
Generalized Lowness and Highness and Probabilistic
Complexity Classes

Andrew Klapper
University of Manitoba

Abstract

We introduce generalized notions of low and high complexity classes and study their
relation to structural questions concerning bounded probabilistic polynomial time com-
plexity classes. We show, for example, that for a bounded probabilistic polynomial time
complexity class C = BPΣP

k , LC = HC implies that the polynomial hierarchy collapses
to C. This extends Schöning’s result for C = ΣP

k (LC and HC are the low and high
sets defined by C.) We also show, with one exception, that containment relations be-
tween the bounded probabilistic classes and the polynomial hierarchy are preserved by
their low and high counterparts. LBPP and LBPNP are characterized as NP ∩BPP
and NP∩co-BPNP , respectively. These characterizations are then used to recover of
Boppana, Hastad, and Zachos’s result that if co-NP ⊂ BPNP , then the polynomial
hierarchy collapses to BPNP , and Ko’s result that if NP ⊂ BPP , then the polynomial
hierarchy collapses to BPP .

Keywords: lowness, bounded probabilistic class, structural complexity theory, poly-
nomial hierarchy

1 Introduction

Recently, increasing attention has been given to classes of problems for which fast solutions
exist that involve probabilistic computation. Such problems lie in various probabilistic com-
plexity classes, which can be defined in terms of sequences of existential, probabilistic, and
universal quantifiers, in much the same way as the complexity classes in the polynomial hi-
erarchy are defined by sequences of existential and universal quantifiers. Examples of such
classes include BPP , originally defined by Gill [5], and further studied, e.g., by Sipser [16],
and Schöning [13], the various forms of Arthur-Merlin combinatorial game classes, defined by

1

Babai [2], the interactive proof systems, defined by Goldwasser, Micali, and Rackoff [7], and
further studied, e.g., in [8], [1], [6], [4], and others, BPNP , defined by Schöning [14], and,
more generally, the probabilistic complexity classes defined by sensible pairs of sequences of
quantifiers, defined by Hinman and Zachos [9], and studied in [17], [18], and [3]. This list is
not intended to be exhaustive, but rather to give an outline of some of the major papers in
the growing body of work in this field.

A great many identities have been proved among these classes. For example, BPNP =
AM (see [14]) = IP (see [8]) = (∃+∃/∃+∀) (see [9]). Much of what is known about identities
and inclusions between these classes is summarized in section 2. It turns out that a large
number of these classes are equal to classes in what can be called the bounded probabilistic
polynomial hierarchy, {BPΣP

k , BPΠP
k , k = 0, 1, . . .}. It has been shown in [9] that these

classes in fact lie in the polynomial hierarchy. In fact, for k ≥ 1, BPΣP
k ⊂ ΠP

k+1. A basic
question is what containment relationship exists between BPP and NP . That is, which (if
either) is stronger, randomness or nondeterminism?

A major outstanding problem of complexity theory is whether the polynomial hierarchy
collapses, and, if so, to what level. Much work has been done attempting to relate the
collapse of the polynomial hierarchy to other structural phenomena. Schöning [12] defined
two hierarchies of complexity classes - the low and high hierarchies {LP

k } and {HP
k } - lying

inside NP . He went on to show that the polynomial hierarchy collapses to the kth level if
and only if LP

k ∩HP
k 6= ∅ if and only if LP

k = HP
k . In [13] Schöning showed that (1) NP∩co-

BPNP ⊂ LP
2 , and graph isomorphism is in co-BPNP . It follows that if graph isomorphism

is NP -complete, then the polynomial hierarchy collapses to ΣP
2 . This can also be proved using

the result of Boppana, Hastad, and Zachos [3] that if co-NP is contained in BPNP , then the
polynomial hierarchy collapses to BPNP . We note also that Ko [10] showed that if NP is
contained in BPP , then the polynomial hierarchy collapses to BPP .

The purpose of this paper is to extend Schöning’s lowness and highness techniques to the
bounded probabilistic polynomial complexity classes. In particular, in section 3 we extend
the definitions of lowness and highness to the bounded probabilistic polynomial classes (these
definitions, in fact, apply to any complexity class for which we have a reasonable notion of
extension by oracles). For each k ≥ 0, this gives classes LC and HC for each class C in the
bounded probabilistic polynomial hierarchy. We then show (with two exceptions) that the
inclusions among the bounded probabilistic polynomial classes carry over to their low and
high counterparts. Section 4 contains our main results. We first show that for each such C,
the polynomial hierarchy collapses to BPC if and only if LBPC ∩HBPC 6= ∅ if and only if
LBPC = HBPC. We then characterize LBPP as NP ∩ BPP , and characterize LBPNP
as NP∩ co-BPNP . These facts are then used to recover the hierarchy collapsing results
mentioned above.

It is a pleasure to thank Prof. S. Zachos for advice which helped lead to these results. I

2

am also grateful to Prof. U. Schöning and Prof. L. Longpré for their many suggestions, and
to the participants in the joint Northeastern-BU complexity seminar for support and useful
discussions.

2 Bounded Probabilistic Classes

In this section the definition of bounded probabilistic complexity classes is recalled, as defined
for example by Schöning [15], along with that of Hinman and Zachos’ [9] more general classes
defined by sensible pairs of quantifier sequences. The known structural relations among these
classes are summarized.

Definition 1 Let C be any complexity class. Then L ∈ BPC, if and only if there is a language
K ∈ C and polynomials p(n) and q(n) > 1 such that x ∈ L implies Prob{y | |y| = p(|x|) ∧
(x, y) ∈ K} > 1− 2−q(|x|), and x /∈ L implies Prob{y | |y| = p(|x|) ∧ (x, y) ∈ K} < 2−q(|x|).

More generally, we can consider complexity classes defined by sequences of quantifiers. We
use a notation due to Hinman and Zachos [9]. All quantifiers in this paper will be ∃, ∀, or
∃+, where ∃+y|P (y) means Prob{y | P (y)} > 2/3 (or, more generally, ∃+P (x, y) means there
are polynomials p(n), q(n) such that, given input x, Prob{y, |y| = p(|x|) | P (x, y)} > 2−q(|x|)).
In general, quantifiers are assumed to have range bounded polynomially in the length of the
input. Note that many of the definitions here also make sense for the quantifier <, meaning
“at least fifty percent”, but we will not discuss classes defined by < here.

We can now define quantifier classes as follows

Definition 2 (Zachos) 1. A pair (Q/Q′) of finite sequences of quantifiers is sensible if
they are of the same length and for any predicate P (x, y), (Q′y : ¬P (x, y) ⇒ ¬Qy :
P (x, y)).

2. Let P (x, y) be a predicate and (Q/Q′) be a sensible pair. If, for every x, either (Qy :
P (x, y)) or (Q′y : ¬P (x, y)), (these sets are disjoint by sensibility) then the language
{x | Qy : P (x, y)} will be denoted by (Q/Q′)P . The complement of L is {x | Q′y :
¬P (x, y)}. If K is a language, we will write (Q/Q′)K for (Q/Q′)((x, y) ∈ K), and, if
C is a complexity class, we will write (Q/Q′)C for the class of all languages of the form
(Q/Q′)K, K ∈ C.

We also write (Q/Q′) for (Q/Q′)P (where P is the class of polynomial time computable
languages). Note that co-(Q/Q′)K = (Q′/Q)co-K. Many of the classes defined by sensible
quantifier pairs are known by other names. For example,

1. (∃/∀) = NP ;

3

2. (∃∀ . . . Qk/∀∃ . . . Q′
k) = ΣP

k ; (∀∃ . . . Qk/∃∀ . . . Q′
k) = ΠP

k ;

3. (∃+/∀) = R;

4. (∃+/∃+) = BPP ;

5. (∃+∃/∃+∀) = (∀∃/∃+∀) = BPNP = AM (the Arthur-Merlin games, defined originally
by Babai [2]. This equality was proved by Hinman and Zachos [9]);

6. (∃∃+/∀∃+) = (∃∀/∀∃+) = MA (the Merlin-Arthur games, also defined in [2], the equal-
ity proved in [9]);

7. (∃+∃∀ . . . Qk/∃+∀∃ . . . Q′
k) = (∀∃∀ . . . Qk/∃+∀∃ . . . Q′

k) = BPΣP
k−1.

It has been shown that all sensible quantifier pairs (either when considered as defining
complexity classes, or as operators on classes which are closed downward under polynomial
time many-one reducibility) reduce to the pairs in the above list, or their complements. We
can think of sensible quantifier pairs as operators on complexity classes.

The composition of two quantifier pairs is not, a priori, a quantifier pair. We do, however,
have an inclusion in one direction: (Q/Q′)(R/R′)C ⊂ (QR/Q′R′)C. The reverse inclusion is
only known to hold in special cases. To see the difference between these classes, note that L
is in (QR/Q′R′)C if and only if there is a K ∈ C such that x ∈ L ⇒ (QyRz : (x, y, z) ∈ K)
and x 6∈ L ⇒ (Q′yR′z : (x, y, z) 6∈ K). L is in (Q/Q′)(R/R′)C if and only if, there is a K such
that, in addition, for every (x, y), either (Rz : (x, y, z) ∈ K) or (R′z : (x, y, z) 6∈ K) (that is,
{(x, y)|Rz : (x, y, z) ∈ K} is in (R/R′)C.)

Definition 3 A pair (R/R′) of quantifier sequences is complimentary if for every predicate
P , (¬Ry : P (x, y)) ⇔ (Ry : ¬P (x, y)).

Note that a complimentary quantifier pair is necessarily sensible. Of the pairs built from
∃, ∀, and ∃+, only (∃/∀), (∀/∃), and the various compositions of these two pairs are compli-
mentary.

Lemma 1 Let (R/R′) be a complimentary quantifier pair, and let (Q/Q′) be a sensible quan-
tifier pair. Then for any class C, (Q/Q′)(R/R′)C = (QR/Q′R′)C.

4

Proof: The inclusion ⊂ holds in general. To see the reverse inclusion, let L ∈ (QR/Q′R′)C.
Then there is a J ∈ C such that

x ∈ L ⇒ QyRz : (x, y, z) ∈ J

x 6∈ L ⇒ Q′yR′z : (x, y, z) 6∈ J.

Let K be the set of pairs (x, y) such that Rz : (x, y, z) ∈ J. We will show that K ∈ (R/R′)C,
and that L = (Q/Q′)K, proving the lemma.

To see the first assertion, note that

(x, y) ∈ K ⇒ Rz : (x, y, z) ∈ J

(x, y) 6∈ K ⇒ ¬Rz : (x, y, z) ∈ J

⇒ R′z : (x, y, z) 6∈ J

To see the second assertion, note that

x ∈ L ⇒ QyRz : (x, y, z) ∈ J

⇒ Qy : (x, y) ∈ K

x 6∈ L ⇒ Q′yR′z : (x, y, z) 6∈ J ′

⇒ Q′y¬Rz : (x, y, z) ∈ J ′

⇒ Q′y : (x, y) 6∈ K

2

The following identities and inclusions are useful in proving the identifications above and
in computing compositions of sensible pairs of quantifier sequences. They were proved by
Hinman and Zachos [9].

Theorem 1 (Hinman and Zachos) 1. (∃+/∃+) = (∃+∀/∀∃+) = (∀∃+/∃+∀);

2. (∃∀/∃∃+) ⊂ (∀∃/∃+∀);

3. (∃+∃/∃+∀) = (∀∃/∃+∀);

4. (∃∃+/∀∃+) = (∃∀/∀∃+);

5. For any quantifier Q, (∀/Q) ⊂ (∃+/Q) ⊂ (∃/Q) (where we treat pairs that are not
sensible as defining empty classes);

5

In order to identify classes defined by oracles, it is desirable to be able to reduce such
classes to classes defined by the composition of quantifier pairs. The following lemma allows
us to do so in several important cases. First we need a definition.

Definition 4 Let C be a complexity class. C will be said to be robust if for every language K
in C the following two languages, K1 and K2, are in C as well.

1. Let # be an additional symbol. Define K1 = K#∗.

2. Let p(n) be a polynomial. Define K2 = {< x1, . . . , xm >| x1, . . . , xm ∈ K, |x1| = . . . =
|xm| = n, m ≤ p(n)}, where <,> is a pairing function.

Note that in this definition K1 is many-one equivalent to K, K2 is d-reducible to K, and K
is many-one reducible to K2. Thus any complexity class which is closed under d-reducibility
is robust. In particular, all the classes in the polynomial hierarchy, as well as the bounded
probabilistic classes derived from the classes in the polynomial hierarchy are robust.

Lemma 2 Let C be a robust complexity class. Let K be any language in C, M a deterministic
polynomial time oracle Turing machine, and let L = L(M, K). Then there is a language
K ′ ∈ C and a polynomial time nondeterministic oracle Turing machine M ′ which, after its
initial guess, computes deterministically, generating a pair of query strings y1 and y2, and
accepts if and only if y1 is accepted and y2 is rejected by the oracle, such that L = L(M ′, K ′).

Proof: By the first robustness condition, we may assume that all queries made by M are
for strings of the same length. More precisely, we may assume that there is a polynomial p(n)
such that, on input x, M produces only query strings of length p(|x|). We may also assume
there is a polynomial q(n) such that on input x, M makes precisely q(|x|) queries, and that
q(n) is of the form r(p(n)) for some polynomial r(n). Let K ′ be produced from K by the
second robustness condition, using r(n) as the polynomial. Now we can define M ′ as follows:
on input x, guess a binary string y of length q(|x|). M ′ maintains a pair of strings, u and
v, initially null. M ′ simulates the behavior of M , but when M queries K with the ith query
string z, M ′ examines the ith bit of y. If this bit is a 1, then M ′ concatenates z onto u and
continues as if the query to K accepted. Otherwise, M ′ concatenates z onto v and continues
as if the query had rejected. If, at the end of the simulation, M rejects, then M ′ rejects. If,
however, M accepts, then M ′ accepts if and only if u is in K ′ and v is not in K ′. This machine
has the desired properties. 2

We refer to the two oracle queries y1 and y2 as positive and negative queries, respectively.
We can apply this result to Zachos’ quantifier classes.

6

Corollary 1 Let C be a robust complexity class. Let M be a deterministic polynomial time
oracle Turing machine, let K ∈ C, and let (Q∃/Q′∀) be a sensible pair of quantifier sequences.
Suppose L = (Q∃/Q′∀)L(M, K) is a well defined language, as in definition 2.2. Then there
is a deterministic polynomial time oracle Turing machine M ′′ and a language K ′ ∈ C, with
L = (Q∃/Q′∀)L(M ′′, K ′), such that M ′′ computes deterministically, then makes two oracle
queries y1 and y2, accepting if and only if y1 is accepted and y2 is rejected by the oracle.

Proof: By lemma 1, the guessing stage of the machine M ′ in lemma 2 can be combined
with the inner quantifier pair. 2

If C is closed under many-one reducibility, (i.e., L ≤P
m K ∈ C ⇒ L ∈ C) then so is

(Q∃/Q′∀)C. Therefore, if C is closed under many-one reducibility, and the negative query can
be eliminated, then, in fact, L (in the corollary) is in (Q∃/Q′∀)C.

3 Low and High Classes

In this section we generalize the definitions of low and high complexity classes given by
Schöning [12]. The purpose of defining these classes is to provide a tool for studying the
relationships among complexity classes in the polynomial hierarchy (PH). Schöning [12] has
shown that the separation properties of certain classes in PH are reflected in separation
properties of the low and high classes in NP.

We will define notions of lowness and highness relative to complexity classes for which
there is a reasonable notion of extendibility by adding oracles. This includes, for example, all
complexity classes defined by Turing machines with some restrictions on computation paths
(e.g., certain numbers of paths accept for input in the given language, or paths below a certain
point in the computation tree are polynomial time computable.) We do not have an axiomatic
notion of extention of complexity classes by oracles. This is natural since oracles really ex-
tend the machines models underlying complexity classes. Strictly speaking, when discussing
extensions of complexity classes by oracles, we should define the extension of machine models
by oracles. Different machine models for a given class may give different notions of oracle.
For example, if P = NP , then deterministic and nondeterministic polynomial time bounded
Turing machines are machine models for the same class. But it is well known that there is
an oracle A such that PA 6= NPA, that is, the two machine models give different notions of
oracle.

However, at the very least, for a complexity class C containing P to be extendable by
oracles we should have, for every language L, a complexity class CL such that

1. If L ∈ P then CL = C.

2. For every K, if L ≤P
T K, then CL ⊂ CK .

7

3. C ⊂ CL.

We will not explore further here the question of axioms for oracles.

Definition 5 Let C be a complexity class with a notion of extension by oracle. Let L be a
language in NP . Then L will be said to be low-C (respectively, high-C) if CL = C (resp.,
CL = CSAT). We denote by LC (respectively, HC) the set of languages which are low-C (resp.,
high-C.)

For C = ΣP
i or ΠP

i , i = 0, 1, . . . this definition gives the low and high classes LP
i and

HP
i as defined by Schöning [12]. We will be particularly interested in the classes LBPΣP

i

and HBPΣP
i , i = 0, 1, . . . defined by the bounded probabilistic complexity classess BPΣP

i .
For any class C for which CL is defined for any language L, we define (BPC)L = BP (CL).
More generally, if (Q/Q′) is a sensible pair of quantifier sequences, we define ((Q/Q′)C)L =
(Q/Q′)(CL). In all cases in which these classes correspond to classical complexity classes,
these definitions are consistent with the traditional definitions of oracles.

Our first goal is to show that the containment relationships that hold for the bounded
probabilistic classes and PH hold for the low and high classes derived from them. Recall from
[12] that for k ≥ 0, LP

k ⊂ LP
k+1, and HP

k ⊂ HP
k+1. We extend this result to

Theorem 2 1. For i ≥ 0, LP
i ⊂ LBPΣP

i , and HP
i ⊂ HBPΣP

i .

2. For i ≥ 1, LBPΣP
i ⊂ LP

i+1, and HBPΣP
i ⊂ HP

i+1.

3. LBPP ⊂ LMA ⊂ LBPNP , and HBPP ⊂ HMA ⊂ HBPNP .

Proof:

1. Let A ∈ LP
i . Then (ΣP

i)A = ΣP
i . By lemma 1, (BPΣP

i)A = (∃+/∃+)(ΣP
i)A =

(∃+/∃+)(ΣP
i) = BPΣP

i , so A ∈ LBPΣP
i .

Let A ∈ HP
i . Then (ΣP

i)A = (ΣP
i)SAT . Consequently, (BPΣP

i)A = (∃+/∃+)(ΣP
i)A =

(∃+/∃+)(ΣP
i)SAT = (BPΣP

i)SAT , so A ∈ HBPΣP
i .

2. First note that for i ≥ 1

ΠP
i+1 = (∀/∃)ΣP

i

⊂ (∀/∃)(∃+/∃+)ΣP
i

= (∀/∃)BPΣP
i

⊂ (∀/∃)ΠP
i+1 by extending Lautemann [11]

= ΠP
i+1 by lemma 1.

8

Moreover, all these relations hold relative to an oracle. It follows that for any language
A, (ΠP

i+1)
A = ((∀/∃)BPΣP

i)A = (∀/∃)(BPΣP
i)A.

Now let A ∈ LBPΣP
i . Then (BPΣP

i)A = BPΣP
i . We will show that (ΠP

i+1)
A = ΠP

i+1,
and it will follow that A ∈ LP

i+1. We have

(ΠP
i+1)

A = (∀/∃)(BPΣP
i)A

= (∀/∃)BPΣP
i

= ΠP
i+1

The second inclusion is proved similarly.

3. Let A ∈ LBPP , so BPPA = BPP . We have

MAA = (∃∃+/∀∃+)A

⊂ (∃∃+/∀∃+)(∃+/∃+)A

= (∃∃+/∀∃+)(∃+/∃+)

⊂ (∃∃+/∀∃+)

= MA

So A ∈ LMA.

Next let A ∈ LMA, so MAA = MA. We have

BPNPA = (∃+∃/∃+∀)A

= (∃+/∃+)(∃/∀)A by lemma 1

⊂ (∃+/∃+)(∃∃+/∀∃+)A

= (∃+/∃+)MAA

= (∃+/∃+)MA

⊂ (∃+∃∃+/∃+∀∃+)

⊂ (∃+∃+∃/∃+∃+∀) by theorem 1

= (∃+∃/∃+∀)
= BPNP

So A ∈ LBPNP .

The remaining inclusions are proved similarly. 2

9

�
�

�
�

�
�

�
�

�

HHH
HHH

HHH

�
���

���
�� @

@
@

@
@

@
@

@
@

LP
0

LBPP

LMA

LBPNP

LΣP
2 = LP

2

LBPΣP
2

LNP = LP
1

Figure 1: Containment relations for low classes

10

Figure 3 describes the inclusions known among the low classes. Replacing “L” by “H” in
this figure gives the known inclusions among the high classes. Note that while NP ⊂ MA,
we have not been able to show that L1 ⊂ LMA. On the other hand, we view the inability
to prove a containment between LBPP and L1 as a reflection of the inability to prove a
containment between BPP and NP . More generally, given complexity classes C ⊂ D, both
extendable by oracles, the question arises whether LC ⊂ LD and HC ⊂ HD. The dependence
of the above proofs on characteristics of the specific complexity classes involved makes these
general inclusions seem unlikely. The possibility remains that axioms can be found that make
these inclusions true, while still holding for all generally accepted notions of oracle.

4 Collapsing the Polynomial Hierarchy

Schöning [12] has shown that, for every k ≥ 0, if the polynomial hierarchy does not collapse
to ΣP

k , then LP
k is disjoint from HP

k , and if the polynomial hierarchy collapses to ΣP
k , then

LP
k = HP

k . We next extend these results to bounded probabilistic classes. We first need to
prove that if one level of the bounded probabilistic polynomial hierarchy collapses, then the
entire hierarchy (and hence the polynomial hierarchy) collapses.

Lemma 3 For all k ≥ 0, if BPΣP
k = BPΣP

k+1, then the polynomial hierarchy collapses to
BPΣP

k .

Proof: It suffices to show inductively that for all m ≥ k, BPΣP
m = BPΣP

m+1, the initial
case being true by hypothesis. If BPΣP

m = BPΣP
m+1, then BPΠP

m = BPΠP
m+1, so

BPΣP
m+2 = (∃+∃/∃+∀)ΠP

m+1

⊂ (∃+∃/∃+∀)BPΠP
m+1

= (∃+∃/∃+∀)BPΠP
m by hypothesis

⊂ (∃+∃∃+/∃+∀∃+)ΠP
m

⊂ (∃+∃+∃/∃+∃+∃)ΠP
m by theorem 1

= (∃+∃/∃+∀)ΠP
m

= BPΣP
m+1.

2

It can be shown similarly that if ΣP
k+1 ⊂ BPΣP

k , then the polynomial hierarchy collapses
to BPΣP

k , and that if ΣP
k = BPΣP

k , then the polynomial hierarchy collapses to ΣP
k .

Theorem 3 For each k ≥ 0,

11

1. If the polynomial hierarchy does not collapse to BPΣP
k , then LBPΣP

k ∩HBPΣP
k = ∅.

2. If the polynomial hierarchy collapses to BPΣP
k , then LBPΣP

k = HBPΣP
k = NP .

Proof: If A ∈ LBPΣP
k ∩HBPΣP

k , then BPΣP
k+1 ⊂ BP (ΣP

k)A ⊂ BPΣP
k , hence BPΣP

k+1 =
BPΣP

k . The first assertion then follows from lemma 3.
Let A ∈ NP . Then BPΣP

k ⊂ BP (ΣP
k)A ⊂ BPΣP

k+1. If the polynomial hierarchy collapses
to BPΣP

k , then these three sets are equal, implying A is in LBPΣP
k and in HBPΣP

k . 2

It is well known that L0 = P and L1 = NP∩co-NP . The next result characterizes
LBPNP and LBPP .

Proposition 1 1. BPNPBPNP∩co-BPNP = BPNP .

2. LBPNP = NP∩co-BPNP = NP∩co-BPNP ∩BPNP .

3. (Zachos) BPPBPP = BPP .

4. LBPP = NP ∩BPP .

Proof: To see the assertion, let L be a language in BPNPBPNP∩co-BPNP . By corollary 1,
we may assume that L is recognized by a BPNP oracle machine which, for each computation
path, makes a single positive query to a language in BPNP , and a single negative query to a
language in co-BPNP . A negative query to a language in co-BPNP is the same as a positive
query to a language in BPNP , and, by robustness, two positive queries to BPNP can be
replaced by one such query, so L is in (∃+∃/∃+∀)(∃+∃/∃+∀) = (∃+∃/∃+∀) = BPNP . This
gives the first assertion.

Next we prove the second assertion. By the first assertion, NP∩co-BPNP ⊂ LBPNP ,
since NP ⊂ BPNP . LBPNP ⊂ NP by definition, so next we show that LBPNP ⊂co-
BPNP ∩ BPNP . But L ∈ LBPNP ⇒ BPNPL = BPNP ⇒ L ∈ BPNP . Moreover, any
machine that queries L can be replaced by one that recognizes the same language, but queries
L. Thus L ∈ BPNP , i.e., L ∈co-BPNP .

On the other hand, NP∩co-BPNP ∩ BPNP ⊂ NP∩co-BPNP , hence we get a series
of inclusions NP∩co-BPNP ⊂ LBPNP ⊂ NP∩co-BPNP ∩ BPNP ⊂ NP∩co-BPNP .
These inclusions collapse to give equality.

The last assertion follows from the third by a similar argument. 2

Finally, we can use proposition 1 to recover a result of Ko [10] and a result of Boppana,
Hastad, and Zachos [3] on the collapse of the polynomial hierarchy.

12

Theorem 4 1. (Ko) If NP is contained in BPP , then the polynomial hierarchy collapses
to BPP .

2. (Boppana, Hastad, Zachos) If co-NP is contained in BPNP then the polynomial hier-
archy collapses to BPNP .

Proof: If NP ⊂ BPP , then

LBPP = NP ∩BPP, by proposition 1

= NP

Hence LBPP ∩ HBPP is nonempty. By theorem 3, the polynomial hierarchy collapses to
BPP .

If co-NP ⊂ BPNP then NP ⊂co-BPNP , so

LBPNP = NP ∩ co-BPNP, by proposition 1

= NP

Hence LBPNP ∩HBPNP is nonempty. By theorem 3, the polynomial hierarchy collapses
to BPNP . 2

For a concrete example of the significance of this problem, recall the problem GRAPH
ISO of determining whether two graphs are isomorphic. This problem is known to be in NP ,
but it is anopen problem whether it is NP -complete. It has been shown ([13]) that GRAPH
ISO ∈ co − BPNP . It follows from proposition 1 and theorem 3 that if GRAPH ISO is in
HBPNP (which holds, for example, if GRAPH ISO is NP -complete) then the polynomial
hierarchy collapses to BPNP .

5 Conclusions

We have extended Schöning’s lowness and highness techniques to bounded probabilistic poly-
nomial time classes, and proved some basic properties. We have also showed how these
techniques can be used to recover known results on the collapse of the polynomial hierarchy.
Several questions remain unanswered. We have characterized LBPP and LBPNP , in terms
similar to the characterizations of LP

1 and LP
0 - in all these cases, LC =co-C ∩ NP . Unless

the polynomial hierarchy collapses, this pattern will not persist at or above C = ΣP
2 , for

then the intersection would give NP , which includes HC. It is not known, however, whether

13

LMA =co-MA∩NP . The reduction of oracle queries to a single positive and a single negative
query is not adequate here, since the inner quantifier pair in MA is (∃+/∃+).

More generally, we would like characterizations of the remaining low and high sets. High
sets appear harder to characterize in general. The known results depend on the existence of
complete sets of various types. It may be necessary to invent probabilistic reducibilities in
order to characterize high bounded probabilistic sets.

With or without such a characterization, we conjecture that if co-NP is a subset of MA,
then the polynomial hierarchy collapses to MA. We would like to see a more universal result
that implies all such collapsing conditions.

Finally, we would like to apply these techniques to other classes in the poynomial hierarchy,
such as DP , ∆P

2 , and ZPPNP . By so doing, we would hope to gain insight into several
questions raised by Zachos and Fürer [18] concerning containment between these classes and
the bounded probabilistic classes.

References

[1] W. Aiello, S. Goldwasser, J. Hastad. “On the power of interaction”, Proceedings of 27th
Annual IEEE Symposium on Foundations of Computer Science, 1986, 368-379.

[2] L. Babai. “Trading group theory for randomness”, Proceedings of 17th Symposium on the
Theory of Computation, 1985, 421-429.

[3] R. Boppana, J. Hastad, S. Zachos. Does co-NP have short interactive proofs?,
Manuscript, 1986.

[4] A. Condon, R. Ladner. “Probabilistic game automata”, Proceedings of 1st Annual Con-
ference on Structure in Complexity Theory, 1986, Lecture Notes in Computer Science,
223, Springer-Verlag, 1986, 144-162.

[5] J. Gill. Computational complexity of probabilistic Turing machines, SIAM Journal on
Computing, 6, 1977, 675-695.

[6] O. Goldreich, S. Micali, A. Wigderson. “Proofs that yield nothing but the validity of the
assertion and the methodology of cryptographic protocol design”, Proceedings of 27th
Annual IEEE Symposium on Foundations of Computer Science, 1986, 174-187.

[7] S. Goldwasser, S. Micali, C. Rackoff. “The knowledge complexity of interactive proof-
systems”, Proceedings of the 17th Annual Symposium on the Theory of Computation,
1985, 291-304.

14

[8] S. Goldwasser, M. Sipser. “Private coins versus public coins in interactive proof systems”,
Proceedings of the 18th Annual Symposium on the Theory of Computation, 1986, 59-68.

[9] P. Hinman, S. Zachos. “Probabilistic machines, oracles, and quantifiers”, Proceedings of
the Oberwolfach Recursion-theoretic Week, Lecture Notes in Mathematics, 114, Springer-
Verlag, 1984, 159-192.

[10] K. Ko. Some observations on the probabilistic algorithms and NP -hard problems, Infor-
mation Processing Letters, 14, 39-43.

[11] C. Lautemann. BPP and the polynomial hierarchy, Information Processing Letters, 17,
1983, 215-217.

[12] U. Schöning. A low and high hierarchy within NP , Journal of Computer and System
Sciences, 27, 1983, 14-28.

[13] U. Schöning. “Graph isomorphism is in the low hierarchy”, Proceedings of the 4th STACS,
Lecture Notes in Computer Science, 247, Springer-Verlag, 1986, 114-124.

[14] U. Schöning. “Complexity and Structure”, Lecture Notes in Computer Science, 211,
Springer-Verlag, 1986.

[15] U. Schöning. “Probabilistic complexity classes and lowness”, Proceedings of Second An-
nual Conference on Structure in Complexity Theory, 1987, 2-8.

[16] M. Sipser. “A complexity theoretic approach to randomness”, Proceedings of the 15th
Annual ACM Symposium on the Theory of Computation, 1983, 330-335.

[17] S. Zachos. “Probabilistic quantifiers, adversaries, and complexity classes”, Proceedings
of the First Annual Conference on Structure in Complexity Theory, Lecture Notes in
Computer Science, 223, Springer-Verlag, 1986, 383-400.

[18] S. Zachos, M. Fürer. Probabilistic quantifiers vs. distrustful adversaries, Manuscript,
1985.

15

