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Abstract

In this paper, we study sequences generated by arbitrary feedback registers (not
necessarily feedback shift register) with arbitrary feedforward functions. We generalize
the definition of linear complexity of a sequence to the notions of strong and weak linear
complexity of feedback registers. A technique for finding upper bounds for the strong
linear complexities of such registers is developed. This technique is applied to several
classes of registers. We prove that a feedback shift register whose feedback function is
of the form x1 + h(x2, . . . , xn) can generate long periodic sequences with high linear
complexities only if its linear and quadratic terms have certain forms.

1 Introduction

Periodic sequences generated by feedback shift registers have many applications in modern
communications systems because of their desirable properties, such as long period and bal-
anced statistics. One measure of the strength (usefulness) of such a sequence is its linear
complexity, as studied by various authors [1, 2, 4, 7, 8]. The linear complexity of a sequence
is defined as the length of the shortest linear feedback shift register that generates it. If
a sequence has small linear complexity, then the synthesis of a linear equivalent of the se-
quence generator (such as by the Berlekemp-Massey algorithm [6]) becomes computationally
feasible. In this paper we consider pseudorandom sequences generated by general feedback
registers (not necessarily shift registers) with arbitrary feedforward functions, and develop
a new technique for finding upper bounds for the linear complexity of these sequences. We
apply this technique to several classes of feedback registers. We prove that if the feedback
function of a feedback shift register of length n and maximal linear complexity has the form
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Figure 1: A feedback register with state transition function F and feedforward function g.

x1+h(x2, . . . , xn), and its feedforward function is x1 (recall [3] that binary feedback functions
which are not of this form cannot generate maximal period sequences), then h(x2, . . . , xn)
must either have linear terms or at least (n − 1)/2 quadratic terms. A more general result
is stated in Theorem 2.4. We also generalize a well-known result of Key [4] bounding the
linear complexity of linear feedback shift registers with nonlinear feedforward functions.

In this section we extend the definition of linear complexity of a sequence to the notion
of linear complexity of a feedback register. The technique of establishing upper bounds
is developed in Section 2, and Section 3 generalizes the results to an arbitrary finite field
GF (q), where q is power of a prime.

Let GF (2) denote the finite field with 2 elements. A feedback register (or simply register)
of length n is a pair (F, g), where F = (F1, . . . , Fn) is a function from GF (2)n to GF (2)n

(the state transition function), and g is a function from GF (2)n to GF (2) (the output or
feedforward function.) See Figure 1.

The functions Fi and g can always be written as polynomials in n variables x1, . . . , xn over
GF (2), such that each variable has degree at most one. We will write F (i) for the composition
of F with itself i times. An initial loading of a register F = (F, g) is an element α ∈ GF (2)n.
F , with initial loading α, generates the sequence F(α) = (g(α), g◦F (α), g◦F (2)(α), . . .). Sev-
eral special cases are of interest. The standard feedforward function is g(x1, . . . , xn) = x1.
A register (F, g) is a feedback shift register with feedforward function g if F (x1, . . . , xn) =
(x2, x3, . . . , xn, f(x1, . . . , xn)) for some function f from GF (2)n to GF (2), called the feed-
back function. Such a register is simply called a feedback shift register if it has the standard



1 INTRODUCTION 3

feedforward function. In this case it is specified by giving F (or even f). A register is
linear (resp., affine) if g and each Fi is a linear polynomial (resp., an affine polynomial,
i.e., a polynomial of degree at most one). In case F is linear it may be more convenient to
think of F as a matrix and g as a vector, acting by matrix multiplication and dot product,
respectively. In this case F (i) corresponds to the ith power of the matrix F .

We need to distinguish two notions of linear complexity. One, the traditional notion of
linear complexity, concerns bit sequences, and, by extension, feedback registers with fixed
initial loadings. The other, introduced here, concerns feedback registers with no specific
initial loadings. The latter notion thus bounds the linear complexities of all sequences
generated by a register.

Definition 1.1 The linear complexity of an ultimately periodic sequence β of elements of
GF (2) is the length of the shortest linear feedback shift register F which has an initial loading
α with F(α) = β. The weak linear complexity of a register F is the maximum over all initial
loadings α of the linear complexities of the sequences F(α).

Definition 1.2 The strong linear complexity of a register F = (F, g) is the length of the
smallest linear feedback shift register F ′ such that for every initial loading α of F there is
an initial loading α′ of F ′ with F(α) = F ′(α′).

In order to study the strong linear complexity of a register F we will consider the sequence
of polynomials g, g◦F, g◦F ◦F, . . . The output sequence generated by F with an initial loading
α is found by evaluating this sequence of polynomials at α.

The strong linear complexity of a register is greater than or equal to its weak linear
complexity, and equality holds for

a. registers of length n whose output sequences are of maximal period 2n (i.e., de Bruijn
sequences [2]),

b. registers of length n whose state change and feedforward functions do not contain
constant terms and whose output sequences are of period 2n − 1 (i.e., modified de
Bruijn sequences),

c. linear feedback shift registers, and

d. linear feedback registers with linear feedforward functions (as will be seen by the
remarks following Theorem 2.1 of Section 2).
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In general, however, these notions do not coincide. For example, the nonlinear feedback shift
register F of length two with feedback function f(x1, x2) = x1x2 generates the sequences
1111 . . ., 0000 . . ., 1000 . . ., and 01000 . . . These sequences have linear complexities 1, 0, 2,
and 2, respectively, so the weak linear complexity of F is two. The strong linear complexity
of F , however, is three since each of these sequences is generated by the linear feedback shift
register of length three with feedback function x3 and not by any shorter linear feedback
shift register.

We also note that the strong linear complexity of a register F is equal to the degree of
the least common multiple of the connection polynomials of the sequences generated by F .

2 Upper Bounds

In this section we derive a technique for computing bounds on the strong linear complexity of
(linear and nonlinear) registers with arbitrary feedforward functions. The idea is to embed
the given register into a linear register (of exponentially greater length, N). For such a
register, the state transition function is considered to be a linear transformation on a vector
space of dimension N . We then bound the strong linear complexity of this large linear
register. Our first theorem gives a characterization of the strong linear complexity of a
register.

Theorem 2.1 Let F = (F, g) be a feedback register of length n. The strong linear complexity
of F is the dimension of the span of {g◦F (i) : i ≥ 0}, that is, the largest k such that
{g◦F (i) : i = 0, . . . , k − 1} are linearly independent.

Proof: If k is as in the statement of the theorem, then g◦F (k) can be written as a linear
combination of {g◦F (i) : i = 0, . . . , k− 1}. Thus there are elements {ai : i = 0, . . . , k− 1} of
GF (2) such that

g◦F (k) =
k−1∑
i=0

aig◦F (i).

It follows that for any j ≥ 0

g◦F (k+j) =
k−1∑
i=0

aig◦F (i+j).
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Let f ′ : GF (2)k → GF (2) and θ : GF (2)n → GF (2)k be defined as

f ′(y0, . . . , yk−1) =
k−1∑
i=0

aiyi

and
θ(x1, . . . , xn) = (g(x1, . . . , xn), . . . , g◦F (k−1)(x1, . . . , xn)),

Consider the linear feedback shift register F ′ of length k with feedback function f ′ and
standard feedforward function. For any initial loading α ∈ GF (2)n of F and any i ≥ 0,
g◦F (i)(α) = g′◦F ′(i)(θ(α)), that is, F(α) = F ′(θ(α)). Thus θ(α) is an initial loading of F ′

giving the same output sequence as F with initial loading α. It follows that the strong linear
complexity of F is at most k.

To show equality, let F ′ = (F ′, g′) be any linear feedback shift register of length r
(so g′ is the standard feedforward function) that produces all output sequences that F
produces, and suppose r is the strong linear complexity of F . Then there is a function
θ : GF (2)n → GF (2)r such that, for every α ∈ GF (2)n, F(α) = F ′(θ(α)). F ′ is a linear
feedback shift register, so there exist elements {ai : i = 0, . . . , r − 1} of GF (2) such that

g′◦F ′(r) =
r−1∑
i=0

aig
′◦F ′(i) (1)

(the coefficients of the feedback function define a linear recurrence for the output sequence).
For any α ∈ GF (2)n, F(α) = F ′(θ(α)), hence, for every i, g◦F (i)(α) = g′◦F ′(i)(θ(α)).
Composing Equation 1 with θ we see that

g◦F (r) =
r−1∑
i=0

aig◦F (i).

By hypothesis, {g◦F (i) : i = 0, . . . , k − 1} are linearly independent, so k is at most r. It
follows that k equals the strong linear complexity of F . 2

It is a direct consequence of Theorem 2.1 that the strong linear complexity of a linear
register is at most its length (the dimension of the space of linear functions on n variables
is n), while the strong linear complexity of an affine register is at most one greater than its
length (the dimension of the space of affine functions on n variables is n+1). Next we show
that for an arbitrary feedback register F = (F, g) of length n, an affine register F ′ = (F ′, g′)
of length 2n− 1 can be constructed such that F ′ generates every output sequence generated
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Figure 2: Linearizing a feedback register

by F . The register F ′ will be linear if both F and g have no constant terms. We will then
be able to use Theorem 2.1 to bound the linear complexity of F ′, and hence of F .

The Construction Let S be the set of nonempty subsets of {1, . . . , n}. For every I in S,
we construct a new variable xI and identify it with the monomial

∏
i∈I xi. Recall that every

element a in GF (2) satisfies a2 = a, so all high degree terms such as xk
i , k ≥ 1 appear as

xi. S has cardinality 2n − 1, and is used as the index set for the 2n − 1 variables in F ′.
For each I in S, let FI(x1, . . . , xn) =

∏
i∈I Fi(x1, . . . , xn), and let F ′

I(x{1}, . . . , x{1,...,n}) be
the affine function derived from FI by replacing each monomial

∏
j∈J xj by the variable xJ ,

where J is in S. Then F ′ = (F ′
{1}, . . . , F

′
{1,...,n}) defines an affine function from GF (2)2n−1

to GF (2)2n−1. The feedforward function g′ can be defined similarly as a linear combination
of the monomials xI and the constant function 1, giving an affine function from GF (2)2n−1

to GF (2). F ′ = (F ′, g′) defines an affine feedback register of length 2n − 1. F ′ is linear if
neither F nor g has constant terms.

To show that F ′ generates all the output sequences of F , we consider the embedding
θ : GF (2)n → GF (2)2n−1 where the I-th coordinate of θ(x1, . . . , xn) is

∏
i∈I xi. We claim

that θ◦F = F ′◦θ and g = g′◦θ. In other words, the diagram in Figure 2 commutes. To see
this, note first that (θ◦F )I(x1, . . . , xn) =

∏
i∈I Fi(x1, . . . , xn) = FI(x1, . . . , xn). On the other

hand, (F ′◦θ)I(x1, . . . , xn) = F ′
I(. . . ,

∏
j∈J xj, . . .), i.e., (F ′◦θ)I is derived from F ′

I by replacing
xJ by

∏
j∈J xj. But F ′

I was derived from FI by doing the opposite, so (F ′◦θ)I = FI = (θ◦F )I ,
so F ′◦θ = θ◦F . The second claim is proved similarly.

It follows that for any α ∈ GF (2)n and any k, g◦F (k)(α) = g′◦F ′(k)(α). Thus the initial
loading θ(α) of F ′ gives the same output sequence as the initial loading α of F .
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Example Let F = (F, g) be a feedback shift register of length 4 with g(x1, x2, x3, x4) = x1

and feedback function
f(x1, x2, x3, x4) = x1 + x2x4 + x2x3x4.

Then

F ′(x1, x2, x3, x4, x1,2, x1,3, x1,4, x2,3, x2,4, x3,4, x1,2,3, x1,2,4, x1,3,4, x2,3,4, x1,2,3,4)

= (x2, x3, x4, x1 + x2,4 + x2,3,4, x2,3, x2,4, x1,2 + x2,4 + x2,3,4, x3,4, x1,3,

x1,4 + x2,4 + x2,3,4, x2,3,4, x1,2,3, x2,4 + x1,2,4 + x2,3,4, x1,3,4, x1,2,3,4).

The output sequence obtained from F with the initial loading (1, 1, 0, 1) is obtained from
F ′ with the initial loading (1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0).

From the construction above we observe that, if the set of polynomials {g′◦F ′(i) : i ≥ 0}
contains only terms in {xI |I ∈ Q} for some Q ⊆ S, then we need only those monomials
in F ′ indexed by elements of Q. Hence an affine feedback register of length |Q| (linear if
neither F nor g has constant terms) can be constructed that generates the same sequences
as F . This shows that the strong linear complexity of F is bounded above by |Q| + 1 (by
|Q| if neither F nor g has constant terms). The determination of such a Q is given by the
following corollary.

Corollary 2.2 Let F (x1, . . . , xn) be the state change function of a register of length n with
feedforward function g(x1, . . . , xn). Let T = {I ∈ S :

∏
i∈I xi has a non-zero coefficient in g}

and let Q be the smallest subset of S containing T such that if I ∈ Q and the coefficient of
xJ in FI

′ is nonzero, then J ∈ Q.

1. If F or g has constant terms, then the strong linear complexity of (F, g) is bounded
above by |Q|+ 1.

2. If neither F nor g has constant terms, then the strong linear complexity of (F, g) is
bounded above by |Q|.

Proof: In the first case, the space spanned by {xI : I ∈ Q} ∪ {1} contains the space W
spanned by {g◦F (i)}. In the second case, W is spanned by {xI : I ∈ Q}. The corollary
follows from Theorem 2.1. 2
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In the case where F is a shift register, the determination of Q is given by shifting the
corresponding indices, as given by the next corollary.

Corollary 2.3 Let (F, g) be a feedback shift register with feedback function f . Let T = {I ∈
S :

∏
i∈I xi has a non-zero coefficient in g}, R = {I ∈ S :

∏
i∈I xi has a non-zero coefficient

in f}. Let Q be the smallest subset of S containing T such that

1. If I ∈ Q and n ∈ I, then for each J ∈ R, J ∪ {i + 1 ≤ n : i ∈ I} ∈ Q.

2. If I ∈ Q and n 6∈ I, then {i + 1 : i ∈ I} ∈ Q.

Then the strong linear complexity of (F, g) is bounded by

1. |Q|+ 1 if f or g has constant terms.

2. |Q| if neither f nor g has constant terms.

We now treat the special case of a feedback shift register F = (F, g) of length n with
feedback function f(x1, . . . , xn) = x1 +h(x2, . . . , xn) and standard feedforward function. Let
T , R, and Q be as in Corollary 2.3, so T = {{1}}, {1} ∈ R, and no other element of R
contains 1. Since {1} ∈ T ⊂ Q, we may apply condition 2 repeatedly to obtain {i} ∈ Q
for all i. In particular {n} ∈ Q. If J is the index set of a monomial that has a non-zero
coefficient in h(x2, . . . , xn), then we can apply condition 1 with I = {n}, so J ∈ Q. Let I1

be any element of Q. Then applying either condition 1 with J = {1} or condition 2 (only
one condition is applicable to a given index set) n− 1 times, we get a sequence of elements
of Q: I1, . . . , In. One more such application would give us I1 back again. Actually, we
may return to I1 after a smaller number of applications of the conditions, but this number
must divide n. If r is the cardinality of I1, then r is the cardinality of each Ii and we call
the set {I1, . . . , In} a r-cycle, or simply a cycle if the cardinality is clear. Thus an r-cycle
is a set I1 ⊆ {1, . . . , n} together with those sets obtained from I1 by cyclic permutation
of the indices (1, . . . , n). For example, with n = 4, starting with I1 = {2, 3} we get the
2-cycle {2, 3}, {3, 4}, {1, 4}, {1, 2}, whereas starting with I1 = {2, 4}, we get the 2-cycle
{2, 4}, {1, 3}. These cycles are independent of h(x2, . . . , xn). The set S of all index sets
decomposes into a disjoint union of such cycles, each cycle having cardinality dividing n. If
any one element of a cycle is in Q, then every element of that cycle must be in Q.

Remark: There is an interesting relationship between this cycle decomposition and the
decomposition of the finite field GF (2n) into cyclotomic cosets (the orbits under the action of
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the Galois group over GF (2) [5]). Let α be a primitive element of GF (2n), I = {i1, . . . , ik} be
an index set, and r =

∑k
j=1 2ij . Then we can identify I with the element αr of GF (2n). Under

this identification the cycle containing I corresponds to the cyclotomic coset containing αr.
Recall again that each monomial in x1, . . . , xn corresponds to an index set, so F can

have high linear complexity only if Q contains many index sets. As seen by the following
theorem, this means that the feedback function must have many non-zero coefficients.

Theorem 2.4 Let F = (F, g) be a feedback shift register of length n with feedback function
f(x1, . . . , xn) = x1 + h(x2, . . . , xn) and standard feedforward function. Let r be the small-
est integer such that h(x2, . . . , xn) has a term of degree r with a non-zero coefficient. For
any collection of r-cycles C1, . . . , Ck, each of whose corresponding monomials has a zero
coefficient in h(x1, . . . , xn), the strong linear complexity of F is at most

2n − 1−
r−1∑
i=2

(
n
i

)
−

k∑
i=1

|Ci|

if h has a constant term, and at most

2n − 2−
r−1∑
i=2

(
n
i

)
−

k∑
i=1

|Ci|

if h has no constant term.

Proof: Let P = {I : |I| = 1} ∪ {I : ∀i : I 6∈ Ci, |I| = r} ∪ {I : r + 1 ≤ |I| ≤ n− 1}. We will
show that P satisfies the conditions of Corollary 2.3, and thus contains the set Q of that
corollary. P contains the set T and satisfies condition 2 by the observations preceding this
theorem. We claim that P satisfies condition 1 as well. Let R be as in Corollary 2.3. Then
R ⊂ {{1}} ∪ {I : ∀i : I 6∈ Ci, |I| = r} ∪ {I : r + 1 ≤ |I| ≤ n− 1} ⊆ P . We have two types of
elements of P to which condition 1 applies.

1. {n} ∈ P . Condition 1 is satisfied because R ⊆ P .

2. Let n ∈ I ∈ P and |I| ≥ r. Then all other elements of the cycle containing I are in P .
Let J ∈ R and let K = J ∪{i+1 ≤ n : i ∈ I}. We must show that K ∈ P . If J = {1},
then K is in the cycle determined by I, so suppose J 6= {1}. If K has cardinality r,
then K = J ∈ P , since J has cardinality at least r. If K has cardinality greater than
r, and K 6= {1, . . . , n}, then K ∈ P by definition.

Suppose K = {1, . . . , n}. We cannot have 1 ∈ {i + 1 ≤ n : i ∈ I}, so 1 ∈ J . It follows
that J = {1}, and hence that {2, . . . , n} = {i + 1 ≤ n : i ∈ I}. Therefore K = I. But
{1, . . . , n} 6∈ P , so this is impossible.
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P thus contains the set Q of Corollary 2.3 and has cardinality

2n − 2−
r−1∑
i=2

(
n
i

)
−

k∑
i=1

|Ci|,

proving the theorem. 2

This theorem makes precise the folklore belief that shift registers with only high degree
terms are not good. In the example following the construction, we have r = 2, so the
corollary shows that the strong linear complexity of the given register can be at most 10.

If the output sequence (z0, z1, . . .) from a feedback shift register with standard feedfor-
ward function F of length n has maximal period 2n, then any set of 2n consecutive bits
contains 2n−1 ones and 2n−1 zeros. Therefore the sequence satisfies the relation zi + zi+1 +
· · · + zi+2n−1 = 0 for every i. The linear complexity is thus at most 2n − 1, and there are
registers of length n with linear complexity 2n − 1 [1]. For registers with no constant terms,
the maximum possible linear complexity is 2n − 2. Note that in these cases the strong and
weak linear complexities of the register and the linear complexity of the output sequence all
coincide.

In particular, if F and r are as in the previous theorem, then F cannot generate a
maximal period, maximal linear complexity sequence unless at least one of the following
conditions holds:

1. h has quadratic terms and for every 2-cycle C there is an I in C whose corresponding
monomial in h(x1, . . . , xn) has non-zero coefficient.

2. h(x1, . . . , xn) has linear terms.

Corollary 2.5 Let F = (F, g) be a feedback shift register of length n, with feedback function
x1 + h(x2, . . . , xn), and standard feedforward function. If F generates a maximal period,
maximal linear complexity sequence, then either h contains some linear terms or it has at
least d(n− 1)/2e quadratic terms.

By a similar application of Corollary 2.3, we can prove a generalization of a theorem of
Key.
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Proposition 2.6 (Key [4]) If F is a feedback register with affine (resp. linear) state change
function, every term of whose feedforward function has degree at most k (resp. at most k and

at least 1), then its strong linear complexity is bounded above by
∑k

i=0

(
n
i

)
(resp.

∑k
i=1

(
n
i

)
).

Proof: Let P = {{i1, . . . , i`} : 1 ≤ ` ≤ k and i1 < · · · < i`}. Then P satisfies conditions 1

and 2 of Corollary 2.3, hence contains the set Q. The cardinality of P is
∑k

i=1

(
n
i

)
. 2

The remaining propositions are proved similarly.

Proposition 2.7 If every term of the feedback function and feedforward function of a feed-
back shift register with feedforward function has degree greater than or equal to k, then the
strong linear complexity of the register is bounded above by

∑n
i=k

(
n
i

)
.

Proposition 2.8 If every term of the feedback function of a feedback shift register with
feedforward function has degree ≥ k, and the feedforward function has the form bm+1xm+1 +
· · ·+ bnxn (resp. a+ bm+1xm+1 + · · ·+ bnxn) then the strong linear complexity of the register

is bounded above by n−m +
∑n

i=k

(
n
i

)
(resp. 1 + n−m +

∑n
i=k

(
n
i

)
).

Proposition 2.8 says that if the feedback function of a feedback register contains only
high degree terms, then the linear complexity is low.

3 Generalization to Arbitrary Finite Fields

The results of the previous section can be generalized to GF (q), the finite field of q elements,
where q is a power of an arbitrary prime. The definitions of feedback registers and their
various special cases are the same, with 2 replaced by q. The only change is that now every
element a of GF (q) satisfies aq = a, so that, when we consider functions as polynomials,
we must include monomials in which each variable has degree up to q − 1. The remaining
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definitions (output sequence, weak and strong linear complexity, etc.) carry over verbatim,
and Theorem 2.1 still holds.

Recall that a multiset is a set I such that every member a has associated with it a non-
negative integer multI(a), called the multiplicity of a in I. If I and J are multisets and k is
a nonnegative integer, then we define the multisets I ′, Ik, I ∪ J , and red(I) by

1. multI′(1) = 0 and multI′(i) = multI(i− 1) if 2 ≤ i ≤ n.

2. multIk(i) = k ·multI(i).

3. multI∪J(i) = multI(i) + multJ(i).

4. multred(I)(i) =

{
0, if multI(i) = 0,
multI(i)− 1 (mod q − 1) + 1, otherwise.

In other words, if multI(i) is non zero, then multred(I)(i) is its residue modulo q − 1 in the
set {1, . . . , q − 1}.

Let S be the set of multisets contained in {1, . . . , n}, such that each element has multi-
plicity at most q − 1 and some element has positive multiplicity. For I ∈ S, we construct a
new variable xI and identify it with the monomial

∏
i∈I x

multI(i)
i . S has cardinality qn − 1.

Every function from GF (q)n to GF (q) can be written as a linear combination of the xI and
the constant function 1. For I ∈ S, we define FI(x1, . . . , xn) =

∏
i∈I Fi(x)multI(i), reduced

using the identities xq
j = xj, j = 1, . . . , n. Thus each variable appears with degree at most

q − 1. We then define the affine function F ′
I by replacing each monomial Πi∈Ix

multI(i)
i in

FI by the corresponding variable xI . We similarly define the affine function g′ from g and
combine these functions into an affine feedback register of length qn − 1 over GF (q) that
generates all the output sequences of the original register, as before.

With these definitions Corollary 2.2 holds verbatim. Corollary 2.3 holds with conditions
1 and 2 replaced by:

If I ∈ Q and J ∈ R then red(JmultI(n) ∪ I ′) ∈ Q.

Theorem 2.4 holds with the upper bound

qn −
r−1∑
j=2

(
n
j

)
(q − 1)j −

k∑
i=1

|Ci|(q − 1)r − (q − 1)n

in the first case, and

qn − 1−
r−1∑
j=2

(
n
j

)
(q − 1)j −

k∑
i=1

|Ci|(q − 1)r − (q − 1)n
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in the second.
Let #(n, i) be the number of monomials of degree i in n variables in which each variable

has degree at most q − 1. Proposition 2.6 then holds with
(

n
i

)
replaced by #(n, i). In

Proposition 2.7, we must require that each term of the feedback and feedforward functions
contain at least k variables, and replace

(
n
i

)
by #(n, i) in the conclusion. Similarly, in

Proposition 2.8, we must require that each term of the feedback function contain at least k
variables and replace

(
n
i

)
by #(n, i) in the conclusion.
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