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Pseudo-noise Sequences based on Algebraic
Feedback Shift Registers

Mark GoreskyMemberand Andrew KlapperSenior Member

Abstract— Over the past half century various statistical prop-
erties of pseudorandom sequences have played important roles in
a variety of applications. Among these properties are Golomb’s
randomness conditions: (R1) balance, (R2) run property, and
(R3) ideal autocorrelations, as well as the closely related proper-
ties (R4) shift and add, and (R5) de Bruin (uniform distribution of
subblocks). The purpose of this paper is to describe the relations
between these conditions, and to introduce a new method for
generating sequences with all these properties, using algebraic
feedback shift registers.

Index Terms— De Bruijn sequences, feedback shift registers,
function fields, ideal autocorrelation, pseudo-random sequences.

I. I NTRODUCTION

The purpose of this paper is twofold: to review the basic
properties of a class of pseudo-random sequences (punctured
de Bruijn sequences with the shift and add property) over
non-prime fields, and to describe their generation by algebraic
feedback shift registers.

A. Generalities on sequences

Rapidly generated pseudo-random sequences with “good”
statistical (randomness) properties are essential components
in a wide variety of modern applications including radar,
CDMA, error correction, cryptographic systems, and Monte
Carlo simulations. Acceptable sequences should exhibit no
statistical bias in the occurrence of individual symbols or small
blocks of symbols. With these goals in mind, in his classic
book S. Golomb [5] defined apseudonoisesequence to be a
periodic binary sequence that passes three statistical tests for
randomness:
(R1) Balance,
(R2) Run property,
(R3) Ideal autocorrelation,
each of which is described below, in Section II. Golomb
showed that linearly recurrent sequences of maximal period
2r − 1, or binary m-sequences, satisfy all three of these prop-
erties and moreover, such sequences can be rapidly generated
using linear feedback shift registers (LFSRs).

It is still unknown whether there are any binary sequences,
other than m-sequences, with all three of these properties.
However non-binary sequences are known which pass these
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tests and are not m-sequences. Since 1982 a great many
additional statistical tests for randomness have been studied
(see, for example, [20] Chapter 3 or [22] Chapter 2). Although
Golomb’s list looks rather minimal by today’s standards, there
are still only a handful of known techniques for constructing
(non-binary) sequences with all three of these properties. In
Section VI of this paper we develop a new technique for the
construction of sequences satisfying (R1)-R(3).

In modern systems there is often an advantage to using
sequences over a non-binary alphabet, typically of size28 or
2w wherew is the word size of the architecture in use. It is thus
natural to consider, as we do in this paper, periodic sequences
whose elements are taken from some finite dimensional vector
spaceV over a (finite) Galois fieldF. The precise definitions
of (R1)-(R3) in this setting are provided in Section II.

Following Golomb, let us consider the additional properties

(R4) shift and add (cf. Section II-B)
(R5) punctured de Bruijn (cf. Section II-A)

which are also enjoyed by m-sequences. Golomb showed,
for binary periodic sequences, that condition (R1) (balance)
together with condition (R4) (shift-and-add) is sufficient to
guarantee condition (R3) (ideal correlation). The same holds,
and the same proof works, in the non-binary setting (cf. The-
orem 2).

Condition (R5) means: the period ofA is |V |k−1 (for some
k), and every block of lengthk occurs exactly once in each
period ofA except for the single block consisting ofk zeroes;
see Section II-A. The precise relation between conditions (R4)
and (R5) is very interesting and it is still not completely
understood. Even in the binary case, there exist punctured
de Bruijn sequences that do not satisfy the shift-and-add
condition. S. Blackburn [1], extending work of Gong, Di Porto
and Wolfowicz [4], characterized the sequences satisfying the
shift-and-add property (R4). Using his result, in Theorem 3
we count the number of (cyclically) distinct shift-and-add
sequences. Moreover we characterize (a) those shift-and-add
sequences with ideal autocorrelations and (b) those shift-and-
add sequences which also have the de Bruijn property (R5).
(One such characterization, described in part (4) of Theorem 3
was suggested to us by an anonymous referee.) Despite these
advances, we have not succeeded in counting the number of
cyclically distinct shift-and-add sequences with the de Bruijn
property.

B. The new sequences

Let F be a (finite) Galois field and letq(x) ∈ F [x] be
an irreducible polynomial of degreeg. Then the quotient ring
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F [x]/(q) is a field, isomorphic to the Galois field with|F |g
elements. Each element ofF [x]/(q) may be thought of as a
polynomial of degree less thang. Let r ∈ F [x]/(q) be a prim-
itive element. Thusr = r(x) ∈ F [x] is a polynomial of degree
less thang, and the various powersr(x)i mod q ∈ F [x]/(q)
(for 0 ≤ i ≤ |F |g − 2) exactly account for the nonzero
elements ofF [x]/(q). We may also considerr(x)i mod q to
be a polynomial of degree less thang. There are (at least) two
things one might do with such a polynomial.

(i) Retain the constant term of the polynomial to obtain an
element

ai = (ri mod q)(modx) ∈ F (1)

(ii) Reduce the polynomial modulor to obtain an element

bi = (ri mod q)(mod r) ∈ F [x]/(r). (2)

Let e = deg(r). If the polynomial r(x) is irreducible then
F [x]/(r) is a field with |F |e elements. In general, all we can
say is thatV = F [x]/(r) is a vector space overF of dimension
e.

Using procedure (i), the resulting sequenceai ∈ F is an m-
sequence, with period|F |e−1, and hence it satisfies conditions
(R1)-(R5). The new sequences are those obtained from method
(ii) when g = deg(q) is a multiple of e = deg(r). In
Theorem 7 we prove, under these conditions, that the sequence
(2) also satisfies conditions (R1)-(R5): it is a punctured de
Bruijn sequence with the shift-and-add property and ideal
autocorrelations. (For technical reasons, in the body of the
paper, we consider the reverse sequence(r−i mod q)(mod r).)

One might ask whether the sequence (2) is perhaps just
an m-sequence “in disguise”. If̂F denotes the Galois field
with the same number,|F |e, of elements asV = F [x]/(r),
might there exist a vector space isomorphism betweenF̂ and
V which converts the sequencebi ∈ V into an m-sequence
in F̂? In Theorem 8 (in Section IX) we prove, in fact, that
there existsno set theoretic mappingψ : V → F̂ such that the
sequenceψ(bi) ∈ F̂ is an m-sequence, provideddeg(r) > 1.

C. Algebraic feedback shift registers

Although the formula (2) gives a (relatively) explicit way
to generate the sequencebi, it is also possible to generate this
sequence using analgebraic feedback shift registeror AFSR.
An AFSR is an LFSR that has been modified in two ways
(cf. Figure 2):

1) The cell contents are allowed to be elements of a (fixed,
finite) commutative ringS.

2) An additional “memory” or “carry” cell is incorporated
in the feedback architecture.

The operation of the general AFSR is explained in detail
in Section V. In Section VI we repeat this explanation for
the special case in which the cell contents are elements in the
ring S = F [x]/(r) that contains the symbolsbi of equation
(2). So Section VI describes the AFSR generation of the new
sequences.

The AFSR construction is very general and it includes the
case of LFSRs (whereS = F2 and the memory cell is always
0) as well as the case offeedback with carry shift registers,

or FCSRs, whereS = F2 and the memory is an integer.
The FCSR architecture, reviewed in Section V, and being a
special case of the AFSR, is somewhat easier to understand
than the general AFSR architecture, and its discovery predates
the general AFSR. In a sequence of articles [7], [15]–[17] the
authors have described the generation and analysis of maximal
period FCSR sequences (which we refer to as`-sequences):
they exhibit many of the desirable randomness properties of
m-sequences. The new AFSR sequences are, in some sense, a
natural outgrowth of this line of investigation.

In Section VIII we estimate the cost of a software im-
plementation of the AFSR architecture for the generation of
the new sequences. But the real merit in having an AFSR
description of the sequence, rather than an “exponential”
implementation as in equation (2), lies in the possibility of
implementing the generator in high speed hardware.

In Section X we show that parametersr(x), q(x) giving
rise to the new de Bruijn sequences are plentiful, although we
have not succeeded in counting the number of distinct such
sequences (for given period and symbol alphabet). Finally in
Section XI we work out an example, which may help to clarify
the discussions in Sections V and VII.

II. PSEUDORANDOMNESSPROPERTIES OFSEQUENCES

In this section we describe the randomness conditions (R1)-
(R5) for non-binary sequences and the relations among them.

A. Distribution of blocks

Throughout this paper we fix a prime numberp and letFp

denote the field withp elements. LetV be a vector space of
dimensione overFp. Throughout this section we assume that
A is a periodic sequence of elements fromV , with periodN .
(There is no advantage in consideringV to be a finite field
of characteristicp, nor is any generality added by considering
vector spaces over non-prime fields.)

Recall that ablock b = (b0, b1, · · · , bk−1) of lengthk is an
ordered sequence ofk elements,bi ∈ V . An occurrenceof
the blockb in (a single period of) the sequenceA is an index
i ≤ N − 1 such that(ai, ai+1, · · · , ai+k−1) = b. A run of
lengthk is a block ofk consecutive identical symbols that is
not contained in a longer block of consecutive symbols. That
is, it is a block(ai−1, a, · · · , ai+k) in A such thatai−1 6= ai =
ai+1 = · · · = ai+k−1 6= ai+k. The sequenceA is a de Bruijn
sequence of spank if every block of lengthk occurs exactly
once in (each period of)A. The sequenceA is a punctured
de Bruijn sequence (R5) of spank if it is obtained from a
de Bruijn sequence by deleting a single0 (the zero vector of
the vector spaceV ) from the single occurrence of the block
(0, 0, · · · , 0) of lengthk in each period ofA. The period of a
punctured de Bruijn sequence of spank is N = |V |k − 1.

Suppose a sequenceA of elements inV has periodN . The
sequence is said to satisfy thebalanceproperty (R1) if, for
some integert, within a single period every elementa ∈ V
occurst times ort−1 times. Thus we may taket = dN/|V |e.
In particular, ifN = |V |k, thent = |V |k−1 and every element
a ∈ |V | occurs t times. Similarly, if N = |V |k − 1, then
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t = |V |k−1 and every elementa ∈ |V | except a single element
occurst times. The remaining element occurst− 1 times.

The sequenceA satisfies therun property (R2) if it has
periodN = |V |k or N = |V |k−1 and if, for eachm ≤ k−1
the number of runs of lengthm is |V |k−m−1(|V | − 1)2, the
number of runs of lengthk is |V | or |V | − 1, and there are
no runs of length greater thank. It is well known, and is
easy to see that these are the closest integer approximations
to the expected number of runs, averaged among all periodic
sequences of periodN . The original argument of [5]§4.2
shows:

Lemma 1:Every de Bruijn sequenceA of spank, and every
punctured de Bruijn sequence of spank, is balanced and has
the run property.

In fact, such a sequence satisfies the following strong form
of the balance condition:

(R1′) for anyt ≤ k and for any blockb of lengtht, the number
of occurrences ofb in (a single period of) a de Bruijn
sequenceA of spank is |V |k−t. The same holds for a
punctured de Bruijn sequenceA except for the single
block (0, 0, · · · , 0) of lengtht, which occurs|V |k−t− 1
times.

a) Remark.: A choice of basis forV over Fp gives a
way of translating eacha ∈ V into a blockψ(a) over Fp of
length e. Applying ψ to each symbol ofA gives a sequence
ψ(A) over Fp whose period ise times the period ofA. If
A has one of the randomness properties described in this
section, thenψ(A) does not, in general, have the same property
(both because the period is wrong and because the relevant
subblocks do not necessarily align with the ends of theFp-
ary representations of elements.

B. Shift and add

Let V be a vector space overFp. Let A = (a0, a1, · · ·)
be a periodic sequence of elements fromV and letAτ =
(aτ , aτ+1, · · ·) be its shift byτ steps. LetA + Aτ = (a0 +
aτ , a1 + aτ+1, · · ·) be the sequence obtained from termwise
addition ofA andAτ .

Definition 1: The sequenceA has theshift-and-add prop-
erty (R4) if, for any shift τ , either (1)A + Aτ = 0 (the
all-zeroes sequence) or (2) there exists a shiftθ such that
A+Aτ = Aθ.

Similarly we can define the shift and subtract property. More
generally, we say thatA satisfies the shift and add property
with coefficients in the fieldFp if, for any c, d ∈ Fp and for
any shift τ , either cA + dAτ = 0 or else there exists a shift
τ ′ such thatcA+ dAτ = Aτ ′ .

Lemma 2:The following statements are equivalent.
1) The sequenceA has the shift and add property.
2) The sequenceA has the shift and subtract property.
3) The sequenceA has the shift and add property with

coefficients in the fieldFp.
Proof: For any v ∈ V the equationpv = 0 says that

−v = v+v+. . .+v (p−1 times) so the shift and add property
implies the shift and subtract property and vice versa. Similarly
the shift and add property with coefficients inFp follows from
repeated application of the shift and add property.

It follows from part (3) of Lemma 2 that the set of shifts of
a sequenceA with the shift and add property, together with the
all zero sequence, forms a vector space overFp. Such a vector
space has cardinalitypn for somen. So if A is nonzero, the
number of distinct cyclic shifts, and hence the period, equals
pn−1. In particular a sequence with the shift and add property
cannot be a de Bruijn sequence, but it might be a punctured
de Bruijn sequence.

SupposeA is a punctured de Bruijn sequence overV
(meaning that the symbols in the sequence are elements of
V ). SupposeV̂ is another vector space and thatφ : V → V̂
is a (not necessarily linear) set theoretic mapping. Applying
φ to each element ofA gives a sequenceφ(A) over V̂ . The
sequenceφ(A) will again be a punctured de Bruijn sequence
if and only if (a) the vector spacêV has the same dimension as
V , (b) the mappingφ is a one-to-one correspondence and (c)
it satisfiesφ(0) = 0. The next theorem similarly characterizes
those mappingsφ : V → V̂ which preserve both the punctured
de Bruijn property and the shift-and-add property.

Theorem 1:Let V be a vector space overFp and let
A = (a0, a1, · · ·) be a periodic sequence of elements inV .
SupposeA is a punctured de Bruijn sequence with the shift-
and-add property. Let̂V be another vector space overFp and
let φ : V → V̂ be a set-theoretic mapping. Then the following
conditions are equivalent:

1) The sequenceφ(A) is a punctured de Bruijn sequence
with the shift and add property.

2) The mappingφ : V → V̂ is a (linear) isomorphism of
vector spaces.

Proof: One implication is trivial: ifφ is a linear isomor-
phism of vector spaces thenφ(A) is a punctured de Bruijn
sequence satisfying the shift and add property. Conversely,
supposeφ : V → V̂ is an arbitrary mapping such thatφ(A) is
a punctured de Bruijn sequence with the shift and add property.
SinceA andφ(A) have the same period, the mappingφ must
be a one-to-one correspondence anddim(V ) = dim(V̂ ). In
particular φ(0) = 0 because0 occurs inA (and in φ(A))
fewer times than the other symbols. For every shiftτ (0 ≤
τ ≤ N − 1) there exists a unique shiftk = k(τ) such that

φ(A+Aτ )− φ(A) = φ(Ak(τ)). (3)

This follows from the facts thatA is a shift and add sequence
and thatφ(A) is a shift and subtract sequence. So for eachi,

φ(ai + ai+τ ) = φ(ai) + φ(ai+k(τ)).

Suppose there exists an indexτ such thatk(τ) 6= τ . Then
wheneveri satisfies:ai+τ = 0 we obtainφ(ai+k(τ)) = 0. In
other words, ifa` = 0 thena`+k(τ)−τ = 0.

The sequenceA contains a unique largest block of zeroes
(with k − 1 zeroes, wherek is the span of the de Bruijn
sequence). Applying the above implication to each of these
zeroes gives another (possibly overlapping) block ofk − 1
zeroes. This is a contradiction unless these two blocks coin-
cide, meaning thatk(τ) = τ . This combined with equation
(3) proves thatφ is linear, and so it is a linear isomorphism
of vector spaces.
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C. Autocorrelations

Golomb’s third postulate (R3) is that a sequence should
have an ideal autocorrelation function. The autocorrelation
function of a sequence is usually defined for sequences whose
symbols are taken from a cyclic group, whereas the sequences
considered in this paper consist of symbols in some vector
spaceV over the fieldFp. Before describing the appropriate
notion of ideal autocorrelation in this context, we briefly
review some standard facts about finite Abelian groups.

Definition 2: A character of a finite Abelian groupG is
a group homomorphism fromG to the multiplicative group
C∗ = C − {0} of the complex numbersC. That is, it is a
function χ : G → C∗ such thatχ(a + b) = χ(a)χ(b) for all
a, b ∈ G.

Such a functionχ necessarily takes values in the unit circle.
It is said to benontrivial if χ(a) 6= 1 for somea ∈ G.

Lemma 3:Let χ : G→ C∗ be a nontrivial character. Then∑
g∈G χ(g) = 0.

Proof: Sinceχ is nontrivial, there existsa ∈ G with
χ(a) 6= 1. Then

χ(a)
∑
g∈G

χ(g) =
∑
g∈G

χ(ag) =
∑
g′∈G

χ(g′)

so (1− χ(a))
∑

g∈G χ(g) = 0.
Definition 3: Let G be a finite Abelian group and letA be

a periodic sequence of elements ofG, with periodN . Let χ
be a character ofG. The autocorrelationof A with shift τ ,
with respect toχ is the complex number

AA,χ(τ) =
N−1∑
i=0

χ(ai)χ(ai+τ ) =
N−1∑
i=0

χ(ai − ai+τ ).

The sequenceA has ideal autocorrelationsif

(R3′) |AA,χ(τ)| ≤ 1 for every nontrivial characterχ of G and
everyτ 6≡ 0 modN .

It is customary to consider the autocorrelationAA,χ to be a
(periodic) function ofτ .

Suppose thatV is a vector space of dimensione over the
field Fp, and thatχ : V → C∗ is a character. Thenχ satisfies
χ(ax + by) = χ(x)aχ(y)b for any x, y ∈ V and anya, b ∈
{0, 1, . . . , p− 1}. Moreoverχ(px) = χ(x)p = 1 for any x ∈
V , soχ takes values in the set

µp = {e2πim/p : 0 ≤ m ≤ p− 1}

of p-th roots of unity.
Theorem 2:If A is a periodic balanced sequence of el-

ements taken from the vector spaceV (over the fieldFp)
and if A has the shift and add property, thenA has ideal
autocorrelations in the sense of Definition 3.

Proof: Let N be the period ofA. Let χ : V → C∗ be
a nontrivial character and letτ ∈ Z be a shift. To compute
the autocorrelationAA,χ(τ), use Lemma 2 which says thatA
satisfies the shift-with-subtract property. So there exists a shift

τ ′ with

AA,χ(τ) =
N−1∑
i=0

χ(ai)χ(ai+τ )

=
N−1∑
i=0

χ(ai − ai+τ )

=
N−1∑
i=0

χ(ai+τ ′)

=
N−1∑
i=0

χ(ai).

SinceA is balanced (§II), its period is either|V |k or |V |k±1
and each elementa ∈ V occurrs the same number,|V |k−1

of times, except possibly for one single element. So the
autocorrelation is

|V |k−1
∑
a∈V

χ(a) + ε

whereε = 0 if the periodN = |V |k; otherwiseε = ±χ(b) for
a single elementb ∈ V . By Lemma 3 the first term vanishes,
leaving |AA,χ(τ)| = |ε| ≤ 1 as claimed.

III. C HARACTERIZATION OF SHIFT AND ADD SEQUENCES

Zierler [24] stated that the sequences over a finite field with
the shift and add property are exactly the m-sequences (see
Section IV for a review of the definition of m-sequences and
related concepts). His proof is valid for sequences over a prime
field Fp, but it is incorrect for sequences over non-prime fields.
Gong, Di Porto, and Wolfowicz gave the first counterexamples
[4]. Subsequently, Blackburn gave a complete characterization
of shift and add sequences [1]. In this section we describe and
extend Blackburn’s results.

Let V be a vector space of dimensione over Fp. We
consider periodic sequences of periodpn − 1 with entries in
V . Let L be the Galois field withpn elements. Letα ∈ L
be a primitive element and letT : L → V be a set-theoretic
mapping that is not identically0. Let A = (a0, a1, . . .) be the
sequence given byai = T (αi).

We say thatT is balancedif n ≥ e and if the setT−1(a)
contains the same number,pn−e, of elements, for everya ∈ V .
If T is balanced, then it is surjective. IfT is linear overFp,
denote byK = ker(T ) the kernel ofT . If u ∈ L then denote
by

uK = {ux ∈ L : x ∈ K} = {ux ∈ L : T (x) = 0}

the translate of this subspace by the action of multiplication
by u. We say thatT has thekernel propertyif T is Fp-linear,
if n = ek for somek, and if

k−1⋂
i=0

α−iK = {0}. (4)

If T has the kernel property thenT is surjective (see the proof
of part (3) of Theorem 3 in Section XII). In Theorem 3, we
show that properties of the mappingT : L → V give rise
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to properties of the resulting sequenceA according to the
following table.

Properties ofT Properties ofA
Fp-linear shift and add
balanced ideal autocorrelations
kernel property de Bruijn

In part (4) of Theorem 3 below, the kernel property is
expressed in terms of a basis forV . We are grateful to an
anonymous referee for suggesting part (4) of this theorem.
In what follows,ϕ denotes Euler’s function. We also recall
that two periodic sequences of the same period are said to be
cyclically distinct if the second sequence cannot be realized
as a shift of the first sequence.

Theorem 3:Let T : L→ V be a set-theoretic mapping that
is not identically0, whereV is a vector space of dimension
e over Fp andL is the field withpn elements, as above. Fix
a primitive elementα ∈ L. Let A = (a0, a1, · · ·) denote the
sequenceai = T (αi). Then the following statements hold.
(1) The mappingT is Fp-linear if and only if the sequence
A is a shift-and-add sequence, and in this case its (minimum)
period ispn − 1. There are

(pne − 1)
pn − 1

ϕ(pn − 1)
n

cyclically distinct non-zero sequences (of elements inV ) with
(minimum) periodpn − 1 which satisfy the shift and add
property. Each of these arises from such a pair(T, α) (where
α ∈ L is primitive andT : L→ V is Fp-linear).
(2) Suppose the mappingT is Fp-linear. ThenT : L → V
is surjective if and only if it is balanced, which holds if and
only if sequenceA has ideal autocorrelations. There are

(pn − p)(pn − p2) · · · (pn − pe−1)ϕ(pn − 1)
n

cyclically distinct shift-and-add sequences (of elements inV )
with ideal autocorrelations and minimal periodpn−1. Each of
these arises from such a pair(T, α) (whereα ∈ L is primitive
andT : L→ V is Fp- linear and balanced).
(3) SupposeT : L → V is Fp-linear and surjective and let
n = ek. Then T has the kernel property if and only if the
sequenceA is a punctured de Bruijn sequence (of elements in
V , with minimal period|V |k − 1, with ideal autocorrelations,
which satisfies the shift-and-add property).
(4) Suppose the mappingT is Fp-linear and suppose thatn =
ek for somek. Choose a basis forV and write

T (x) = (T1(x), T2(x), · · · , Te(x)) (5)

for the resulting coordinates ofT (x). EachTj : L → Fp is
Fp- linear so there exist (cf. Fact(a) in Section XII) unique
elementsuj ∈ L such that

Tj(x) = TrL
Fp

(ujx). (6)

Then the mappingT has the kernel property if and only if the
following collection ofek elements

{ujα
i : 1 ≤ j ≤ e, 0 ≤ i ≤ k − 1}

ak−1 ak−2 · · · a1 a0

��
��
q1 ��

��
q2 ��

��
qk−1 ��

��
qk· · ·

⊕

- -

�
�
�
�

Fig. 1. A Linear Feedback Shift Register

forms a basis forL over Fp.
The last statement of part (1) is Blackburn’s characterization

of sequences with the shift and add property [1]. The proof
of Theorem 3 appears in Section XII.

Part (4) can be interpreted as saying that every sequence
over a vector spaceV satisfying the shift-and-add and punc-
tured de Bruijn properties can be obtained by selecting an
m-sequence and a set of shifts that satisfy a certain linear-
independence criterion and interlacing the shifted sequences.

b) Remark.:If K = ker(T ) is preserved under multipli-
cation by elements from the sub-fieldF = Fpe ⊂ L then the
kernel condition holds automatically. This occurs, for example,
if V = F = Fpe and if T is F -linear, in which case the
resulting sequence is an m-sequence overF . More generally if
g ∈ Gal(L/Fp) is an element of the Galois group and ifg(K)
is preserved by multiplication by elements ofF thenT has the
kernel property. The kernel property is somewhat mysterious
and we do not know of a simple method for counting the
number of linear mappingsT with this property.

IV. REVIEW OF LFSRS AND M-SEQUENCES

In this section we review some basic properties of LFSRs
to motivate the ensuing discussion of AFSRs.

Let F be a finite (Galois) field and letq1, q2, · · · , qk ∈ F .
The linearly recurrent sequenceof order k with multipliers
q1, q2, · · · , qk ∈ F and initial state(a0, a1, · · · , ak−1) is the
unique solution to the equations

aj = q1aj−1 + q2aj−2 + · · ·+ qkaj−k

for j ≥ k. Such a sequence may be described in three different
ways. First, it is the output from alinear feedback shift register
(LFSR) of lengthk with multipliers qi ∈ F and initial entries
a0, a1, · · · , ak−1 ∈ F , as illustrated in Figure 1. The⊕ box
denotes addition inF .

The connection polynomialq ∈ F [x] associated with this
recurrence or LFSR is the polynomial

q(x) = q0 +
k∑

i=1

qix
i

where q0 = −1. The second description is the well known
fact ( [5] Section 2.5) that the sequencea0, a1, · · · is also the
coefficient sequence of the power series expansion

p(x)
q(x)

= a0 + a1x+ a2x
2 + · · · (7)
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of the rational functionp(x)/q(x) with denominatorq(x) and
numerator

p(x) =
k−1∑
j=0

j∑
i=0

qiaj−ix
j . (8)

Finally, there is an “exponential” representation for the se-
quence. LetL = F [x]/(q(x)). Elements ofL can be repre-
sented as polynomials of degree less thank = deg(q). The
polynomialx ∈ L is invertible with

α = x−1 = q1 + q2x+ . . .+ qkx
k−1

sincexα = 1 + q. Let φ : L → F be theF -linear mapping
φ(h) = hmodx, that is,

φ(
k−1∑
i=0

hix
i) = h0. (9)

Then the sequencea0, a1, . . . is given by

aj = φ(pαj) = (p(x)x−j(mod q))(modx) (10)

where p(x) is given by equation (8). Ifq(x) is irreducible
thenL may be identified with the unique field extension of
F having degreed in such a way thatα becomes identified
with the inverse of a root ofq(x) or equivalently,α becomes
identified with a root of the reciprocal polynomialxkq(1/x).
In this case equation (10) becomes the more familiar

ai = TrL
F (bαi)

for an appropriate choice ofb ∈ L.
A linearly recurrent sequence of orderk is eventually

periodic and its period is at most|F |k−1. A linearly recurrent
sequence of orderk whose period is|F |k − 1 is called a
maximal length sequenceor m-sequence. It is well known that
this maximal period is achieved precisely when the connection
polynomialq(x) is a primitive polynomial (that is, any root of
q(x) is a generator for the multiplicative group of the Galois
field with |F |k elements). These sequences are of interest in
part because they can be generated efficiently, and in part
because they have the following randomness properties (cf.
[21] Chapter 8):

Theorem 4:LetA be an m-sequence over the finite fieldF .
ThenA is a punctured de Bruijn sequence and it has the shift
and add property. HenceA is balanced, has the run property,
and has ideal autocorrelations.

V. FCSRS AND AFSRS

A class of pseudo-random sequences that is analogous to
LFSR sequences but is based on addition with carry was
developed [13], [14], [16] by the authors of this paper and
independently by Couture and L’Ecuyer [2], [3]. LetM be
a positive integer, and identify the ringZ/(M) with the
integers{0, 1, 2, · · · ,M − 1}. Fix multipliers q1, q2, · · · , qk ∈
Z/(M), an initial statea0, a1, · · · , ak−1 ∈ Z/(M) and an
initial memory (or “carry”) tk−1 ∈ Z. The multiply with
carry sequenceor feedback with carry shift register (FCSR)
sequenceA = (a0, a1, · · ·) is the unique solution to thewith-
carry linear recurrence

aj +Mtj = tj−1 + q1aj−1 + q2aj−2 + · · ·+ qkaj−k

for j ≥ k. This means that the right side of the equation is to
be computed as an integerσ ∈ Z. Thenaj is the remainder
after dividingσ by M , and tj is the whole number quotient
bσ/Mc = (σ − aj)/M . We write aj = σmodM and tj =
σ divM . This pseudo-random sequence has three descriptions
which are parallel to those of the LFSR sequence. First, it is
the output of afeedback with carry shift registeror FCSR (see
[16]). Theconnection integerassociated with this FCSR is the
number

q = q0 +
k∑

i=1

qiM
i ∈ Z,

whereq0 = −1. Second, it is the coefficient sequence in the
M -adic expansion (cf. [8], [16]) of the rational number

u

q
= a0 + a1M + a2M

2 + · · · (11)

with denominatorq and with numerator

u =
k−1∑
j=0

j∑
i=0

qiaj−iM
j − tk−1M

k. (12)

The sequence is strictly periodic if and only if−q ≤ u ≤ 0.
Third, in analogy with equation (10) the sequence may be
expressed as

aj = (uδj mod q) modM (13)

whereδ = M−1 is the inverse ofM in Z/(q) [8], [16]. This
notation means that the quantityuδj mod q is represented as
an integer in the range{0,−1,−2, · · · ,−q+ 1} and then this
integer is reduced moduloM .

For any initial value, the memoryt will quickly enter a
certain rangew− ≤ t ≤ w+ (cf. [8], [16]) where it will
remain thereafter. So an FCSR is a finite state machine and
in particular, every FCSR sequence is eventually periodic. Its
period is a divisor of the order ofM modulo q and hence
a divisor ofϕ(q). (Here,ϕ denotes Euler’s function. Ifp is
prime thenϕ(p) = p− 1.) An FCSR sequence with maximal
periodϕ(q) is called aǹ -sequence. A necessary and sufficient
condition for the existence of aǹ-sequence based on a given
connection integerq is that q is a power of a prime, andM
is a primitive root moduloq.

LFSR sequences and FCSR sequences admit a common
generalization, thealgebraic feedback shift register (AFSR)
sequences[17]. Let R be an integral domain (that is, a ring
with no zero divisors). Recall that two elementsv, w ∈ R
are relatively prime if there exist elementsa, b ∈ R so that
av + bw = 1, or equivalently, ifv is invertible modulow
(or vice versa). Fix an elementr ∈ R and let S ⊂ R
be a complete set of representatives for the elements of
R/(r). A class of AFSRs is based on the triple(R, r, S). An
AFSR in this class is determined by a choice of multipliers
q0, q1, · · · , qk ∈ R such thatq0 is invertible modulor. The
AFSR is a (not necessarily finite) state device whose states
are tuples(a0, a1, · · · , ak−1; t) with eachai ∈ S (the “cell
entries”) andt ∈ R (the “memory”). It changes states as
follows. There are unique elementsak ∈ S and t′ ∈ R such
that

−q0ak + rt′ = t+ q1ak−1 + q2ak−2 + · · ·+ qka0. (14)
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(This fact is reproven below whenR is a Euclidean domain.)
Then the new state is(a1, a2, · · · , ak; t′). The resulting se-
quencea0, a1, a2, · · · of elements inR/(r) is called an AFSR
sequence. We refer to equation (14) as alinear recurrence
with carry overR/(r). The element

q =
k∑

i=0

qir
i ∈ R (15)

is called theconnection element. These ingredients may be
expressed in terms of a (possibly infinite) state machine (see
Figure 2) which is analogous to the LFSR and FCSR.

Even at this level of generality there is an analog to the
power series representations (7) and (11). Let

Rr = {
∞∑

i=0

air
i : ai ∈ S, i = 0, 1, · · ·}

be ther-adic ring of formal power series. There is a natural
ring homomorphism fromR to Rr which is one-to-one if

∞⋂
i=1

(ri) = (0) (16)

that is, if no non-zero element ofR is divisible by every
power ofr. This homomorphism extends to the set of fractions
u/q (with u, q ∈ R) such thatq is relatively prime tor. (By
equation (15), this holds if and only ifq0 is relatively prime
to r.) We refer to the representation of an elementu/q in Rr

as itsr-adic expansion. If equation (16) is satisfied, then this
representation is unique and we may unambiguously write

seqr(u/q) = (a0, a1, · · ·)

meaning that
u

q
=

∞∑
i=0

air
i ∈ Rr. (17)

The following theorem states thatseqr(u/q) is the output
sequence of an AFSR with connection elementq.

Theorem 5:Given (R, r, S) as above, withR an integral
domain,r ∈ R, S ⊂ R a complete set of representatives for
R/(r), such that (16) holds. Chooseq0, q2, · · · , qk ∈ S and
set

q =
k∑

i=0

qir
i ∈ R.

Assume that the image ofq0 is invertible inR/(r). For any
u ∈ R there exists unique elementsai ∈ S (0 ≤ i ≤ k − 1)
and tk−1 ∈ R such that

u =
k−1∑
j=0

j∑
i=0

qiaj−ir
j − tk−1r

k. (18)

Then the output sequence of the AFSR with multipliersqi
(1 ≤ i ≤ k) and initial state(a0, a1, · · · , ak−1; tk−1) is the
sequenceseqr(u/q) = a0, a1, · · · of coefficients in ther-adic
expansion (17) for the fractionu/q.

The proof [17] of this fact is a calculation which goes back,
originally, to the proof [5] Section 2.5 of equation (8) in the
case of LFSRs, to the proof [14], [16] of equation (12) in the
case of FCSRs, and to the proof [14] in the case ofd-FCSRs.

The third expression for the AFSR sequence is a direct
generalization of equations (10) and (13); see Theorem 3.1
and Theorem 10 of [17].

Theorem 6:( [17]) Given(R, r, S) as in Theorem 5, choose
“multipliers” q0, q1, · · ·, qk ∈ S so thatq0 is invertible in
R/(r). Let q =

∑k
i=0 qir

i ∈ R be the resulting connection
element and setw = q−1

0 ∈ R/(r). Let u ∈ R and suppose
the sequenceseq(u/q) = (a0, a1, · · ·) is strictly periodic. Let
V ⊂ R be a complete set of representatives for the elements
of R/(q) and assume thatV contains the set

{v ∈ R : seqr(v/q) is a shift ofseqr(u/q)} .

Then
ai = w(ur−i mod q)mod r. (19)

As in equation (13) this equation means that the element
ur−i ∈ R/(q) is first lifted to the setV , then reduced modulo
r, then multiplied byw ∈ R/(r).

An LFSR over a fieldF is an AFSR withR = F [x], r = x,
S = F , q0 = −1, eachqi ∈ F , and with initial memory
t = 0. An FCSR is an AFSR withR = Z, r = M ∈ Z,
S = {0, 1, · · · ,M − 1}, q0 = −1, and eachqi ∈ S. In both
these cases the ringR is a Euclidean domain, so any element
σ ∈ R has a unique expression

σ = Ar +B (20)

whereB ∈ S, in which case we writeB = σ(mod r) and
A = σ(div r). Therefore equation (14) may be rewritten

ak = σ (mod r) and t′ = σ (div r) (21)

whereσ =
∑k

i=1 qiak−i + t ∈ R. (This determinesak since
q0 is invertible inR/(r).) In these cases the memory remains
within a certain finite set, so the AFSR in Figure 1 may be
considered a finite state machine. With each clock cycle the
entries in the cells shift one step to the right. The cell contents
ai may be thought of as elements of the ringR/(r), but when
computing the contentsσ of the boxΣ, (with each clock cycle)
they should be thought of as elements ofS ⊂ R. Thenak =
σ(mod r) is fed into the leftmost cell whilet′ = (σ − ak)/r
is fed back into the memory.

There exist AFSRs(R, r, S) for which the output sequence
a0, a1, · · · is aperiodic and for which the memoryt does not
remain bounded. The authors have studied several general-
izations of the FCSR architecture, each of which may be
described as an AFSR sequence for appropriateR, r, andS
[6], [8]–[11], [18], [19]. In many cases it is known that the
resulting maximal length sequences have good correlation and
distribution properties.

VI. AFSRS BASED ON POLYNOMIAL RINGS

LetF be a finite (Galois) field. Then there is a prime number
p and an integerd such thatF ∼= Fpd . Let R = F [x] be the
polynomial ring in one variable, and letr ∈ F [x] be a polyno-
mial of some degreee. The division theorem for polynomials
says thatF [x] is a Euclidean domain: for any polynomial
σ(x) ∈ F [x] there are unique polynomialsA(x), B(x) such
thatdeg(B) < e andσ(x) = A(x)r(x)+B(x). Let S ⊂ F [x]
be the collection of all polynomials of degree less thane, so
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Fig. 2. Algebraic Feedback Shift Register.

B(x) ∈ S. The statementB(x) = σ(x) mod r(x) (or simply,
B = σmod r) reflects the fact that the setS is a complete
set of representatives for the quotient ringF [x]/(r). The set
S is closed under addition, but not under multiplication. For
the remainder of this paper we study AFSR sequences based
on (F [x], r, S).

Fix elementsq0, q1, · · · , qk ∈ S such thatq0 is invertible
modulor. Such a choice of multipliers gives rise to an AFSR
with connection element

q(x) =
k∑

i=0

qir
i. (22)

Then q is relatively prime tor. Conversely, ifq(x) ∈ R =
F [x] is any polynomial that is relatively prime tor(x), then,
sinceF [x] is a Euclidean domain, we may write in a unique
way as q(x) =

∑k
i=0 qir

i for somek, where qi ∈ S (for
i = 0, 1, · · · , k), where qk 6= 0, and whereq0 is invertible
modulo r. Throughout this section we consider the possible
output sequences from an AFSR based on(F [x], r, S) with
multipliers q0, q1, · · · , qk ∈ S.

We use a few paragraphs to repeat the salient proper-
ties of the AFSR in this special case. The elements of
F [x]/(r) are represented by polynomials of degree less than
e = deg(r), the collection of which is denotedS. The
AFSR sequenceA = (a0, a1, · · ·) is generated by the fi-
nite state machine as illustrated in Figure 1. The machine
has fixed “multipliers” (q0, q1, · · · , qk) where qi ∈ S. The
state (a0, a1, · · · , ak−1; tk−1) consists of a “state vector”
(a0, a1, · · · , ak−1) (with ai ∈ S) and a “memory”tk−1 ∈
F [x], that is, a polynomial of any degree. Given this initial
state, the next state is computed from the linear recurrence with
carry (14). That is, setσ(x) =

∑k
i=1 qi(x)ak−i(x)+tk−1(x) ∈

F [x]. Then equation (14) can be rewritten

ak = γσ(mod r) and tk =
σ + q0ak

r
(23)

whereγ = q−1
0 (mod r) ∈ F [x]/(r). By equations (17) and

(18), the output sequenceA = seqr(u/q) = (a0, a1, · · ·) is
precisely the coefficient sequence of ther-adic expansion of
the rational function

u(x)
q(x)

=
∞∑

i=0

air
i (24)

whose denominatorq(x) is determined as in equation (22) by

the multipliersq0, q1, · · · , qk and whose numerator

u =
k−1∑
j=0

j∑
i=0

qiaj−ir
j − tk−1r

k (25)

is determined by the initial state(a0, a1, · · · , ak−1; tk−1).
Conversely, every polynomialu(x) ∈ F [x] corresponds to a
unique state(a0, a1, · · · , ak−1; tk−1) under equation (25), and
the sequenceseqr(u/q) is precisely the output sequence of
the AFSR.

Proposition 1: Let u(x) ∈ F [x]. The sequenceA =
seqr(u/q) is eventually periodic. It is strictly periodic if and
only if the degree ofu is less than the degree ofq. In this
case the (minimal) period ofA is the multiplicative order of
r moduloq, that is, the smallest positive integerN such that
rN = 1 in the finite (multiplicative) group(F [x]/(q))∗ of
invertible elements inF [x]/(q).

Proof: If the state is(aj−k, · · · , aj−1; tj−1), then by
equation (23), the degree ofσ is at most max(2(e −
1),deg(tj−1)). The degree ofq0aj is at most2(e− 1). Thus
the quotienttj = (σ + q0aj)/r has degree at mostmax(e −
2,deg(tj−1) − e). Thus from any initial state with memory
tk−1, the degree of the memory decreases monotonically in
at most(deg(tj−1) − e + 2)/e steps until the degree of the
memory is at moste − 2, and this bound persists from then
on. ThusA is eventually periodic.

Suppose thatA is strictly periodic, say with periodM . Then

u

q
= (

M−1∑
i=0

air
i)

∞∑
i=1

rMi =
∑M−1

i=0 air
i

1− rM
.

The degree of the numerator in this last expression is strictly
less thanMe, the degree of the denominator. Thus the degree
of u is less than the degree ofq, which proves the first half
of the first statement. Moreover, the equation

u(1− rM ) = q
M−1∑
i=0

air
i

implies thatrM ≡ 1 mod q, so the multiplicative orderN of
r divides the periodM of A.

Conversely, suppose thatdeg(u) < deg(q). Let N denote
the multiplicative order ofr modulo q, so 1 − rN = sq for
some polynomials. It follows thatu/q = (su)/(1− rN ), and
deg(su) < Ne. Thus we can writesu =

∑N−1
i=0 bir

i with
bi ∈ S. It follows thataj = bj mod N for all j, soA is strictly
periodic, of periodN . In particular, the minimal period ofA
dividesN .
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Corollary 1: Given an AFSR with multipliersq0, q1, · · · , qk
and initial state vector(a0, a1, · · · , ak−1), there exists a value
t of the memory such that the output sequence is strictly
periodic. If qk ∈ F (that is, if deg(qk) = 0) then this value of
t is unique.

Proof: Given the initial state vector(a0, a1, · · · , ak−1)
let us consider the effects of different valuest of the memory
on the degree of the polynomialu(x) in equation (25). Let
H(x) denote the double sum in equation (25). By the division
theorem for polynomials, there exists a unique polynomialt ∈
F [x] such that

H(x) = t(x)rk + J(x)

with deg(J) < deg(rk) = ke ≤ deg(q) sinceqk 6= 0. Taking
this t = tk−1 for the memory gives a state of the AFSR whose
output sequence isseqr(u/q), whereu = H − trk = J has
degree< deg(q). So by Proposition 1 the output sequence is
strictly periodic. This proves that such at always exists.

Now supposeqk has degree0. Then deg(q) = ek since
q =

∑k
i=0 qir

i. We wish to prove that the memory value
t is unique. Given the initial state vector(a0, a1, · · · , ak−1)
suppose there are two values,t 6= t′ for the memory
such that the output sequence is strictly periodic. Letu, u′

be the corresponding polynomials from equation (25). Then
deg(u),deg(u′) < ek by Proposition 1. Howeveru − u′ =
(t′−t)rk which has degree≥ ek and this is a contradiction.

Corollary 2: Consider an AFSR with multi-
pliers q0, q1, · · · , qk and deg(qk) = 0. Suppose
(a0, a1, · · · , ak−1; tk−1) is a (strictly) periodic state of
the AFSR, and letu ∈ F [x] be the corresponding element
defined by equation (25). Thendeg(u) < ek and we may
write in a unique way,u =

∑k−1
i=0 uir

i with deg(ui) < e.
Then

1) ai = 0 for 0 ≤ i ≤ k − 2 if and only if ui = 0 for
0 ≤ i ≤ k − 2.

2) The memory vanishes,tk−1 = 0, if and only if

deg(
k−1∑
i=0

aiqk−i−1) ≤ e− 1. (26)

Proof: First supposeai = 0 for 0 ≤ i ≤ k − 2. By
equation (25),

u = q0ak−1r
k−1 − tk−1r

k = (q0ak−1 − tk−1r)rk−1.

If v denotes the polynomial within the parentheses, then
deg(v) + e(k − 1) = deg(u) < ek which givesdeg(v) < e.
In other words,v = uk−1. The converse is a bit harder.
Supposeu = vrk−1 and deg(v) < e. Then umod rm = 0
for 1 ≤ m ≤ k − 1. By equation (25),umod r = q0a0 = 0
which implies thata0 = 0. Then by equation (25) again,
umod r2 = q0a1r

1 = 0 which impliesa1 = 0. Continuing in
this way we obtainai = 0 for 0 ≤ i ≤ k − 2.

Now suppose equation (26) holds. The terms of highest
degree in the double sum of equation (25) are

rk−1
k−1∑
i=0

aiqk−i−1

F [x]/(q) Σ-
i

��
?

S ��
?

T

HHH
HHHj

φ

���
����

OUT

F [x]/(r)

Fig. 3. Algebraic model for AFSR

which has degree

ek − e+ deg
k−1∑
i=0

aiqk−i−1 < ek = deg(q)

by assumption. However the termtrk has degreeek. So any
non-zero value fortk−1 will result in deg(u) ≥ deg(g) and,
by Proposition 1 the output sequence will fail to be strictly
periodic. The converse is similar.

c) Notation: Let Sr,q denote the collection of all strictly
periodic AFSR sequences based on(F [x], r, S) with connec-
tion elementq. By Proposition 1,Sr,q is the collection of all
coefficient sequencesseqr(u/q) of the r-adic expansions of
fractionsu(x)/q(x) such thatdeg(u) < deg(q).

In Theorem 6 we may takeV to be the set of all polynomials
u ∈ F [x] such thatdeg(u) < deg(q). Then (cf. Theorem 6)
no two elements ofV are congruent moduloq so there is an
exponential representation for every sequence inSr,q.

Corollary 3: Let q =
∑k

i=0 qir
i ∈ F [x] be the connection

element of an AFSR, whereqi ∈ S and whereq0 is invertible
in F [x]/(r). Let w = q−1

0 ∈ F [x]/(r). Fix u ∈ F [x] and
let A = seqr(u/q) = (a0, a1, · · ·) be the resulting sequence.
Assume thatA ∈ Sr,q is strictly periodic. Then

ai = w(ur−i mod q) mod r, (27)

for all i.
Equation (27) means that the elementur−i ∈ F [x]/(q) is
first represented by an element ofF [x] with degree less than
deg(q), then reduced modulor, then multiplied byw ∈
F [x]/(r).

Corollary 3 can be expressed by saying that the dia-
gram in Figure 3 commutes. Here,Σ denotes the set of
all periodic states of the AFSR. The functionOUT : Σ →
F [x]/(r) is the output function which assigns to a state
(a0, a1, · · · , ak−1; tk−1) the contentsa0 of the rightmost cell.
The mappingT : Σ → Σ is the state change mapping. On the
left side of the diagram the mappingφ : F [x]/(q) → F [x]/(r)
is given byφ(h) = wh(mod r), wherew = q−1

0 ∈ F [x]/(r).
That is,φ(q0

∑k−1
i=0 ziπ

i) = z0 if eachzi has degree less than
e. The mappingS : F [x]/(q) → F [x]/(q) is multiplication
by r−1. Finally the mappingi : F [x]/(q) → Σ assigns to any
u ∈ F [x]/(q) the state given by equation (25).

VII. M AXIMAL LENGTH AFSR SEQUENCES

Throughout this sectionA = (a0, a1, · · ·) ∈ Sr,q is a strictly
periodic AFSR sequence of the sort considered in Section VI.
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Thus F = Fpd is a finite Galois field,r(x) ∈ F [x] is a
polynomial of degreee, and as in equation (22),

q(x) =
k∑

i=0

qi(x)r(x)i (28)

is a polynomial of degreeg which is relatively prime tor(x),
andA = seqr(v/q) is the AFSR sequence corresponding to
somev ∈ F [x] with deg(v) < deg(q). We may considerA to
be a sequence of elementsai ∈ K = F [x]/(r).

According to Proposition 1 the period of the sequenceA
is the multiplicative order ofr modulo q. This is greatest if
F [x]/(q) is a field (i.e.,q is irreducible) and ifr is a primitive
element in this field (which is not the same as being a primitive
polynomial inF [x]). To obtain a punctured de Bruijn sequence
we also need the sequence to have period|K|k − 1 for some
k, which implies that|F |ek = |F |g, or k deg(r) = deg(q). By
equation (28) we see thatdeg(qk) = 0.

Definition 4: The sequenceA ∈ Sr,q is an (r, q)-adic `-
sequence ifg = ek for some integerk and if A has period
|F |g − 1, or equivalently, ifq is irreducible andr is primitive
moduloq.

The sequenceA = seqr(v/q) is the coefficient sequence
of the r-adic expansion of a rational functionv(x)/q(x) with
deg(v) < deg(q) = ek. The period ofA is |F |ek − 1 which
coincides with the number of non-zero polynomialsu ∈ F [x]
such thatdeg(u) < deg(q). Therefore, for any suchu, the
sequenceseqr(u/q) is a shift of the sequenceA. Conversely,
any shift of the sequenceA is the coefficient sequence of the
r-adic expansion ofu(x)/q(x) for some polynomialu with
deg(u) < deg(g).

Theorem 7:Let r, q ∈ F [x] be relatively prime with de-
greese andg = ek respectively. Supposeq is irreducible and
r is primitive moduloq. Let v ∈ F [x] with deg(v) < deg(q).
Then the resulting(r, q)-adic `-sequenceA = seq(v/q) is a
punctured de Bruijn sequence and it satisfies the shift and add
property with coefficients inF . Consequently this sequence
satisfies all three of Golomb’s randomness postulates.

Proof: The sequenceA = (a0, a1, · · ·) is the output of
an AFSR with multipliersq0, q1, · · · , qk. Suppose a blockb =
(b0, b1, · · · , bk−1) of lengthk occurs inA after some number
of iterations. Consider the state of the AFSR at this point.
The valuesb0, b1, · · · , bk−1 are the contents of the registers.
By Corollary 1 there is a unique valuet for the memory such
that the output of the AFSR with this initial state vectorb
and initial memoryt is a strictly periodic sequence. Since the
sequence is, in fact, periodic from this point, the memory must
have this valuet. It follows that the blockb can occur at most
once in any period ofA — otherwise the sequence would
repeat upon the next occurrence ofb, and its period would be
less than|F |ek−1. However, there are|F |ek possible blocksb,
and the blockb = (0, 0, · · · , 0) cannot occur inA (otherwise
A would consist only of zeroes). Consequently every non-zero
block b of lengthk occurs exactly once in a single period of
A. HenceA is a punctured de Bruijn sequence.

According to the comments preceding Theorem 7, for any
shift τ , there existsu ∈ F [x] whose degree is less thandeg(q)
such thatAτ = seqr(u/q). Let c, d ∈ F . Then the sequence

cA+ dAτ = seqr((cv+ du)/q). But deg(cv+ du) < deg(q)
so this sequence is some other shift ofA, or else it is zero.
HenceA has the shift and add property. By Theorem 7 and
Lemma 1,A is balanced. Thus by Theorem 2,A has ideal
autocorrelatons.

Since by Theorem 3 every punctured de Bruijn sequence
defined over a finite vector space and having the shift and
add property arises from Blackburn’s construction, we have
the following corollary to Theorem 7.

Corollary 4: Let r, q ∈ F [x] be relatively prime with
degreese andg = ek respectively. Supposeq is irreducible and
r is primitive moduloq. Let v ∈ F [x] with deg(v) < deg(q).
Let A = seq(v/q) be the resulting(r, q)-adic `-sequence.
Then there exists a primitive elementα ∈ Fpdek and anFp-
linear functionT : Fpdek → Fpd [x]/(r) so thatai = T (αi).

In fact this also follows from Corollary 3. In this setting
F [x]/(q) is isomorphic toFpdek . In this field r is primitive
so it plays the role ofα. The function that mapsa to
w(uamod q) mod r is Fp-linear, so this plays the role ofT .

It is natural then to ask whether all punctured de Bruijn
sequences with the shift and add property are(r, q)-adic `-
sequences. We believe that they are not. However, in a separate
paper [12] the second author considered AFSRs based on rings
of the form Fpd [x1, · · · , xn]/I where I is an ideal. It was
shown there that in fact all punctured de Bruijn sequences
with the shift and add property are indeed`-sequences in this
setting.

VIII. I MPLEMENTATION ISSUES

For many applications it is essential that the pseudorandom
sequences used be generated quickly. In this section we study
the complexity of generating punctured de Bruijn sequences
with the shift and add property.

Suppose we have such a sequenceA = (a0, a1, · · ·) over
Fpe with periodpek−1. We can realizeA asai = T (αi) where
T : Fpek → Fpe is Fp-linear andα is a primitive element of
Fpek . Suppose that alsoA is an (r, q)-adic `-sequence with
r, q ∈ Fp[x], deg(r) = e, deg(q) = ek, and q =

∑k
i=0 qir

i

with deg(qi) < e, q0 invertible modulor, and qk = 1. We
assume thatr is a primitive element inFp[x]/(q). Hence in
particularFp[x]/(q) is a field, so can be identified withFpek .

We think of addition and multiplication inFp as atomic
operations. For anyn we let M(n) denote the worst case
time complexity of multiplication of polynomials overFp of
degree less thann. ThenM(n) is also the worst case time
complexity of multiplication inFpn . Using divide and conquer
givesM(n) ∈ O(nlog2(3)). Using fast Fourier transforms gives
M(n) ∈ O(n log(n)). The worst case time complexity of
addition inFpn is O(n).

We compare three methods for generating punctured de
Bruijn sequences over anFp-vector spaceF .

LFSR with Linear Output:
We can use an LFSR with lengthek and entries
in Fp, or an LFSR with lengthk and entries in
Fpe to generate powers ofα and applyT to the
successive states of the LFSR. In the first case
the state change operation takesek multiplications
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and ek − 1 additions in Fp. The function T is
realized by anek by e matrix overFp, so takese2k
multiplications ande(e−1)k additions. Thus it takes
a total of 2e2k + O(ek) operations to generate one
symbol ofA.
In the second case, the state change takesk mul-
tiplications in Fpe . The cost of computingT is
the same as in the previous paragraph since we
have to interpret the state as a vector overFp in
general. Thus the cost of generating one symbol is
2e2k +O(M(e)k), which is slightly worse.

Interleaving:
By choosing a basis forFpe over Fp, we can think
of A as the interleaving ofe m-sequences of span
ek over Fp. Each m-sequence can be generated by
a LFSR of lengthek with entries inFp. The state
change for such an LFSR takesek multiplications
andek−1 additions inFp, and the output takes one
operation (output the rightmost cell). Thus the total
cost from all the LFSRs for generating one symbol
of A is 2e2k. This is essentially the same complexity
as in the previous case.

(r, q)-Adic `-Sequences:
We can generateA with an AFSR of lengthk based
on Fp[x] and r with connection elementq. The
state change requires at mostk multiplications of
polynomials overFp of degree less thane, plus 2k
additions of polynomials overFp of degree less than
e. Then the total cost isM(e)k + 2ek.

The first and third methods can be sped up by precomputing
tables for small chunks. E.g., in the first method think of a
vector of lengthk as a vector ofk/8 bytes of length 8 and
precompute the inner products of all pairs of bytes. In the
third method think of each polynomial of degreee as a sum
of polynomials of degree less than8 times appropriate powers
of x8 and precompute products of all pairs of polynomials
of degree less than 8. This gives the same speedup for both
methods.

It’s possible that we can save some of the redundant work of
the parallel LFSRs in the second method (all LFSRs are the
same, they just have different start states). But this appears
possible only if the phases of the LFSRs are close. Otherwise
the storage costs become large.

In general all methods are faster in special cases. In the first
methodT may have many entries inFp or even many zero
entries. In the second method the LFSRs may have many zero
coefficients or the phases may be close. In the third method
the AFSR may have many zero coefficients or more generally
the degrees of the coefficientsqi(x) may be low. It is not clear
to what extent we can force these things to happen.

If the sequence generation is to be implemented in software
andp = 2, then we can speed up the second method as long
ase is at most the word size (typically 32 bits or 64 bits). We
useek words and store the state of the first LFSR in the least
significant bits of the words, the state of the second LFSR in
the next least significant bits, and so on. Since the state change
is the same for all LFSRs and the coefficients are zeros and
ones, the new bit for each LFSR is computed as the exclusive

or of some fixed set of state bits. Thus we can compute all
the new bits simultaneously by taking the bitwise exclusive
or of a fixed set of words. We then shift the words by one
position. The total time required is apparently at most2ek
word operations. However, this analysis is not always correct.
In some architectures the bitwise exclusive or of words is not
actually implemented as an atomic operation in the hardware
and its actual cost must be considered.

IX. RELATION WITH M-SEQUENCES

The (r, q)-adic `-sequences share many of the properties
of m-sequences. In this section we show that, except in trivial
cases, such a sequenceA is never an m-sequence, and we give
sufficient conditions to guarantee thatA cannot be obtained
from an m-sequence by a linear change of variable.

Let F = Fpd . Fix r(x), q(x) ∈ F [x] relatively prime, of
degreese and g = ek respectively, withq =

∑k
i=0 qir

i

irreducible, with deg(qi) < e = deg(r), and with r prim-
itive modulo q. In particular, as observed in Section VII,
deg(qk) = 0. A choice of u ∈ F [x]/(q) corresponds to an
initial state of the AFSR and the resulting output sequence
A = seqr(u/q) = (a0, a1, · · ·) is an (r, q)-adic `-sequence
with period pdek − 1. Now suppose we have an m-sequence
Â = (â0, â1, · · ·) of the same period with symbols drawn
from an alphabet of the same size. It is most convenient to
describe the sequencêA as an AFSR sequence (with memory
equal to zero) as in Section IV. Let̂F = Fpde be the field
containing the symbolŝai. The m-sequencêA satisfies a linear
recurrence of degreek over F̂ , corresponding to a primitive
polynomial q̂ ∈ F̂ [y]. Let φ̂ : F̂ [y]/(q) → F̂ be the mapping
φ̂(ĥ) = ĥmod y. That is,

φ̂(
k−1∑
i=0

ĥiy
i) = ĥ0

(where ĥi ∈ F̂ ) as in equation (9). Theny ∈ F̂ [y]/(q̂) is
primitive and invertible, and up to a shift, the sequenceÂ is
given by âj = φ(y−j mod q̂), as in equation (10).

Theorem 8:If e = deg(r) > 1 then there does not exist any
set-theoretic mappingψ : F̂ → F [x]/(r) such thatψ(Â) = A.

Proof: Suppose such a mapping exists. By Lemma 1 the
mappingψ is Fp-linear. As in Corollary 3 letφ : F [x]/(q) →
F [x]/(r) be the mappingφ(h) = wh(mod r) wherew =
q−1
0 ∈ F [x]/(r). We claim there exists a unique mapping

Ψ : F̂ [y]/(q̂) → F [x]/(q) so that Figure 4 “commutes”.
In Figure 4, the triangles on the ends are just repeats of

Figure 3, whereΣ represents the set of strictly periodic states
of the first AFSR (and similarly for̂Σ). Each periodic state of
Σ̂ is uniquely determined by the contents(â0, â1, · · · , âk−1) of
the registers (and memorŷtk−1 = 0) of the right hand AFSR,
which must therefore be mapped byψ to (a0, a1, · · · , ak−1)
of the left AFSR. By Corollary 1 this determines a unique
value tk−1 for the memory of the left AFSR. So there is a
uniquely determined bijection̂Σ → Σ which commutes with
the mappingsT, T̂ , φ, φ̂, OUT, andψ. Using i and î (each of
which is a bijection) this mapping becomes a bijectionΨ :
F̂ [y]/(q̂) → F [x]/(q).
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Fig. 4. Comparing two AFSRs

Next we modifyΨ slightly so as to obtain an isomorphism
of fields. First note thatΨ is Fp linear sinceψ is Fp-linear.
Moreover, for anŷv ∈ F̂ [y]/(q̂), the following equation holds:
Ψ(Ŝ(v̂)) = S(Ψ(v̂)) or

Ψ(y−1v̂) = r−1Ψ(v̂) (29)

from which it follows that Ψ(yv̂) = rΨ(v̂) for every v̂
(because(y−1)N = y ∈ F̂ [y]/(q̂) and (r−1)N = r ∈
F [x]/(q) whereN = pked − 2). The only problem is that
Ψ(1) may fail to equal 1.

DefineΦ : F̂ [y]/(q̂) → F [x]/(q) by Φ(v̂) = Ψ(1)−1Ψ(v̂).
Then Φ(yi) = ri so Φ is both multiplicative and additive.
HenceΦ is an isomorphism of fields. To see that this leads to
a contradiction we consider the subfield̂F ⊂ F̂ [y]/(q̂) which
may be realized as the collection of all polynomials of degree
0 (and with coefficients inF̂ ). For any ŝ ∈ F̂ consider the
elementŝyk−1 ∈ F̂ [y]/(q̂). The corresponding periodic state

(̂b0, b̂1, · · · , b̂k−1) = î(ŝyk−1) ∈ Σ̂

has b̂i = 0 for 0 ≤ i ≤ k − 2 by Corollary 2. Therefore the
corresponding statei(Ψ(ŝyk−1)) = (b0, b1, · · · , bk−1; tk−1) ∈
Σ has bi = 0 for 0 ≤ i ≤ k − 1 also. Again by Corollary
2 this implies thatΨ(ŝyk−1) = bk−1r

k−1 for somebk−1 ∈
F [x] of degree less thane. It follows from equation (29) that
Ψ(ŝ) = bk−1. That is,Ψ mapsF̂ bijectively to the collection
of all polynomials of degree less thane.

SinceΦ is a field isomorphism, the set

Φ(F̂ ) =
{
Ψ(1)−1b(x) : deg(b) < e

}
⊂ F [x]/(q)

is a subfield ofF [x]/(q). Taking b(x) = 1 shows that
Ψ(1)−1 ∈ Φ(F̂ ) so we even conclude that

Φ(F̂ ) = {b(x) : deg(b) < e}

is a subfield ofF [x]/(q). But this set is not closed under
multiplication unlesse = 1, which is a contradiction.

In [4], Gong, Di Porto, and Wolfowicz constructed pseudo-
noise sequences by applying an invertibleFp-linear map to
each element in an m-sequence overFpf . Theorem 8 gives
sufficient conditions that an(r, q)-adic `-sequence cannot be
so obtained.

X. EXISTENCE

It is not immediately apparent that(r, q)-adic `-sequences
that are not m-sequences are abundant. In order to find such
sequences we fix the fieldF = Fpd and search for a pair

of polynomialsr, q ∈ F [x] such thatq is irreducible andr
is primitive moduloq. In order to get a punctured de Bruijn
sequence we also require thatg = deg(q) is a multiple of
e = deg(r).

First recall the theorem of Pappalardi and Shparlinski [23]:
Let F be an algebraic closure ofF . Supposer is not a k-th
power of a functionh ∈ F [x], for anyk which divides|F |g−1.
Then the numberN(r, F, g) of irreducible polynomialsq ∈
F [x] of degreeg for which r is primitive satisfies∣∣∣∣N(r, F, g)− ϕ(M − 1)

g

∣∣∣∣ ≤ 3eg−12ν(M−1)
√
M

whereM = |F |g, whereϕ denotes Euler’sϕ function and
whereν(k) denotes the number of distinct prime divisors of
k. This implies the existence of many pairs(r, q) such thatr
is primitive mod q. For example, ifF = F2 and g = 13 it
says that for anye ≤ 42 there existr with deg(r) = e andr
primitive modq. If g ≥ 75 then for every divisore of g there
exist polynomialsr of degreee that are primitive modg.

In fact, primitive polynomial pairs(r, q) are considerably
more abundant than the above estimates predict. By computer
search we have found the following forF = F2: Fix g ≤ 22.
Supposer ∈ F [x] is a polynomial of degreee < g and suppose
r is not a power of a polynomialr 6= hn wheren dividesg.
Then there exists an irreducible polynomialq of degreeg such
thatr is primitive modq unlessr = x4+x andg = 6. In other
words, there is a single unacceptable pair(r, g) in this range!
(In this case, the above estimate says|N(r, F, g)−6| ≤ 64 so
N = 0 is, indeed, a possibility.)

A class of examples which may be easily analyzed is the
following. Let q(x) ∈ F [x] be a primitive polynomial of
degreeg = ke. Let r(x) = xe. Thenr is primitive moduloq if
and only if e is relatively prime to|F [x]/(q)| − 1 = |F |g − 1.
This is satisfied, for example, ifg is relatively prime to
|F |g−1. For example, ifF = F2 andr(x) = x2 we may take
q to be any primitive polynomial of even degree. If such aq
contains any terms of odd degree then someqi has positive
degree, so the resulting(r, q)-adic `-sequenceA is not an m-
sequence. IfF = F2 andr(x) = x3 we may takeq to be any
primitive polynomial whose degree is an odd multiple of 3.
If such aq contains any terms of degree not divisible by 3,
then someqi has positive degree, so the sequenceA is not an
m-sequence.

XI. EXAMPLE

In this section we letp = 2 andd = 1. If deg(r) = 1, then
we obtain m-sequences. The caser(x) = x amounts to the



TRANSACTIONS ON INFORMATION THEORY 13

standard analysis of m-sequences by power series. The case
r(x) = x+ 1 is equivalent by a change of basis.

Suppose thatr has degree 2. Then for any choice ofq
we obtain sequences with elements inK = F2[x]/(r) =
{0, 1, x, x+1}. If r(x) = x2+x+1, which is irreducible over
F2, we haveK = F4, but for all otherrs of degree two the
ring K is not a field. If we letr(x) = x2 + x+ 1 and use the
connection elementq(x) = x4 + x3 + 1 = r2 + xr + x, then
it can be shown thatr is primitive moduloq and one period
of the (r, q)-adic `-sequenceA we obtain is a cyclic shift of

1, 1, x, x, x+ 1, x, 0, x, 1, x+ 1, x+ 1, 1, 0, x+ 1, 0. (30)

All other (r, q)-adic `-sequences obtained by different choices
of r of degree 2 andq of degree 4 withr primitive moduloq
are obtained from the sequence (30) by some combination of
shifts, reversals, and permutations of the alphabet{0, 1, x, x+
1}.

However, the sequence with one period equal to

1, 1, x, 1, 0, x+ 1, x+ 1, 1, x+ 1, 0, x, x, x+ 1, x, 0

is an m-sequence overF4, and all other m-sequences of span 2
overF4 are obtained from this sequence by some combination
of shifts, reversals, and switchingx andx+1. This illustrates
the fact that the new set of sequences is disjoint from the
set of m-sequences. By Theorem 8 there is no set theoretic
isomorphismφ : F4 → F4 so thatφ(A) is an m-sequence.

XII. PROOF OFTHEOREM 3

We need to recall several standard facts before giving the
proof of Theorem 3. SupposeL = Fpd is a finite field of
characteristicp and degreed.

(a.) If A,B : L → Fp are non-zeroFp linear mappings then
there exits a unique non-zero elementu ∈ L such thatB(x) =
A(ux) for all x ∈ L.
(b.) If p(x) is an irreducible polynomial with coefficients in
Fp, whose degree equals the degree ofL (over Fp), and if
α, β ∈ L are roots of this polynomial, then they are Galois
conjugate and there exists an integerm such thatβ = αpm

.

Lemma 4:Supposeα, β ∈ L are primitive elements. Sup-
poseA : L → Fp is a non-zeroFp-linear mapping. Define
the mappingB : L→ Fp by B(0) = 0 and

B(βi) = A(αi)

for 0 ≤ i ≤ |L| − 2. ThenB is Fp-linear if and only ifα and
β are Galois conjugates.

Proof: There existst such thatα = βt. Therefore
B(βi) = A(αi) = A(βti) soB(x) = A(xt) for all x ∈ L. If
α andβ are Galois conjugates thent is a power ofp by (b)
above, so the mappingx 7→ xt is Fp-linear. ThereforeB is
Fp-linear. Conversely, supposeB is Fp-linear. Let p(x) =∑d−1

i=0 aix
i be an irreducible polynomial with coefficients

ai ∈ Fp such thatp(α) = 0. We need to show thatp(β) = 0.

It suffices to show thatB(βtp(β)) = 0 for all t ≥ 0. But

B(βtp(β)) =
d−1∑
i=0

ajB(βt+j)

=
d−1∑
i=0

ajA(αi+j)

= A(αtp(α))
= 0.

So by Fact(b) above,α andβ are Galois conjugate.
d) Proof of part (1).: SupposeT is Fp linear. If τ is a

shift with 0 ≤ τ < pn − 1 = |L| − 1, then

ai + ai+τ = T (αi + αi+τ ) = T ((1 + ατ )αi).

Sinceα is primitive, there existsθ with 1+ατ = αθ. Therefore
ai + ai+τ = ai+θ, so A is a shift and add sequence. Let
R : V → Fp be a non-zeroFp-linear mapping. Then the
compositionRT : L → Fp is Fp-linear so the sequence
RT (αi) = R(ai) ∈ Fp is an m-sequence and has minimum
period pn − 1. Hence the sequenceA has minimum period
pn − 1 also. The converse is due to Blackburn who proved
[1] the remarkable fact that for any shift and add sequence
A = (a0, a1, . . .) with entries inV and with periodpn − 1,
there exists a pair(T, α) (with α ∈ L primitive andT : L→ V
a non-zeroFp-linear mapping), such thatai = T (αi).

To count the number of shift and add sequences we first
count the number of pairs(T, α) whereα ∈ L is a primitive
element andT : L → V is Fp-linear. Then we determine
when two such pairs define the same sequence.

The number of primitive elementsα ∈ L is ϕ(pn − 1).
To count the number ofFp-linear mappingsT : L → V
choose bases for both, as vector spaces of dimensionn ande
respectively, overFp. Each linear mappingT then corresponds
to a uniquen× e matrix with entries inFp, and there arepne

such matrices. So there arepne − 1 non-zero linear mappings
T .

Now consider decomposing the collection of pairs(T, α)
into equivalence classes, with two pairs belonging to the same
class if the resulting sequences are the same. We show that
each class contains exactlyn pairs by showing that(T, α)
and(S, β) belong to the same class if and only ifα andβ are
Galois conjugates. Henceβ = αpt

for somet, andS(xpt

) =
T (x). In other words, the mappingS is uniquely determined
by T , α, andβ.

Suppose two pairs(T, α) and (S, β) give rise to the same
sequence. That is,

S(βi) = T (αi) (31)

for all i. Then the images ofS andT coincide. Letv 6= 0 ∈ V
be in the image ofS and T . Choose any linear mappingR
from V to Fp such thatR(v) 6= 0. ThenR is surjective and
both compositionsRT andRS are non-zero.

Now we have the equationRT (αi) = RS(βi), for all i.
Since bothRT and RS are non-zeroFp-linear mappings,
Lemma 4 implies thatα and β are Galois conjugates with
β = αpt

for somet. ThereforeS(xpt

) = T (x) by equation
(31).
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Conversely, given(T, α) let β ∈ L be a Galois conjugate
to α with β = αpt

. Let S(xpt

) = T (x). ThenS : L → V is
Fp-linear andS(βi) = T (αi) for all i. Consequently(T, α)
and (S, β) give rise to the same sequence.

To summarize, there arepne−1 choices forT andϕ(pn−1)
choices forα. Such a pair determines a class consisting of the
n Galois conjugatesβ of α, and uniquely determinedFp-linear
mappingsS to go with them. This counts the total number of
sequences; the cyclically distinct sequences are counted by
dividing by the period,pn − 1. This completes the proof of
part (1) of Theorem 3.

e) Proof of part (2).:If T is balanced then it is surjective.
If T is surjective then it is balanced becauseT−1(a) is the set
of solutions to a system of inhomogeneous linear equations,
which is therefore a translate of the setT−1(0). Theorem 2
implies thatA has ideal autocorrelations.

On the other hand, suppose thatA has ideal autocorre-
lations, butT is not surjective. (SinceT 6= 0 this implies
that k > 1.) Let I ⊂ V denote the image of the mapping
T : L → V . Choose a complementary subspaceJ ⊂ V so
thatV ∼= I ⊕J . Let χ1 : J → C∗ be any nontrivial character,
and defineχ : V → C∗ to by χ(a, b) = χ1(b). Thenχ is a
character ofV , andχ(T (x)) = 1 for all x ∈ L. Let τ 6= 0 be
a non-zero shift. The autocorrelation of shiftτ with respect to
the characterχ is

|L|−1∑
i=0

χ(T (αi − αi+τ )) =
|L|−1∑
i=0

1 = pn − 1

which is greater than1. This is a contradiction, henceT is
surjective.

To count the number of sequences with ideal autocorrela-
tions, the same argument as in the proof of part (1) works, but
we must count only those pairs(T, α) such thatT has rank
equal tok. Choosing bases forV andL overFp, the mapping
T may be represented as ann× e matrix of elements ofFp.
The matrices of rankk are counted by choosing the first row
to be any non-zero vector (pn − 1 choices), the second row
to be any vector that is not in the span of the first vector
(pn − p choices), the third row to be any vector that is not in
the span of the first two vectors (pn − p2 choices), and so on.
As in the proof of part (1) above, this counts the total number
of sequences; the cyclically distinct sequences are counted by
dividing this number by the period,pn − 1. This completes
the proof of part (2).

f) Proof of part (3).: Consider the mappingΦ : L→ V k

given by Φ(x) = (T (x), T (αx), · · ·, T (αk−1x)). Thesek
symbols form a block of the sequenceA. ThereforeA is a
(punctured) de Bruijn sequence of rankk if and only if the
mappingΦ is surjective, that is, if every non-zerok-tuple of
vectors inV appears at some point in the sequence. Since
|L| = |V |k, the mappingΦ is surjective if and only if it is
injective. But the kernel ofΦ is exactly the intersection in
equation (4). This completes the proof of part (3). This also
shows that ifT has the kernel property thenT is surjective
(becauseΦ is surjective).

g) Proof of part (4).: Having chosen a basis forV , the
mappingΦ : L → V k of the preceding paragraph may be

expressed as ak×e matrixΦ(x) = [Tj(αix)] with 0 ≤ i ≤ k−
1 and1 ≤ j ≤ e. Using equation (6) this becomes the matrix
Φ(x) = [TrL

Fp
(ujα

ix)]. This mapping is an isomorphism if
and only if the collection of linear functions

Lij(x) = TrL
Fp

(ujα
ix),

with 0 ≤ i ≤ k − 1 and1 ≤ j ≤ e, forms a basis of the dual
spaceL∗ = HomFp

(L,Fp). However, the collection of vectors
{ujα

i} is linearly independent (and hence forms a basis ofL)
if and only if the collection of linear functionsLij is linearly
independent. This completes the proof of Theorem 3.
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