ;urjective an'd let aj = q1aj_1 + qaaj_o + -+ qraj_y,

n = ek. ThenT has the kernel property if and only if the ) ) .
sequencel is a punctured de Bruijn sequence (of elements fRT J = k- Such a sequence may be described in three different
V', with minimal period|V[* — 1, with ideal autocorrelations, Ways: First, it is the output fromlnear feedback shift register

which satisfies the shift-and-add property). (LFSR) of lengthk with multipliers ¢; € F' and initial entries
(4) Suppose the mappirig is F,-linear and suppose that= @0; a1, -, ax—1 € F, as illustrated in Figure 1. The) box
ek for somek. Choose a basis for and write denotes addition irf". . . o
The connection polynomia§ € F[z] associated with this

T'(z) = (T1(z), Ta(z), -+, Te(2)) (5) recurrence or LFSR is the polynomial
for the resulting coordinates df(z). EachT; : L — F,, is k ‘
F,- linear so there exist (cf. Fa¢d) in Section XIlI) unique q(z) = qo + Zqix’
elementsu; € L such that i=1

Ti(z) = TT’LL*p (u;). (6) where gy = —1. The second description is the well known

_ _ _ fact ( [5] Section 2.5) that the sequengg a4, - - - is also the
Then the mapping’ has the kernel property if and only if thecoefficient sequence of the power series expansion

following collection ofek elements
; @—a + a4+ agr® + - - @)
{ujo’ :1<j<e 0<i<k—1} gy 07T
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of the rational functiorp(x)/q(x) with denominator(z) and for j > k. This means that the right side of the equation is to

numerator _ be computed as an integerc Z. Theng; is the remainder
B d j 8 after dividingo by M, andt; is the whole number quotient
pr) =, OZ;WH‘” : ®) |o/M| = (0 — a;)/M. We write a; = omod M andt; =
=0 i=

_ . _ . o div M. This pseudo-random sequence has three descriptions
Finally, there is an “exponential” representation for the sguhich are parallel to those of the LFSR sequence. First, it is
quence. Letl = F[z]/(q(x)). Elements ofL can be repre- the output of deedback with carry shift register FCSR (see

sented as polynomials of degree less thar- deg(q). The [16]). Theconnection integeassociated with this FCSR is the
polynomialz € L is invertible with number
:

1 .
g=q+y aM €L,

a:x_1=q1+q2x+...—|—quk_

sinceza = 1+ ¢. Let ¢ : L — F be the F-linear mapping =1
#(h) = hmod z, that is, wheregy = —1. Second, it is the coefficient sequence in the
o1 M-adic expansion (cf. [8], [16]) of the rational number
¢() " hiz') = ho. 9) Y o+ a M +agM? 4. (11)
i=0 q
Then the sequena®), ay, ... IS given by with denominatory and with numerator
aj = ¢p(pa’) = (p()a™ (mod g))(modz)  (10) U ,
! i . . o i u = Z Zqiaj,iMj — tkfle. (12)
where p(x) is given by equation (8). Ify(z) is irreducible =0 iso

then L may be identified with the unigue field extension of

F having degreel in such a way thaty becomes identified mgdse.quenc? Is str?c;ly periqdic iflgndhonly#q susl. b
with the inverse of a root of(x) or equivalently,c becomes ird, in analogy with equation (10) the sequence may be

identified with a root of the reciprocal polynomiafq(1/x). expressed as

In this case equation (10) becomes the more familiar a;j = (ué’ mod ¢) mod M (13)
a; = Tr(ba?) whered = M~ is the inverse ofM in Z/(q) [8], [16]. This

’ notation means that the quantityy’ mod g is represented as

for an appropriate choice dfe L. an integer in the rangé0, —1, —2,---, —¢+ 1} and then this

A linearly recurrent sequence of ordér is eventually integer is reduced moduld/.
periodic and its period is at mof|* —1. A linearly recurrent  For any initial value, the memory will quickly enter a
sequence of ordek whose period is/F|*¥ — 1 is called a certain rangew~ < t < wt (cf. [8], [16]) where it will
maximal length sequencg m-sequencdt is well known that remain thereafter. So an FCSR is a finite state machine and
this maximal period is achieved precisely when the connectighparticular, every FCSR sequence is eventually periodic. Its
polynomialg(x) is a primitive polynomial (that is, any root of period is a divisor of the order of/ modulo ¢ and hence
q(z) is a generator for the multiplicative group of the Galoig divisor of ¢(q). (Here, ¢ denotes Euler's function. Ip is
field with |F'|* elements). These sequences are of interestgfime theny(p) = p — 1.) An FCSR sequence with maximal
part because they can be generated efficiently, and in paériody(q) is called ar/-sequenceA necessary and sufficient
because they have the following randomness properties (ndition for the existence of ahsequence based on a given
[21] Chapter 8): connection integey is thatq is a power of a prime, and/
Theorem 4:Let A be an m-sequence over the finite figld s a primitive root modulay.
Then A is a punctured de Bruijn sequence and it has the shift_FSR sequences and FCSR sequences admit a common
and add property. Hencé is balanced, has the run propertygeneralization, thealgebraic feedback shift register (AFSR)

and has ideal autocorrelations. sequence$l7]. Let R be an integral domain (that is, a ring
with no zero divisors). Recall that two elementsw € R
V. FCSRs AND AFSRs are relatively primeif there exist elements,b € R so that

A class of pseudo-random sequences that is analogousito+ bw = 1, or equivalently, ifv is invertible modulow
LFSR sequences but is based on addition with carry wés vice versa). Fix an element € R and letS C R
developed [13], [14], [16] by the authors of this paper ande a complete set of representatives for the elements of
independently by Couture and L'Ecuyer [2], [3]. Lef be R/(r). A class of AFSRs is based on the tridl&, r, S). An
a positive integer, and identify the ring /(M) with the AFSR in this class is determined by a choice of multipliers
integers{0,1,2,---, M — 1}. Fix multipliersq1, 2, -, qx € ¢o,¢1,---,qx € R such thatg, is invertible modulor. The
Z/(M), an initial stateag,a,---,ar_1 € Z/(M) and an AFSR is a (not necessarily finite) state device whose states
initial memory (or “carry”) t,_1 € Z. The multiply with are tuples(ag,as,---,aix_1;t) with eacha; € S (the “cell
carry sequencer feedback with carry shift register (FCSR)entries”) andt € R (the "memory”). It changes states as
sequenced = (ag, ay, - -) is the unique solution to theith- follows. There are unique elemenig € S andt’ € R such
carry linear recurrence that

aj + Mt; =tj1 + qraj—1+ Qa2+ + qra;—k —qoay +7rt' =t +qrag—1 + gaar—2 + - +qrao.  (14)
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(This fact is reproven below wheR is a Euclidean domain.) The third expression for the AFSR sequence is a direct
Then the new state a1, asq,- -, ax;t’). The resulting se- generalization of equations (10) and (13); see Theorem 3.1
qguenceug, ag, az, - - - of elements inR/(r) is called an AFSR and Theorem 10 of [17].

sequence. We refer to equation (14) asinear recurrence  Theorem 6:( [17]) Given(R,r, S) as in Theorem 5, choose

with carry over R/(r). The element “multipliers” qo, ¢1, -+, qx € S S0 thatgqq is invertible in
& R/(r). Let g = Zf:o ¢;r* € R be the resulting connection

q= Zqiri cR (15) element and sew = g, " € R/(r). Letu € R and suppose

P the sequenceeq(u/q) = (ag, a1, -) is strictly periodic. Let

is called theconnection elementThese ingredients may beV C It be a complete set of representanves for the elements
f R/(q) and assume that’ contains the set

expressed in terms of a (possibly infinite) state machine (s%e

Figure 2) which is analogous to the LFSR and FCSR. {v e R:seq,(v/q) is a shift ofseq, (u/q)} .
Even at this level of generality there is an analog to the
power series representations (7) and (11). Let Then _
- a; = w(ur~" mod ¢) mod r. (29)
R, = {Zairi a4 €S,i=0,1,} As in equatiqn _(13)_ this equation means that the element
Pt ur~" € R/(q) is first lifted to the sel, then reduced modulo

then multiplied byw € R/(r).

be ther-adic ring of formal power series. There is a natural An LFSR over a field? is an AFSR withR = Flz], r = ,

ring homomorphism fromR to R, which is one-to-one if

S =F, qo = —1, eachq; € F, and with initial memory
~ N _ (0 1g) ! =0 An FCSRis an AFSR Witk = Z, r = M € Z,
Q(T)_() (16) S =40,1,---,M — 1}, gqo = —1, and eachy; € S. In both

o o these cases the ring is a Euclidean domain, so any element
that is, if no non-zero element ok is divisible by every - pnasa unique expression

power ofr. This homomorphism extends to the set of fractions

u/q (with u, ¢ € R) such thatg is relatively prime tor. (By o=Ar+B (20)
equation (15), this holds if and only ify is relatively prime
to r.) We refer to the representation of an elemep in R,
as itsr-adic expansionlf equation (16) is satisfied, then this
representation is unique and we may unambiguously write ar = o (modr) andt’ = o (divr) (21)

where B € S, in which case we writeB = o(modr) and
A = o(divr). Therefore equation (14) may be rewritten

seq,.(u/q) = (ag,a1,---) whereo = Y7 giax_; +t € R. (This determinesy, since
qo is invertible inR/(r).) In these cases the memory remains

u oo 4 within a certain finite set, so the AFSR in Figure 1 may be
- = Zairl € R,. (17) considered a finite state machine. With each clock cycle the
K — entries in the cells shift one step to the right. The cell contents
The following theorem states thakq, (u/q) is the output a; may be thought of as elements of the riRg(r), but when
sequence of an AFSR with connection e|emnt Computing the contents of the boxX, (Wlth each clock CyC|E)

Theorem 5:Given (R,r,S) as above, withR an integral they should be thought of as elementst- R. Thena;, =
domain,r € R, S C R a complete set of representatives fog(modr) is fed into the leftmost cell while’ = (o — ax)/r
R/(r), such that (16) holds. Choosg, 2, --,qx € S and Is fed back into the memory.

meaning that

set There exist AFSR$R, r, .S) for which the output sequence
k ; ag, a1, - - is aperiodic and for which the memotydoes not
7= ZW’ € R remain bounded. The authors have studied several general-
=0

izations of the FCSR architecture, each of which may be
Assume that the image af, is invertible in R/(r). For any described as an AFSR sequence for appropdte, and S
u € R there exists unique elemenis € S (0 <i < k—1) [6], [8]-[11], [18], [19]. In many cases it is known that the
andt;_;1 € R such that resulting maximal length sequences have good correlation and

k distribution properties.

[

— J

Z qiaj_irj - tk._lTk. (18)

j=0 i=0 VI. AFSRs BASED ONPOLYNOMIAL RINGS

Then the output sequence of the AFSR with multipliers  Let F' be a finite (Galois) field. Then there is a prime number

(1 < i < k) and initial state(ao,a1,---,ar—1;tx—1) is the p and an integerl such thatF' = F .. Let R = F[z] be the

sequenceeq,.(u/q) = ag, a1, - - - of coefficients in the--adic polynomial ring in one variable, and lete F'[z] be a polyno-

expansion (17) for the fraction/q. mial of some degree. The division theorem for polynomials
The proof [17] of this fact is a calculation which goes baclsays thatF[z] is a Euclidean domain: for any polynomial

originally, to the proof [5] Section 2.5 of equation (8) in ther(z) € F[z] there are unique polynomiald(z), B(x) such

case of LFSRs, to the proof [14], [16] of equation (12) in ththatdeg(B) < e ando(x) = A(x)r(z)+ B(z). Let S C F[z]

case of FCSRs, and to the proof [14] in the casd-8ICSRs. be the collection of all polynomials of degree less tharso

u =
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g =

by

LRy

Fig. 2. Algebraic Feedback Shift Register.

B(z) € S. The statemenB(z) = o(x) mod r(z) (or simply,
B = omodr) reflects the fact that the sét is a complete
set of representatives for the quotient rifig:]/(r). The set

S is closed under addition, but not under multiplication. For

the remainder of this paper we study AFSR sequences ba
on (Fla],r,5).

Fix elementsqg, q1,---,qr € S such thatg, is invertible
modulor. Such a choice of multipliers gives rise to an AFS
with connection element

(22)

Then ¢ is relatively prime tor. Conversely, ifq(z) € R =
F[z] is any polynomial that is relatively prime taz), then,
since F'[z] is a Euclidean domain, we may write in a umqu
way asgq(z) = 21:0 q;r* for somek, wheregq; € S (for
i =0,1,---,k), whereqr # 0, and whereq, is invertible
modulo r. Throughout this section we consider the possib
output sequences from an AFSR based(étz], r, S) with
multipliers qo, q1, - -, qx € S.

We use a few paragraphs to repeat the salient prop
ties of the AFSR in this special case. The elements

Flz]/(r) are represented by polynomials of degree less thgp,

e = deg(r), the collection of which is denoted. The

AFSR sequenced = (ag,a1,---) is generated by the fi-

nite state machine as illustrated in Figure 1. The machine

has fixed “multipliers” (qo,¢1, -+, qr) Whereg; € S. The
state (ag,a1,---,ax—1;tk—1) consists of a “state vector”
(ag, a1, -+,ar—1) (with a; € S) and a “memory”t;,_, €
F[z], that is, a polynomial of any degree. Given this initi
state, the next state is computed from the linear recurrence
carry (14). Thatis, set(z) = 3%, ¢i(z)ag_i(2)+tr_1(2) €
F[z]. Then equation (14) can be rewritten

ar = vyo(modr) and ¢, = g 0%

(23)
wherey = ¢;*(modr) € F[z]/(r). By equations (17) and
(18), the output sequencé = seq,(u/q) = (ag,a1,--+) is
precisely the coefficient sequence of thadic expansion of
the rational function

u(z)

= i a;rt (24)
i=0

q(z)

whose denominatog(x) is determined as in equation (22) bydivides V.

s

the multipliersqg, g1, - - - , ¢ and whose numerator

k=1 j
u = Z Z qiaj_ir] — tk_lrk (25)

7=0 =0
se determined by the initial stat€ag, a1, ,ak—1;tp—1).

Conversely, every polynomial(xz) € F[z] corresponds to a
nique statéag, a1, -, ax—1; tx—1) under equation (25), and
e sequenceeq,.(u/q) is precisely the output sequence of

the AFSR.

Proposition 1: Let u(z) € F[z]. The sequenceA
seq,.(u/q) is eventually periodic. It is strictly periodic if and
only if the degree ofu is less than the degree ¢f In this
case the (minimal) period ofl is the multiplicative order of
r modulo q, that is, the smallest positive integaf such that

= 1 in the finite (multiplicative) group(F'[z]/(q))* of
|nvert|ble elements irF'[z]/(q).

Proof: If the state is(a;_g,---
equation (23) the degree of is at most max(2(e —
B deg(t;—1)). The degree ofja; is at most2(e — 1). Thus
the quo’uentt = (0 + qoa;)/r has degree at mostax(e —

deg(t;—1) — e). Thus from any initial state with memory

Ler , the degree of the memory decreases monotonically in

g most(deg(tj_l) — e+ 2)/e steps until the degree of the

mory is at most — 2, and this bound persists from then

,aj—1;t;—1), then by

. on. ThusA is eventually periodic.

Suppose thadl is strictly periodic, say with period/. Then

M-1
E E ,’,_M’L o
=0

The degree of the numerator in this last expression is strictly
s thanM e, the degree of the denominator. Thus the degree
u is less than the degree of which proves the first half

of the first statement. Moreover, the equation

M—1

=03

implies thatr™ = 1mod ¢, so the multiplicative ordeN of
r divides the periodV/ of A.

Conversely, suppose thdeg(u) < deg(q). Let N denote
the multiplicative order ofr modulog, so1 — ¥ = sq for
some polynomiak. It follows thatu/q = (su)/(1—7"), and
deg(su) < Ne. Thus we can writesu = > 1 b7 with
b; € S. It follows thata; = b; mog x for all j, so A is strictly
periodic, of periodN. In particular, the minimal period oft
]

]\/11

o art
1—7‘M '

u

q

1—r
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S T
Corollary 1: Given an AFSR with multipliergg, q1, - - -, qx N , (\
and initial state vectofag, a1, -, ar—1), there exists a value ' ¢
Flz]/(q) - X

t of the memory such that the output sequence is strictly

periodic. If g, € F' (that is, ifdeg(qx) = 0) then this value of
t is unique. ¢ ouT

Proof: Given the initial state vectofag,as,---,ax—1) Flz]/(r)
let us consider the effects of different valuesf the memory
on the degree of the polynomial(z) in equation (25). Let Fig. 3. Algebraic model for AFSR
H(z) denote the double sum in equation (25). By the division
theorem for polynomials, there exists a unique polynormial

F[z] such that which has degree
H(z) = t(x)r 4+ J(x) k-1
ek — e+ deg Z aiqp—i—1 < ek = deg(q)
with deg(J) < deg(r*) = ke < deg(q) sinceq # 0. Taking i=0

thist = t;_, for the memory gives a state of the AFSR whosgy assumption. However the tertn* has degreek. So any

output sequence iseq,.(u/q), whereu = H — tr* = J has . .
r " non-zero value fot,_; will result in deg(u) > deg(g) and,
degree< deg(q). So by Proposition 1 the output sequence By Proposition 1 the output sequence will fail to be strictly

rictl riodic. This proves th ht aalw. Xists. o
strictly periodic S proves that suchtalways exIsts periodic. The converse is similar. ]

Now Supposey. has degred. Then deg(q) = ck since c) Notation: Let S, , denote the collection of all strictly

k i .
q = Y . oqr'. We wish to prove that the memory value . “. , . )
t is unique. Given the initial state vectouo, ar, - - -, ap_1) periodic AFSR sequences based (dfiz], r, S) with connec

suppose there are two values, £ # for the memory tion elementg. By Proposition 1.5, , is the collection of all

such that the output sequence is strictly periodic. Let’ coefficient sequenceseq, (u/q) of the r-adic expansions of

. : ; fractionsu(x)/q(z) such thatdeg(u) < deg(q).
be the corresponding polynomials from equation (25). ThenIn Theorem 6 we may take to be the set of all polynomials

deg(u),deg(u’) < ek by Proposition 1. However, — v’ =
(¢~ t)r* which has degree ek and this is a contradictiom € £'[#] such thatdeg(u) < deg(q). Then (cf. Theorem 6)
Corollary 2: Consider - an AESR with multi- no two elements of” are congruent modulg so there is an
. ye exponential representation for every sequencs,ip.
pliers go,q1.---.qx and deg(q) = 0. Suppose _ ko ’ .
Corollary 3: Let g = >, ¢;r* € F[z] be the connection

(ag,a1,---,ax—1;tk—1) IS a (strictly) periodic state of - - .
the AFSR, and lets € Flz] be the corresponding elemenglément of an AFSR, wherg € S and wherey, is invertible
n Flz]/(r). Letw = ¢; € Flz]/(r). Fix v € F[z] and

defined by equation (25). Theteg(u) < ek and we may '

L - k=L _ let A = seq,.(u/q) = (ao,a1,---) be the resulting sequence.
\_/I_vrr:; In & unique waya = 3, usr’ with deg(u;) < e. Assume thatd € S, , is strictly periodic. Then
1) a; =0for0 <7< k-—2ifand onIy if u; = 0 for a; = w(ur_i mod q) modr, (27)
0<i<k-2
2) The memory vanisheg;_; = 0, if and only if for all 4. '
Equation (27) means that the element™ < F[z]/(q) is
Rt first represented by an element Bfz] with degree less than
deg(zaiq’“*i*) <e—1 (26) deg(q), then reduced module, then multiplied byw €
Proof: First supp(l)_soeni —0for0<i<k—2 By /) _ .
equation (25), Corollary 3 can be expressed by saying that the dia-
gram in Figure 3 commutes. Her&; denotes the set of
u = qoap_17""t —tp_1r* = (goar_1 — tp_17)r* L. all periodic states of the AFSR. The functiaWT : ¥ —
F[z]/(r) is the output function which assigns to a state
If v denotes the polynomial within the parentheses, th?ﬂoﬂh--wakq;tkq) the contents:, of the rightmost cell.

deg(v) + e(k — 1) = deg(u) < ek which givesdeg(v) < e. The mappingl’: ¥ — X is the state change mapping. On the
In other words,v = ui_1. The converse is a bit harder.jeft side of the diagram the mapping: F[z]/(¢) — Fla]/(r)
Supposeu = vr*~! anddeg(v) < e. Thenumodr™ = 0 s given by¢(h) = wh(modr), wherew = gy ! € F[z]/(r).
for 1 <m <k —1. By equation (25)umodr = goao = 0 That is,¢(qo Y25~y zim') = 2 if eachz; has degree less than
which implies thata; = 0. Then by equation (25) again,. The mappingS : Flz]/(q) — Flz]/(q) is multiplication
umodr? = goarr! = 0 which impliesa, = 0. Continuing in  py ~1. Finally the mapping : Fz]/(¢) — ¥ assigns to any
this way we obtairu; = 0 for 0 <i <k — 2. u € Flz]/(q) the state given by equation (25).

Now suppose equation (26) holds. The terms of highest

degree in the double sum of equation (25) are
VII. M AXIMAL LENGTHAFSR SQUENCES

k—1
ph—1 Z Qi Qhoi1 Thrqughout this sectiod = (ag, a1, - -) € Srq is.a strictlly
—o periodic AFSR sequence of the sort considered in Section VI.
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Thus F = F,. is a finite Galois field,r(z) € Flz] is a cA+dA, =seq,((cv+ du)/q). Butdeg(cv + du) < deg(q)

polynomial of degree, and as in equation (22), so this sequence is some other shiftAfor else it is zero.
A Hence A has the shift and add property. By Theorem 7 and
i Lemma 1,A is balanced. Thus by Theorem 2, has ideal
= i 28
atw) ;q (@)r(z) (28) autocorrelatons. ]

Since by Theorem 3 every punctured de Bruijn sequence
is a polynomial of degreg which is relatively prime to'(z), defined over a finite vector space and having the shift and
and A = seq,(v/q) is the AFSR sequence corresponding taqd property arises from Blackburn's construction, we have
somev € Fz] with deg(v) < deg(g). We may considerd t0  the following corollary to Theorem 7.
be a sequence of elementse K = F[xz]/(r). Corollary 4: Let r,q € F[z] be relatively prime with

According to Proposition 1 the period of the sequente degrees andg = ek respectively. Supposgis irreducible and
is the multiplicative order of- modulo . This is greatest if . js primitive modulog. Let v € F|z] with deg(v) < deg(q).
Flz]/(q) is a field (i.e.,q is irreducible) and if- is a primitive | et 4 = seq(v/q) be the resulting(r, ¢)-adic ¢-sequence.
element in this field (Wthh is not the same as being a prlmltl\fﬂ’]en there exists a pnmmve elemente deek and aan_
polynomial in F'[z]). To obtain a punctured de Bruijn sequenc@near functionT : F . — Foa[z]/(r) so thata; = T(a?).
we also need the sequence to have pefioth — 1 for some | fact this also follows from Corollary 3. In this setting
k, which implies that F'|** = |F|9, or k deg(r) = deg(q)- BY  F[2]/(q) is isomorphic toF .. In this field r is primitive
equation (28) we see thatg(gx) = 0. so it plays the role ofa. The function that maps: to

Definition 4: The sequenced € S, is an (r,¢)-adic £~  (uamod ¢) mod r is F,-linear, so this plays the role &F.
sequence ify = ek for some integerk and if A has period |t js natural then to ask whether all punctured de Bruijn
|F|9 — 1, or equivalently, ifq is irreducible and- is primitive sequences with the shift and add property @rg;)-adic /-

modulog. _ o sequences. We believe that they are not. However, in a separate
The seq.uenceﬁl = seq, (U/Q)_ is the cogfflment Sequencepaper [12] the second author considered AFSRs based on rings
of the r-adic expansion of a rational functiariz)/q(x) with  of the form Fulz1, -, 2,]/I wherel is an ideal. It was

deg(v) < deg(q) = ek. The period ofA is |F|** — 1 which  shown there that in fact all punctured de Bruijn sequences

coincides with the number of non-zero polynomials F'[z]  with the shift and add property are indeégequences in this
such thatdeg(u) < deg(q). Therefore, for any such, the setting.

sequenceeq,. (u/q) is a shift of the sequencé. Conversely,

any §hift of thg sequenca is the coefficient sequence Qf the VIIL. | MPLEMENTATION | SSUES
r-adic expansion of(z)/q(xz) for some polynomiak: with o o _
deg(u) < deg(g). For many applications it is essential that the pseudorandom

Theorem 7:Let r,q € F[z] be relatively prime with de- Séduences u_sed be gener_ated quickly. In this sg_ction we study
greese and g = ek respectively. Supposgis irreducible and th_e comple_xny of generating punctured de Bruijn sequences
r is primitive modulog. Let v € F[z] with deg(v) < deg(q). With the shift and add property.

Then the resultingr, q)-adic ¢-sequenced = seq(v/q) is a _ SUPPose we have such a sequerce- (ag,as, - --) over
punctured de Bruijn sequence and it satisfies the shift and det With perlodp_e"’—l. We can realizel asa; = T'(a") where
property with coefficients in¥. Consequently this sequencel : Fper — Fpe IS Fp-lmea_r anda is a primitive element _Of
satisfies all three of Golomb’s randomness postulates. ~ Fper- Suppose that alsdl is an (r, ¢)-adic e-sequegce with
Proof: The sequencel = (ag,a1,---) is the output of 7,q € Fp[z], deg(r) = e, deg(q) = ek, andq = 3 ;_; g’
an AFSR with multipliersyo, g1, - - - , g5 Suppose a block = With deg(¢;) < e, qo invertible modulor, and g, = 1. We
(bo, by, -+, br_1) of lengthk occurs inA after some number assume that is a primitive element irF',,[z]/(¢). Hence in
of iterations. Consider the state of the AFSR at this poirarticularF,[z]/(qg) is a field, so can be identified wiffx.
The valueshy, by, - - -, bs_1 are the contents of the registers. We think of addition and multiplication iF, as atomic
By Corollary 1 there is a unique valuefor the memory such Operations. For any: we let M(n) denote the worst case
that the output of the AFSR with this initial state vector time complexity of multiplication of polynomials over,, of
and initial memoryt is a strictly periodic sequence. Since th&legree less than. Then M (n) is also the worst case time
sequence is, in fact, periodic from this point, the memory mug@mplexity of multiplication inF',.. Using divide and conquer
have this valué. It follows that the blockb can occur at most givesM (n) € O(n'°22(3)). Using fast Fourier transforms gives
once in any period ofA — otherwise the sequence wouldM (n) € O(nlog(n)). The worst case time complexity of
repeat upon the next occurrencebofand its period would be addition inF. is O(n).
less thar| F'|** —1. However, there arg'|** possible blocks, We compare three methods for generating punctured de
and the blockh = (0,0,---,0) cannot occur inA (otherwise Bruijn sequences over ai,-vector space-.
A would consist only of zeroes). Consequently every non-zeroLFSR with Linear Output:

block b of length k£ occurs exactly once in a single period of We can use an LFSR with lengthk and entries

A. HenceA is a punctured de Bruijn sequence. in F,, or an LFSR with lengthk and entries in
According to the comments preceding Theorem 7, for any F,- to generate powers of and applyT to the

shift 7, there exists: € F[z] whose degree is less thdng(q) successive states of the LFSR. In the first case

such that4, = seq,.(u/q). Let c,d € F. Then the sequence the state change operation takegs multiplications
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and ek — 1 additions inF,. The functionT is or of some fixed set of state bits. Thus we can compute all
realized by arek by e matrix overF,, so takes?k  the new bits simultaneously by taking the bitwise exclusive
multiplications ance(e — 1)k additions. Thus it takes or of a fixed set of words. We then shift the words by one
a total of2¢%k + O(ek) operations to generate oneposition. The total time required is apparently at mdsk
symbol of A. word operations. However, this analysis is not always correct.
In the second case, the state change takesul- In some architectures the bitwise exclusive or of words is not
tiplications in F,.. The cost of computindgl’ is actually implemented as an atomic operation in the hardware
the same as in the previous paragraph since waed its actual cost must be considered.

have to interpret the state as a vector o¥gr in

general. Thus the cost of generating one symbol is IX. RELATION WITH M-SEQUENCES

2e%k + O(M (e)k), which is slightly worse. ) )
Interleaving: The (r, ¢)-adic ¢-sequences share many of the properties

By choosing a basis foF,. over F,, we can think of m-sequences. In this section we show that, except in trivial
of A as the interleaving oé m-sequences of spanCaSes, such a sequendes never an m-sequence, and we give
ek over F,. Each m-sequence can be generated lil,lfflClent conditions to guarantee thdt cannot be obtained
a LFSR of lengthek with entries inF,. The state ffom an m-sequence by a linear change of variable.
change for such an LFSR taket multiplications L&t F' = Fpa. Fix r(z), q(x) € Fla] r'elatlvely pzlme, of
andek — 1 additions inF,,, and the output takes onedegreese and g = ek respectively, withg = > i, qr*
operation (output the rightmost cell). Thus the totdlreducible, withdeg(q;) < e = deg(r), and with 7 prim-
cost from all the LFSRs for genera“ng one Symbdtlve modulo q. In Partlcular as observed in Section VI,
of A is 2¢2k. This is essentially the same complexityleg(qx) = 0. A choice ofu € F[z]/(q) corresponds to an
as in the previous case. initial state of the AFSR and the resulting output sequence
(r, q)-Adic ¢-Sequences: A = seq,(u/q) = (ag, a1, ) is an (r,q)-adic (-sequence
We can generatel with an AFSR of lengthi: based With period p®” — 1. Now suppose we have an m-sequence

on F,[z] and r with connection element. The A = (@o,a1,---) of the same period with symbols drawn
state change requires at mdstmultiplications of from an alphabet of the same size. It is most convenient to

polynomials overF, of degree less than, plus 2k describe the sequenckas an AFSR sequence (with memory
additions of polynomlals oveF), of degree less than equal to zero) as in Section IV. Let = F,u. be the field
e. Then the total cost i3/ (e )k + 2¢k. containing the symbolg;. The m- sequencﬂ satlsﬂes alinear

The first and third methods can be sped up by precomputifRfurrence of degree over F, corresponding to a primitive
tables for small chunks. E.g., in the first method think of BOlynomialg € Flyl. Let ¢ : F[y]/(¢) — F be the mapping
vector of lengthk as a vector ofc/8 bytes of length 8 and ¢( )= h mod y. That is,
precompute the inner products of all pairs of bytes. In the k1
third method think of each polynomial of degreeas a sum (E( g_yi) = o
of polynomials of degree less th&rtimes appropriate powers
of z® and precompute products of all pairs of polynomials
of degree less than 8. This gives the same speedup for boMiere ki € F) as in equation (9). Thep € Fly]/(q) is
methods. primitive and invertible, and up to a shift, the sequem:es

It's possible that we can save some of the redundant work@¥en bya; = ¢(y~? mod g), as in equation (10).
the parallel LFSRs in the second method (all LFSRs are theTheorem 8:1f e = deg(r) > 1 then there does not exist any
same, they just have different start states). But this appe&gé-theoretic mapping : F' — F[x]/(r) such thats(A4) =
possible only if the phases of the LFSRs are close. Otherwise Proof: Suppose such a mapping exists. By Lemma 1 the
the storage costs become large. mappingy is F,-linear. As in Corollary 3 lets : F[z]/(¢) —

In general all methods are faster in special cases. In the fifdie]/(r) be the mappingp(h) = wh(modr) wherew =
methodT may have many entries iR, or even many zero q; ' € Flz]/(r). We claim there exists a unique mapping
entries. In the second method the LFSRs may have many z&o F'y|/(q) — F[z]/(¢) so that Figure 4 “commutes”.
coefficients or the phases may be close. In the third methodn Figure 4, the triangles on the ends are just repeats of
the AFSR may have many zero coefficients or more generaffigure 3, where represents the set of strictly periodic states
the degrees of the coefficienigx) may be low. It is not clear of the first AFSR (and similarly foE) Each per|0d|c state of

<.
Il
o

to what extent we can force these things to happen. Y is uniquely determmedAby the conteri®), a;, - - -, ax—1) of
If the sequence generation is to be implemented in softwdle registers (and memoty_; = 0) of the right hand AFSR,
andp = 2, then we can speed up the second method as longich must therefore be mapped Byto (ag, a1, -, ax—1)

ase is at most the word size (typically 32 bits or 64 bits). Wef the left AFSR. By Corollary 1 this determines a unique
useck words and store the state of the first LFSR in the leagalue ¢;—; for the memory of the left AFSR. So there is a
significant bits of the words, the state of the second LFSR umiquely determined buechoE — 3 which commutes with
the next least significant bits, and so on. Since the state chattge mappingsl’, T , b, qﬁ OUT and+. Usingi andi (each of

is the same for all LFSRs and the coefficients are zeros antlich is a bijection) this mapping becomes a bijectin:
ones, the new bit for each LFSR is computed as the exclusi¥gy] /() — F[z]/(q).
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Fig. 4. Comparing two AFSRs

Next we modify U slightly so as to obtain an isomorphismof polynomialsr,q € F[z] such thatg is irreducible andr
of fields. First note thatv is F,, linear sincey is Fy-linear. is primitive modulog. In order to get a punctured de Bruijn
Moreover, for anys € Fly]/(@), the following equation holds: sequence we also require that= deg(q) is a multiple of
U (S(0)) = S(¥(v)) or e = deg(r).
. T First recall the theorem of Pappalardi and Shparlinski [23]:
Uy~ 0) =r""¥(v) (29 Let F be an algebraic closure df. Suppose- is not a k-th

from which it follows that U(yo) = r¥(3) for every o power of a functiorh € F[z], for anyk which divides| F'|9—1.
(because(y~1)N = y € Fly]/(@ and (r—1)¥ = r e Thenthe numbeN (r, F, g) of irreducible polynomials;

Flz]/(q) where N = ped — 2). The only problem is that F[z] of degreeg for which r is primitive satisfies

¥(1) may fail to equal 1. p(M —1) —Lou(M-1)
Define ® : Fly]/(q) — Flal/(q) by ®() = (1)~ "0 (7). N Fg) === | < 3eg 27 VM

Then ®(y*) = r* so @ is both multiplicative and additive. \\here 17 —

Hence? is an isomorphism of fields. To see that this leads {ghere (1) denotes the number of distinct prime divisors of

a contradiction we consider the subfiidC F[y]/(g) which .. This implies the existence of many paiis ¢) such that-

may be realized as the collection of all polynomials of degreg primitive mod . For example, ifF = F, and g = 13 it

0 (and with coefficients inF"). For anys € F' consider the says that for any < 42 there exist- with deg(r) = e andr

elementsy"~! € F[y]/(q). The corresponding periodic state primitive modg. If g > 75 then for every divisoe of g there
@0’31’ o ﬁk_l) :g(gykq) cs exist polynor'niglisr of degreeg that. are primitive mqqy.

R In fact, primitive polynomial pairqr, ¢) are considerably
hasb; = 0 for 0 < i < k — 2 by Corollary 2. Therefore the more abundant than the above estimates predict. By computer
corresponding statg W (sy* 1)) = (by, b1, -+, bg_1;tx—1) € search we have found the following fét = F,: Fix ¢ < 22.
¥ hasb; = 0 for 0 < i < k — 1 also. Again by Corollary Suppose € F[z] is a polynomial of degree < g and suppose
2 this implies that¥ (sy"~!) = by_1r*~! for someb,_1 € r is not a power of a polynomial # h™ wheren divides g.
F[x] of degree less thaa It follows from equation (29) that Then there exists an irreducible polynomjabf degreey such
U(s) = by—1. That is,¥ mapsF bijectively to the collection thatr is primitive modq unlessr = z*+x andg = 6. In other
of all polynomials of degree less than words, there is a single unacceptable gajry) in this range!

Since® is a field isomorphism, the set (In this case, the above estimate sg¥gr, F, g) — 6| < 64 so

=~ 1 ] N =0 is, indeed, a possibility.)
®(F) = {¥(1)7'b(z) : deg(b) <e} C Fla]/(g) A class of examples which may be easily analyzed is the

is a subfield of F[z]/(q). Taking b(z) = 1 shows that following. Let ¢(z) € F[z] be a primitive polynomial of

|F'|9, where ¢ denotes Euler'sp function and

\Ij(l)_l c (b(F) SO we even conclude that degreeg = ke. Letr(x) = z°. Thenris primitive mOdU'Oq if
. and only ife is relatively prime to|F'[z]/(¢)| —1 = |F|9 — 1.
O(F) = {b(z) : deg(b) < e} This is satisfied, for example, if is relatively prime to

is a subfield ofF[z]/(¢). But this set is not closed under|F|’ —1- For example, if" = F; andr(x) = 2* we may take
multiplication unless: = 1, which is a contradiction. m %0 b_e any primitive polynomial of even degree. If SU.C'IQ a
In [4], Gong, Di Porto, and Wolfowicz constructed pseuddcOntains any terms of odd degree then saméas positive
noise sequences by applying an invertilfle-linear map to dedree, so the resulting, q)-ad|c§-sequence4 IS not an m-
each element in an m-sequence o¥gy. Theorem 8 gives S€qUence. I = F, andr(x) = 2” we may take; to be any

sufficient conditions that afir, ¢)-adic /-sequence cannot pePrimitive polynomial whose degree is an odd multiple of 3.
so obtained. If such aq contains any terms of degree not divisible by 3,

then somey; has positive degree, so the sequencis not an

m-sequence.
X. EXISTENCE q

It is not immediately apparent thét, ¢)-adic /-sequences Xl. EXAMPLE
that are not m-sequences are abundant. In order to find such this section we lep = 2 andd = 1. If deg(r) = 1, then
sequences we fix the field" = F,. and search for a pair we obtain m-sequences. The cage) = x amounts to the
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standard analysis of m-sequences by power series. The daseiffices to show thaB(5'p(3)) = 0 for all ¢ > 0. But
r(z) =z + 1 is equivalent by a change of basis. a1

Suppose that has degree 2. Then for any choice of B(B'p(3 — a; B(pti
we obtain sequences with elements i = Fqlz]/(r) = (5(6) ; Bl )

{0,1,z,z+1}. If r(x) = 2%+ 2+1, which is irreducible over d—1

F,, we haveK = Fy, but for all otherrs of degree two the = Za]—A(o/‘H)
ring K is not a field. If we letr(z) = 22 + z + 1 and use the i—0
connection elemenf(z) = z* + 23 + 1 = r2 4+ ar + 2, then = Ala'p())

it can be shown that is primitive modulog and one period —

of the (r, ¢)-adic ¢-sequenced we obtain is a cyclic shift of
So by Fact(b) above,a and 3 are Galois conjugate. ]
LlLz,z,xc+1,2,0,z,l,z+ 1,z +1,1,0,z+1,0. (30) d) Proof of part (1).: Supposel’ is F,, linear. If 7 is a
shift with 0 <7 < p™ — 1= |L| — 1, then
All other (r, ¢)-adic {-sequences obtained by different choices
of r of degree 2 ang of degree 4 with- primitive modulog
are obtained from the sequence (30) by some combinationSjficen is primitive, there exist§ with 1+a™ = of. Therefore
shifts, reversals, and permutations of the alphgbet, z,z+ 4, + airr = airg, SO A is a shift and add sequence. Let

ai + airr =T(a" +a7) =T((1+a")ab).

1}. R :V — F, be a non-zerdF,-linear mapping. Then the
However, the sequence with one period equal to compositonRT : L — F, is F,-linear so the sequence
RT(a') = R(a;) € F, is an m-sequence and has minimum

1,1,z,1,0,z+ 1,2+ 1, 1,2+ 1,0, z,x, x4+ 1,2,0 period p™ — 1. Hence the sequencé has minimum period

p™ — 1 also. The converse is due to Blackburn who proved
is an m-sequence ovély, and all other m-sequences of span P1] the remarkable fact that for any shift and add sequence
overF, are obtained from this sequence by some combination= (ag, ay,...) with entries inV and with periodp™ — 1,
of shifts, reversals, and switchingandx 4 1. This illustrates there exists a paifT’, «) (with o € L primitive andT" : L — V
the fact that the new set of sequences is disjoint from tlaenon-zerdF,-linear mapping), such that; = 7'(a*).
set of m-sequences. By Theorem 8 there is no set theoretio count the number of shift and add sequences we first
isomorphism¢ : F4 — F4 so thatp(A) is an m-sequence.  count the number of pair€l’, o) wherea € L is a primitive
element andl’ : L — V is Fy-linear. Then we determine
when two such pairs define the same sequence.
XIl. PROOF OFTHEOREM 3 The number of primitive elements € L is p(p" — 1).
o To count the number oF-linear mappings!’ : L — V
We need to recall several standard facts before giving thRoose bases for both, as vector spaces of dimensiamd e
proof of Theorem 3. Supposg = F. is a finite field of respectively, oveF,. Each linear mappin@ then corresponds

characteristip and degree!. to a uniquen x e matrix with entries inF,,, and there arg"
(@) If A,B: L — F, are non-zerdF, linear mappings then such matrices. So there gpé° — 1 non-zero linear mappings
there exits a unique non-zero element L such thatB(z) = 7.

A(uz) for all z € L. Now consider decomposing the collection of paifS «)

(b.) If p(z) is an irreducible polynomial with coefficients ininto equivalence classes, with two pairs belonging to the same
F,, whose degree equals the degreelofover F,), and if class if the resulting sequences are the same. We show that
o, 3 € L are roots of this polynomial, then they are Galoi€ach class contains exactly pairs by showing tha(T’, o)
conjugate and there exists an integersuch that3 = o?™.  and(S, ) belong to the same class if and only.ifand 3 are
Galois conjugates. Hengé = o? for somet, and S(zP ) =
T'(z). In other words, the mappin§ is uniquely determined
by T, o, and .

Suppose two pair§T’, o) and (S, 3) give rise to the same
sequence. That is,

Lemma 4:Supposen, 3 € L are primitive elements. Sup-
posed : L — F, is a non-zeraF,-linear mapping. Define
the mappingB : L — F,, by B(0) = 0 and

B(f) = A(a)

S(8") = T(a") (31)
for 0 <i <[L[—2. ThenB is F-linear if and only ifo and  for all 4. Then the images of andT coincide. Letv # 0 € V
(3 are Galois conjugates. be in the image of5 and 7. Choose any linear mapping

‘Proof: There existst such thatae = @%. Therefore from V to F, such thatR(v) # 0. ThenR is surjective and
B(B") = A(a*) = A(B") so B(z) = A(z') for all z € L. If  both compositionsRT and RS are non-zero.

«a and 8 are Galois conjugates thenis a power ofp by (b) Now we have the equatioRT'(a’) = RS(3%), for all i.
above, so the mapping — z' is F,-linear. ThereforeB is Since bothRT and RS are non-zeroF ,-linear mappings,
F,-linear. Conversely, supposB is F,-linear. Letp(z) = Lemma 4 implies thatx and 3 are Galois conjugates with

Zf;ol a;z' be an irreducible polynomial with coefficientsg = o?" for somet. ThereforeS(z?") = T'(x) by equation
a; € F, such thatp(a) = 0. We need to show that(5) =0. (31).
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Conversely, given(T, a) let 3 € L be a Galois conjugate expressed as/axe matrix ®(z) = [T} (a‘z)] with 0 < i < k—
to o with 8 = o' Let S(:zzpt) =T(x). ThenS: L —- Vis 1andl < j<e. Using equation (6) this becomes the matrix
F,-linear andS(p") = T(a') for all i. Consequently(T, o) ®(z) = [Trﬁp (uja‘z)]. This mapping is an isomorphism if
and (S, 3) give rise to the same sequence. and only if the collection of linear functions

To summarize, there agé*® —1 choices forl’ andp(p™ —1 L i
choices fora. Such a pair determines a class cons(isting g)f the Lij(z) = Trg, (uje'z),
n Galois conjugates of «, and uniquely determineHl,-linear with 0 <i <k —1and1 < j <e, forms a basis of the dual
mappingsS to go with them. This counts the total number oépaceL* = Homg, (L, F,). However, the collection of vectors
sequences; the cyclically distinct sequences are counted {lwa'} is linearly independent (and hence forms a basig)of
dividing by the periodp™ — 1. This completes the proof of if and only if the collection of linear functions;; is linearly

part (1) of Theorem 3. independent. This completes the proof of Theorem 3. m
e) Proof of part (2).:If T is balanced then it is surjective.
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